

SysAdmin 101

2

Introduction ��� 5

Alerting �� 6

Automation �� 19

Ticketing ��� 28

Patch Management ��� 37

Leveling Up �� 42

Conclusion ��� 53

Table of Contents

SysAdmin 101

3

SYS ADMIN 101 By Kyle Rankin

Copyright Statement
© 2018 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws�

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT� The Materials are subject to change without no-
tice and do not represent a commitment on the part of Linux Journal or its Web site
sponsors� In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limita-
tion, for any direct, indirect, incidental, special, exemplary or consequential damag-
es whatsoever resulting from the use of any information contained in the Materials�

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer� In connection with such use, you may not
modify or obscure any copyright or other proprietary notice�

The Materials may contain trademarks, services marks and logos that are the
property of third parties� You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties�

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office� All other product or service names are the property of their
respective owners� If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal�com�

SysAdmin 101

4

About the Author

Kyle Rankin is a Tech Editor and columnist at

Linux Journal and the Chief Security Officer at

Purism� He is the author of Linux Hardening in

Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server

Book, Knoppix Hacks, Knoppix Pocket Reference, Linux Multimedia

Hacks and Ubuntu Hacks, and also a contributor to a number of

other O’Reilly books� Rankin speaks frequently on security and

open-source software including at BsidesLV, O’Reilly Security

Conference, OSCON, SCALE, CactusCon, Linux World Expo and

Penguicon� You can follow him at @kylerankin�

SysAdmin 101

5

This book explores system administrator fundamentals� These

days, DevOps has made even the job title “system administra-

tor” seem a bit archaic, much like the “systems analyst” title

it replaced� These DevOps positions are rather different from

typical sysadmin jobs in the past in that they have a much larg-

er emphasis on software development far beyond basic shell

scripting� As a result, they often are filled with people with

software development backgrounds without much prior sys-

admin experience� In the past, sysadmins would enter the role

at a junior level and be mentored by a senior sysadmin on the

team, but in many cases currently, companies go quite a while

with cloud outsourcing before their first DevOps hire� As a re-

sult, DevOps engineers might be thrust into the role at a junior

level with no mentor around apart from search engines and

Stack Overflow posts� In this book, I expound on some of the

lessons I’ve learned through the years that might be obvious to

longtime sysadmins but may be news to someone just coming

into this position�

Introduction
 KYLE RANKIN

SysAdmin 101

6

In this first chapter, I cover on-call alerting� Like with any job

title, the responsibilities given to sysadmins, DevOps and Site

Reliability Engineers may differ, and in some cases, they may

not involve any kind of 24x7 on-call duties, if you’re lucky� For

everyone else, though, there are many ways to organize on-call

alerting, and there also are many ways to shoot yourself in the

foot�

 The main enemies of on-call alerting are false positives,

with the main risks being ignoring alerts or burnout for mem-

bers of your team� This chapter describes some best practices

you can apply to your alerting policies that hopefully will re-

duce burnout and make sure alerts aren’t ignored�

Alert Thresholds
A common pitfall sysadmins run into when setting up moni-

toring systems is to alert on too many things� These days, it’s

simple to monitor just about any aspect of a server’s health,

so it’s tempting to overload your monitoring system with all

kinds of system checks� One of the main ongoing maintenance

tasks for any monitoring system is setting appropriate alert

thresholds to reduce false positives� This means the more

checks you have in place, the higher the maintenance burden�

As a result, I have a few different rules I apply to my monitor-

ing checks when determining thresholds for notifications�

Alerting

SysAdmin 101

7

Critical alerts must be something I want to be woken up about

at 3am�

A typical cause of sysadmin burnout is being woken up with

alerts for systems that don’t matter� If you don’t have a 24x7

international development team, you probably don’t care if the

build server has a problem at 3am, or even if you do, you prob-

ably are going to wait until the morning to fix it� By restricting

critical alerts to just those systems that must be online 24x7,

you help reduce false positives and make sure that real prob-

lems are addressed quickly�

Critical alerts must be actionable�

Some organizations send alerts when just about anything hap-

pens on a system� If I’m being woken up at 3am, I want to have

a specific action plan associated with that alert so I can fix it�

Again, too many false positives will burn out a sysadmin that’s

on call, and nothing is more frustrating than getting woken up

with an alert that you can’t do anything about� Every critical

alert should have an obvious action plan the sysadmin can fol-

low to fix it�

Warning alerts tell me about problems that will be critical if I

don’t fix them�

There are many problems on a system that I may want to know

about and may want to investigate, but they aren’t worth get-

ting out of bed at 3am� Warning alerts don’t trigger a pager, but

they still send me a quieter notification� For instance, if load,

SysAdmin 101

8

used disk space or RAM grows to a certain point where the

system is still healthy but if left unchecked may not be, I get a

warning alert so I can investigate when I get a chance� On the

other hand, if I got only a warning alert, but the system was no

longer responding, that’s an indication I may need to change

my alert thresholds�

Repeat warning alerts periodically�

I think of warning alerts like this thing nagging at you to look at

it and fix it during the work day� If you send warning alerts too

frequently, they just spam your inbox and are ignored, so I’ve

found that spacing them out to alert every hour or so is enough

to remind me of the problem but not so frequent that I ignore

it completely�

Everything else is monitored, but doesn’t send an alert�

SysAdmin 101

9

There are many things in my monitoring system that help pro-

vide overall context when I’m investigating a problem, but by

themselves, they aren’t actionable and aren’t anything I want

to get alerts about� In other cases, I want to collect metrics

from my systems to build trending graphs later� I disable alerts

altogether on those kinds of checks� They still show up in my

monitoring system and provide a good audit trail when I’m

investigating a problem, but they don’t page me with useless

notifications�

Kyle’s rule�

One final note about alert thresholds: I’ve developed a practice

in my years as a sysadmin that I’ve found is important enough

as a way to reduce burnout that I take it with me to every team

I’m on� My rule is this:

 If sysadmins were kept up during the night because

 of false alarms, they can clear their projects for the

 next day and spend time tuning alert thresholds so it

 doesn’t happen again�

There is nothing worse than being kept up all night because

of false positive alerts and knowing that the next night will

be the same and that there’s nothing you can do about it� If

that kind of thing continues, it inevitably will lead either to

burnout or to sysadmins silencing their pagers� Setting aside

time for sysadmins to fix false alarms helps, because they get a

chance to improve their night’s sleep the next night� As a team

lead or manager, sometimes this has meant that I’ve taken on

SysAdmin 101

10

a sysadmin’s tickets for them during the day so they can fix

alerts�

Paging
Sending an alert often is referred to as paging or being paged,

because in the past, sysadmins, like doctors, carried pagers

on them� Their monitoring systems were set to send a basic

numerical alert to the pager when there was a problem, so

that sysadmins could be alerted even when they weren’t at a

computer or when they were asleep� Although we still refer to

it as paging, and some older-school teams still pass around an

actual pager, these days, notifications more often are handled

by alerts to mobile phones�

 The first question you need to answer when you set up

alerting is what method you will use for notifications� When

you are deciding how to set up pager notifications, look for a

few specific qualities�

Something that will alert you wherever you are geographically�

SysAdmin 101

11

A number of cool office projects on the web exist where a

broken software build triggers a big red flashing light in the

office� That kind of notification is fine for office-hour alerts

for non-critical systems, but it isn’t appropriate as a pager

notification even during the day, because a sysadmin who is in

a meeting room or at lunch would not be notified� These days,

this generally means some kind of notification needs to be sent

to your phone�

An alert should stand out from other notifications�

False alarms can be a big problem with paging systems, as

sysadmins naturally will start ignoring alerts� Likewise, if you

use the same ringtone for alerts that you use for any other

email, your brain will start to tune alerts out� If you use email

for alerts, use filtering rules so that on-call alerts generate a

completely different and louder ringtone from regular emails

and vibrate the phone as well, so you can be notified even

if you silence your phone or are in a loud room� In the past,

when BlackBerries were popular, you could set rules such that

certain emails generated a “Level One” alert that was different

from regular email notifications�

The BlackBerry days are gone now, and currently, many

organizations (in particular startups) use Google Apps for their

corporate email� The Gmail Android application lets you set

per-folder (called labels) notification rules so you can create

a filter that moves all on-call alerts to a particular folder and

then set that folder so that it generates a unique alert, vibrates

and does so for every new email to that folder� If you don’t

SysAdmin 101

12

have that option, most email software that supports multiple

accounts will let you set different notifications for each

account so you may need to resort to a separate email account

just for alerts�

Something that will wake you up all hours of the night�

Some sysadmins are deep sleepers, and whatever notification

system you choose needs to be something that will wake them

up in the middle of the night� After all, servers always seem

to misbehave at around 3am� Pick a ringtone that is loud,

possibly obnoxious if necessary, and also make sure to enable

phone vibrations� Also configure your alert system to re-send

notifications if an alert isn’t acknowledged within a couple

minutes� Sometimes the first alert isn’t enough to wake people

up completely, but it might move them from deep sleep to a

lighter sleep so the follow-up alert will wake them up�

While ChatOps (using chat as a method of getting

notifications and performing administration tasks) might

be okay for general non-critical daytime notifications, they

are not appropriate for pager alerts� Even if you have an

application on your phone set to notify you about unread

messages in chat, many chat applications default to a “quiet

time” in the middle of the night� If you disable that, you risk

being paged in the middle of the night just because someone

sent you a message� Also, many third-party ChatOps systems

aren’t necessarily known for their mission-critical reliability

and have had outages that have spanned many hours� You don’t

want your critical alerts to rely on an unreliable system�

SysAdmin 101

13

Something that is fast and reliable�

Your notification system needs to be reliable and able to alert

you quickly at all times� To me, this means alerting is done in-

house, but many organizations opt for third parties to receive

and escalate their notifications� Every additional layer you can

add to your alerting is another layer of latency and another

place where a notification may be dropped� Just make sure

whatever method you choose is reliable and that you have

some way of discovering when your monitoring system itself is

offline�

In the next section, I cover how to set up escalations—

meaning, how you alert other members of the team if the

person on call isn’t responding� Part of setting up escalations is

picking a secondary, backup method of notification that relies

on a different infrastructure from your primary one� So if you

use your corporate Exchange server for primary notifications,

you might select a personal Gmail account as a secondary� If

you have a Google Apps account as your primary notification,

you may pick SMS as your secondary alert�

Email servers have outages like anything else, and the goal

here is to make sure that even if your primary method of

notifications has an outage, you have some alternate way of

Your notification system needs to be
reliable and able to alert you quickly
at all times.

SysAdmin 101

14

finding out about it� I’ve had a number of occasions where my

SMS secondary alert came in before my primary just due to

latency with email syncing to my phone�

Create some means of alerting the whole team�

In addition to having individual alerting rules that will page

someone who is on call, it’s useful to have some way of paging

an entire team in the event of an “all hands on deck” crisis�

This may be a particular email alias or a particular key word

in an email subject� However you set it up, it’s important that

everyone knows that this is a “pull in case of fire” notification

and shouldn’t be abused with non-critical messages�

Alert Escalations
Once you have alerts set up, the next step is to configure

alert escalations� Even the best-designed notification system

alerting the most well intentioned sysadmin will fail from time

to time either because a sysadmin’s phone crashed, had no cell

signal, or for whatever reason, the sysadmin didn’t notice the

alert� When that happens, you want to make sure that others

on the team (and the on-call person’s second notification) is

alerted so someone can address the alert�

Alert escalations are one of those areas that some

monitoring systems do better than others� Although the

configuration can be challenging compared to other systems,

I’ve found Nagios to provide a rich set of escalation schedules�

Other organizations may opt to use a third-party notification

system specifically because their chosen monitoring solution

SysAdmin 101

15

doesn’t have the ability to define strong escalation paths� A

simple escalation system might look like the following:

 Initial alert goes to the on-call sysadmin and repeats

 every five minutes�

 If the on-call sysadmin doesn’t acknowledge or fix the

 alert within 15 minutes, it escalates to the secondary

 alert and also to the rest of the team�

 These alerts repeat every five minutes until they are

 acknowledged or fixed�

The idea here is to give the on-call sysadmin time to address

the alert so you aren’t waking everyone up at 3am, yet also

provide the rest of the team with a way to find out about the

alert if the first sysadmin can’t fix it in time or is unavailable�

Depending on your particular SLAs, you may want to shorten

or lengthen these time periods between escalations or make

them more sophisticated with the addition of an on-call backup

who is alerted before the full team� In general, organize your

escalations so they strike the right balance between giving the

on-call person a chance to respond before paging the entire

team, yet not letting too much time pass in the event of an

outage in case the person on call can’t respond�

If you are part of a larger international team, you even may

be able to set up escalations that follow the sun� In that case,

you would select on-call administrators for each geographic

region and set up the alerts so that they were aware of the

different time periods and time of day in those regions, and

SysAdmin 101

16

then alert the appropriate on-call sysadmin first� Then you

can have escalations page the rest of the team, regardless of

geography, in the event that an alert isn’t solved�

On-Call Rotation
During World War One, the horrors of being in the trenches

at the front lines were such that they caused a new range of

psychological problems (labeled shell shock) that, given time,

affected even the most hardened soldiers� The steady barrage

of explosions, gun fire, sleep deprivation and fear day in and

out took its toll, and eventually both sides in the war realized

the importance of rotating troops away from the front line to

recuperate�

 It’s not fair to compare being on call with the horrors of

war, but that said, it also takes a kind of psychological toll that

if left unchecked, it will burn out your team� The responsibility

of being on call is a burden even if you aren’t alerted during a

particular period� It usually means you must carry your laptop

with you at all times, and in some organizations, it may affect

whether you can go to the movies or on vacation� In some badly

run organizations, being on call means a nightmare of alerts

where you can expect to have a ruined weekend of firefighting

SysAdmin 101

17

every time� Because being on call can be stressful, in particular

if you get a lot of nighttime alerts, it’s important to rotate out

sysadmins on call so they get a break�

 The length of time for being on call will vary depending

on the size of your team and how much of a burden being on

call is� Generally speaking, a one- to four-week rotation is

common, with two-week rotations often hitting the sweet spot�

With a large enough team, a two-week rotation is short enough

that any individual member of the team doesn’t shoulder too

much of the burden� But, even if you have only a three-person

team, it means a sysadmin gets a full month without worrying

about being on call�

Holiday on call�

Holidays place a particular challenge on your on-call rotation,

because it ends up being unfair for whichever sysadmin it lands

on� In particular, being on call in late December can disrupt all

kinds of family time� If you have a professional, trustworthy

team with good teamwork, what I’ve found works well is to

share the on-call burden across the team during specific known

holiday days, such as Thanksgiving, Christmas Eve, Christmas

and New Year’s Eve� In this model, alerts go out to every

member of the team, and everyone responds to the alert and to

each other based on their availability� After all, not everyone

eats Thanksgiving dinner at the same time, so if one person is

sitting down to eat, but another person has two more hours

before dinner, when the alert goes out, the first person can

reply “at dinner”, but the next person can reply “on it”, and that

way, the burden is shared�

SysAdmin 101

18

 If you are new to on-call alerting, I hope you have found

this list of practices useful� You will find a lot of these practices

in place in many larger organizations with seasoned sysadmins,

because over time, everyone runs into the same kinds of

problems with monitoring and alerting� Most of these policies

should apply whether you are in a large organization or a small

one, and even if you are the only DevOps engineer on staff,

all that means is that you have an advantage at creating an

alerting policy that will avoid some common pitfalls and overall

burnout�

SysAdmin 101

19

In the first chapter of this ebook, I explore how to approach

on-call rotations as a sysadmin� In this chapter, I discuss how

to automate yourself out of your job� There is a quote that you

see from time to time in sysadmin circles that goes something

along the lines of “Be careful or I will replace you with a tiny

shell script�” Good system administrators hate performing

mundane tasks and constantly seek to apply that saying to

themselves� That said, there are many different approaches to

automation, and not all of them result in a time-savings� Here,

I discuss my experience with automation and describe what,

when, why and how you should (and shouldn’t) automate�

Why You Should Automate
There are a number of different reasons why you should take

steps to automate your work as a sysadmin:

1) It frees up time spent doing mundane tasks to focus on

more important work�

With all of the automation that’s already built in to servers

these days, it’s easy to take for granted just how many

mundane tasks sysadmins have had to perform in the past� Logs

weren’t always rotated automatically; backups usually were

home-grown affairs that often were triggered manually� Even

Automation

SysAdmin 101

20

now, there still are system administrators who install every

single server by hand, log in to a machine manually and install

or update software, and configure server configuration files on

the host by hand�

 Let’s take server OS installation as an example—a

modern interactive server OS installation may take anywhere

from 15 minutes to an hour of sysadmin time to walk through

and answer questions� These are the kinds of actions that don’t

really require a sysadmin’s expertise once you’ve made the

initial decisions about how you want a server to be set up� By

automating these mundane tasks, you can get back to the more

difficult work that does require your expertise�

2) Automation reduces mistakes in routine tasks�

SysAdmin 101

21

The thing about performing the same task over and over by

hand is that it is easy to make mistakes, and if it’s something

you do every day, eventually you even may stop paying

attention to whether your task succeeded� Also, the way that

you may perform a certain task might be a little bit different

from how a different administrator on the team does it� By

automating a task, the team can agree on the ideal way to

perform it and know that when you run your automation script,

it is performed the same way every single time with no skipped

steps or commands run in the wrong order�

3) Automation allows everyone on the team to be productive�

With automation, you can take even a complex process and

reduce it down to a command� That command then becomes

something that anyone on the team can run, whereas the

complex process may have required more senior members

of the team� For instance, if you take production software

deployment as an example, often there can be a complex

arrangement of triggering load balancer and monitoring

maintenance modes, software versions to check, mirrors to

sync up, and services to restart and test� Even though these

individual steps may be mundane, combined, they become

pretty complicated and could overwhelm a junior member of

the team—especially when production uptime hangs in the

balance� By automating that process, senior administrators

can put all of their expertise into creating the right process

that performs the right checks, and they can go on vacation

knowing that anyone else on the team now can perform the

task the right way�

SysAdmin 101

22

4) Automation reduces documentation workload�

Often instead of automating a task, a sysadmin team will spend

time documenting a process� There is still an important place

for documentation, and in the next section, I discuss when that

makes sense and when it doesn’t� The fact is though, if you take

take an entire process and put it into a single automated task,

you no longer need a full wiki page of documentation (that

inevitably will become out of date), because you’ve reduced

it down to “run this command”� Because the process is now

automated, you also know the process is kept up to date;

otherwise, the script wouldn’t work�

What You Should Automate
Not everything is appropriate for automation, and even things

that may be good candidates for automation may not be good

candidates today (the next section covers when you should

SysAdmin 101

23

automate)� Following are a few different types of tasks that

make good candidates for automation�

1) Routine tasks�

In general, tasks that you perform frequently (at least monthly)

are good candidates for automation� The more frequent the

task, in theory, the more time-savings you would get from

automating it� Tasks that you perform only once a year may

not be worth the effort to build automation around, and

instead, those are the kinds of tasks that benefit from good

documentation�

2) Repeatable tasks�

If you could document a process as a series of commands, and

then copy and paste them one by one in a terminal and the task

would be complete, that’s a repeatable task that may be a good

candidate for automation� On the other hand, one-off tasks

that have custom inputs or are something you may never have

to do again aren’t worth the time and effort to automate�

3) Complex tasks�

The more complex a task, the more opportunities you have

for mistakes if you do it manually� If a task has multiple steps,

in particular steps that require you to take the output from

one step and use it as input for another, or steps that use

commands with a complex string of arguments, these are all

great candidates for automation�

4) Time-consuming tasks�

The longer the tasks take to complete (especially if there are

SysAdmin 101

24

periods of running a command, waiting for it to complete,

and then doing something with that command’s output), the

better a candidate it is for automation� OS installation and

configuration is a great example of this, as when you install

an OS, there are periods when you enter installation settings

and periods when you wait for the installation to complete�

All of that waiting is wasted time� By automating long-running

tasks, you can go do some other work and come back to the

automation (or better, have it alert you) to see if it is complete�

When You Should Automate
My coworkers know that I enjoy automating myself out of my

job, and sometimes in the past they have been surprised to

learn that I haven’t automated a task that by all measures is

a prime candidate for automation� My answer is usually “Oh

I plan to, I’m just not ready yet�” The fact is that even if you

have a task that is a great candidate for automation, it may not

necessarily be the right time to automate it�

 When I need to perform a new task that’s a series of

mundane, manual steps, I like to force myself to perform it

step by step at least a few times “in the wild” before I start

automating it� I find I usually need to perform a task a few

times to understand where automation makes the most sense,

what areas of the task may require extra attention, and what

sorts of variables I might encounter for the task� Otherwise,

if I just charge ahead and write a script, I may find myself

rewriting it from scratch a few weeks later because I discover

the process needs to be adapted to a new variation of the task�

If I’m not quite sure about parts of a process, I may automate

only the parts I am sure of first and get those right� Later on

SysAdmin 101

25

when the rest of the process starts to gel in my mind, I then

go back and incorporate it into the automation I’ve already

completed�

 I also avoid automating tasks if I’m not sure I can do

so securely� For instance, a number of organizations are big

fans of using ChatOps (automating tasks using bots inside a

chatroom) for automation� Although I know that many bots

can authenticate tasks before they perform them, I still worry

about the potential for abuse with a service that’s usually

shared across the whole company, not to mention the fact

that production changes are being triggered by a host outside

the production environment� With my current threat model,

I have to maintain strict separation between development

and production environments, so having a bot accessible

to anyone in the company, or having a Jenkins continuous

integration server in the development environment performing

my production tasks, just doesn’t work� In many cases, I have

fully automated tasks up to the point that it still requires an

administrator with the proper access to go to the production

environment (thereby proving that they are authorized to be

there) before they push “the button”�

How You Should Automate
Since the whole goal of automation is to save time, I don’t

like to waste time refactoring my automation� If I don’t feel

like I understand a process and its variables well enough to

automate it, I wait until I do or automate only the parts I feel

good about� In general, I’m a big fan of building a foundation

of finished work that I then build upon� I like to start with

automating tasks that will give me the biggest time-savings or

SysAdmin 101

26

encourage the most consistency and then build off them�

 I like doing the hard work up front so that it’s easier

down the road, and that is why I am a big fan of configuration

management to automate server configuration� Once

something like that is in place, rolling out changes to

configuration becomes trivial, and creating new servers that

match existing ones should be easy� These big tasks may take

time up front, but they provide huge cost savings from then on,

so I try to automate first�

 I also favor automation tasks that can be used in multiple

ways down the road� For instance, I think all administrators

these days should have a simple, automated way to query

their environment for whether a package is installed and on

what hosts, and then be able to update that package easily

on the hosts that have it� Some administrators refer to this

as part of orchestration� (See my articles “Orchestration

with MCollective, Part I and Part II” for more information on

orchestration�)

 Package updates are something that sysadmins do

constantly both for in-house software that changes frequently

and system software that needs security updates� If a security

update is a burden, many sysadmins won’t bother� Having

automation in place to make package updates easy means

administrators save time on a task they have to perform

frequently� Sysadmins then can use that automated package

update process both for security patches, in-house software

deployments and other tasks where package updates are just

one component of many�

 As you write your automation, be careful to check that

your tasks succeeded, and if not, alert the sysadmin to the

https://www.linuxjournal.com/content/orchestration-mcollective
https://www.linuxjournal.com/content/orchestration-mcollective-part-II

SysAdmin 101

27

problem� That means shell scripts should check for exit codes,

and error logs should be forwarded somewhere that gets

the administrator’s attention� It’s all too easy to automate

something and forget about it, but then check back weeks later

and discover it stopped working!

 In general, approach automation as a way to free up your

brain, time and expertise toward tasks that actually need them�

For me, I find that means time spent improving automation and

otherwise dealing with exceptions—things that fall outside the

normal day� If you keep it up, you eventually will find that when

there are no crises or new projects, the day-to-day work should

be automated to the point that your task is just to keep an eye

on your well-oiled machine to make sure everything’s running�

That is when you know you have replaced yourself with a shell

script�

SysAdmin 101

28

This is the third in a series of chapters on system administrator

fundamentals where I focus on some lessons I’ve learned

through the years that might be obvious to longtime

sysadmins, but news to someone just coming into this position�

 In the first chapter, I discussed how to approach alerting

and on-call rotations as a sysadmin� The second chapter

covered how to automate yourself out of a job� In this chapter,

I explore something that on the surface may seem boring or

mundane but is absolutely critical to get right if you want to be

an effective sysadmin: ticketing�

 By ticketing, I’m referring to systems that allow

sysadmins to keep track of tasks both internally and those

requested by their coworkers or customers� There are many

ways to get ticketing wrong so that it becomes a drain on an

organization, so many sysadmins avoid or it use it begrudgingly�

Also, ticketing approaches that work well for developers may

be horrible for sysadmins, and vice versa� If you don’t currently

use a ticketing system, I hope by the end of this chapter, I’ve

changed your mind� If you do use tickets, but you wish you

didn’t, I hope I can share how to structure a ticketing system

that makes everything easier, not more difficult�

Why Tickets Are Important
Like documentation, tickets are one of those important things

Ticketing

SysAdmin 101

29

in a mature organization that some administrators think are

unnecessary or even a waste of time� A ticketing system is

important no matter the size of your organization� In a large

organization, you have a large volume of tasks you need to

keep track of distributed among a group of people� In a small

organization, you often have one person taking on many roles�

This leads me to the first reason why tickets are important�

Tickets Ensure That Tasks Aren’t Forgotten

Sysadmins are asked to do new tasks constantly� These

days, there are any number of ways a coworker might ask

for your help, from an email, to a phone call, to a message

in a chat program, to a tap on the shoulder� If you weren’t

doing anything else, you immediately could start working on

that task, and everything would be fine� Of course, usually

sysadmins have to balance needs from many different people

at the same time� Even requests that come in through email

have a tendency to fall through the cracks and be forgotten�

By storing every request in a ticket, no matter how you got

the request, it is captured, so that even if you do forget about

it, you’ll remember it the next time you look at your ticketing

system�

Tickets Make Sure the Task Is Done Right

Even if you can remember what someone wants you to do, you

may not remember on Monday all of the details that someone

told you in person on Friday� A ticket lets you capture exactly

what people want done in their own words and provides a way

SysAdmin 101

30

for them to confirm that you completed the task the way they

wanted before you close the ticket�

Tickets Help You Prioritize Tasks

Every request is important to the person who makes it� Every

request may not be as urgent to you or your team compared to

your other tasks, however� When all of your tasks are captured

in tickets, the team lead or manager can go through and re-

prioritize tasks so they are worked on in the right order� This

ends up being more fair for everyone; otherwise, new tasks

have a way of cutting in line, especially when the person asking

for something is standing over your shoulder�

 With a ticketing system, team leads or managers have a

full list of important tasks they can point to when they need to

explain why they aren’t dropping everything for a new request�

At the very least, it will help direct the conversation about why

a particular task should be put at the head of the line�

Tickets Distribute the Work

If you have only one sysadmin, distributing tickets and projects

is easy� Once your team grows though, it’s important to

distribute the work so no member of the team gets burned out�

Coworkers have a tendency of finding that senior member of

your team who is most productive and going to them directly

when they have any issue� Of course, that team member is

probably already working on plenty of other tasks or may be

trying to focus on an important project�

 When a task is captured in a ticket, the team lead or

SysAdmin 101

31

manager can assign and reassign tickets to different members

of the team to make sure no one gets burned out, and also to

ensure that everyone learns how to do things� Otherwise, you

end up cultivating specialists within the team that always take

tickets related to certain systems, which leads to problems

later when that team member goes on vacation�

Tickets Provide an Audit Trail for Changes

Every time you change a system, you create an opportunity for

something to break� If you are lucky, things break immediately

after you make the change� More often, you’ll find that it takes

some time for a change to cause a problem� You’ll discover

two weeks later that something stopped working, and with

a ticketing system, you can pull up all of the tasks that were

worked on around that time� This makes it much easier to

pinpoint potential causes of a problem�

 Tickets also provide an audit trail for tasks that require

approval or proof of completion, like creating or revoking

accounts, granting new privileges or patching software� When

someone asks who said it was okay for Bob to get access

to production and when it happened, you can answer the

question� If you need to prove that you applied a security

patch, you can point to command output that you capture and

then store in the corresponding ticket�

Qualities of an Effective Ticketing System
Many different ticketing systems exist, and sometimes when

you hear people complain about tickets, what they are really

complaining about is a bad ticketing system� When choosing

SysAdmin 101

32

between ticketing systems, you should look for a few things�

 Some systems that developers use to track code through

the development process result in very complicated workflows�

For a sysadmin though, the simpler the ticketing system the

better� Because you already are asking a sysadmin to take time

out of solving a problem to document it in a ticket, it helps if

the ticketing process is fast and simple� I prefer very simple

ticket workflows for sysadmins where there may be only a few

states: open, assigned, in progress, resolved and closed� (I’ll

talk more about how I treat each of those states in the next

section�)

 The fewer required fields in a ticket, the better� If you

want to add extra fields for tags or other information, that’s

fine, just don’t make those fields mandatory� The goal here is

to allow sysadmins to create tickets based on someone walking

up and tapping them on the shoulder in less than a minute�

 Ideally, the ticketing system would allow you some other

way to generate tickets from a script, either from sending an

email to a special address or via an exposed API� If it has an

API that lets you change ticket state or add comments, all the

better, as you potentially can integrate those into your other

automation scripts� For instance, I’ve created a production

deployment script that integrates with my ticketing system,

so that it reads the manifest of packages it should install

from the ticket itself and then outputs all of the results from

the deployment as comments in the ticket� It’s a great way to

enforce a best practice of documenting each of your software

releases, but it does it in a way that makes it the path of least

resistance�

 Favor ticketing systems that allow you to create

SysAdmin 101

33

dependencies or other links between tickets� It’s useful to

know that task A depends on task B, and so you must complete

task B first� These kinds of ticketing systems also make it

easier to build a master ticket to track a project and then break

that large project down into individual tickets that describe

manageable tasks� These kinds of systems often show all of the

subordinate tickets in the master ticket, so a quick glance at

the master ticket can give you a clue about where you are in a

project�

How to Manage and Organize Tickets
Each ticketing system has its own notion of ticket states, but in

my opinion, you should, at a minimum, have the following:

 Open: a task that needs to be completed, but hasn’t been

 assigned to anyone�

 Assigned: a task that’s in a particular person’s queue, but

 they haven’t started work on it yet� Tasks in this state

 should be safe to reassign to someone else�

SysAdmin 101

34

 In progress: a task that has been assigned to someone

 who is currently working on the task� You definitely

 should communicate with the assignee before you

 reassign tickets in this state�

 Resolved: the sysadmin believes the task has been

 completed and is waiting for confirmation from the

 person who filed the ticket before closing it�

 Closed: the task has been completed to everyone’s

 satisfaction�

A well run ticketing system should provide the team with the

answers to a few important questions� The first question is

“What should I work on now?” To answer that question, each

member of the team should be able to claim tickets, and team

leads or managers should be able to assign tickets to individual

members of the team� It’s important for people to claim tickets

and start work only after they are claimed; otherwise, it’s easy

(and common) for two members of the team to start working

on the same task without realizing it� Then everyone on the

team can start working on tickets in their personal queue,

starting with the highest-priority tasks�

 The next question a good ticketing system should answer

is “What should I work on next?” Once sysadmins’ personal

queues are empty, they should be able to go to the collective

queue and see a list of tasks ordered by priority� It should be

clear what tasks they should put on their queue, and if there’s

any question about it, they can go to the team lead or manager

SysAdmin 101

35

for some clarity� Again, ticket priority helps inform everyone

on the team about what’s next—higher-priority tasks trump

lower-priority ones, not necessarily because they are less

important (a ticket is always important to the person who filed

it), but because they are less urgent�

 I approach ticket priority as a way for users to help

inform the team about how important the ticket is to them,

but not how urgent it is for the team� The fact is, there’s no

way every employee in the company can know all of the other

important tasks the sysadmin has to perform for other people

nor can they be expected to weigh the importance of their

need against everyone else’s needs�

 A good manager should reserve the right to weigh the

priority assigned to a ticket against the other tickets in the

queue and change the priority up or down based on its urgency

relative to the other tasks� It also may be the case where a task

that was low urgency two weeks ago has become urgent now

because of how long it was in the queue, so a good manager

would be aware of this and bump the priority� If you are going

to start the practice of changing ticket priorities though, be

sure to inform everyone of your intentions and how you will

determine the urgency of a ticket�

 Another key to managing tickets is to make sure all of

your requests are captured in the ticketing system� Sometimes

a coworker can be guilty of trying to skip ahead in line by

messaging you with a request or walking directly to your desk

to ask you to do something� Even in those cases where you

really are going to drop everything to work on their request,

you should insist on capturing the request in a ticket so you

can track the work� This isn’t just so you can prioritize it based

SysAdmin 101

36

on other tasks or so you don’t forget it, it’s so in a week when

some problem crops up based on this urgent change, you’ll see

this ticket along with other tasks completed that day and it will

help you track down the cause�

 Finally, as a manager, be careful to distribute work fairly

among your team� Even if one member of the team happens to

be an expert on a particular service, don’t assign that person

every task related to that service; it’s important for everyone

on the team to cross-train� Pay attention if employees try to

get tickets assigned to their favorite member of the team, and

don’t be afraid to reassign tasks to spread the work around

evenly� Finally, every ticket queue has routine, mundane grunt

work that must be done� Be sure to distribute those tasks

throughout the team so no one gets burnt out�

SysAdmin 101

37

In this chapter, I cover some of the fundamentals of patch man-
agement under Linux, including what a good patch manage-
ment system looks like, the tools you will want to put in place
and how the overall patching process should work.

What Is Patch Management?
When I say patch management, I’m referring to the systems

you have in place to update software already on a server�

I’m not just talking about keeping up with the latest-and-

greatest bleeding-edge version of a piece of software� Even

more conservative distributions like Debian that stick with

a particular version of software for its “stable” release still

release frequent updates that patch bugs or security holes�

 Of course, if your organization decided to roll its own

version of a particular piece of software, either because

developers demanded the latest and greatest, you needed to

fork the software to apply a custom change, or you just like

giving yourself extra work, you now have a problem� Ideally

you have put in a system that automatically packages up the

custom version of the software for you in the same continuous

Patch
Management

SysAdmin 101

38

integration system you use to build and package any other

software, but many sysadmins still rely on the outdated

method of packaging the software on their local machine based

on (hopefully up to date) documentation on their wiki� In either

case, you will need to confirm that your particular version

has the security flaw, and if so, make sure that the new patch

applies cleanly to your custom version�

What Good Patch Management Looks Like
Patch management starts with knowing that there is a software

update to begin with� First, for your core software, you should

be subscribed to your Linux distribution’s security mailing

list, so you’re notified immediately when there are security

patches� If there you use any software that doesn’t come from

your distribution, you must find out how to be kept up to

date on security patches for that software as well� When new

security notifications come in, you should review the details so

you understand how severe the security flaw is, whether you

are affected and gauge a sense of how urgent the patch is�

 Some organizations have a purely manual patch

management system� With such a system, when a security

patch comes along, the sysadmin figures out which servers

are running the software, generally by relying on memory

and by logging in to servers and checking� Then the sysadmin

uses the server’s built-in package management tool to update

the software with the latest from the distribution� Then the

sysadmin moves on to the next server, and the next, until all of

the servers are patched�

 There are many problems with manual patch

management� First is the fact that it makes patching a laborious

SysAdmin 101

39

chore� The more work patching is, the more likely a sysadmin

will put it off or skip doing it entirely� The second problem

is that manual patch management relies too much on the

sysadmin’s ability to remember and recall all of the servers he

or she is responsible for and keep track of which are patched

and which aren’t� This makes it easy for servers to be forgotten

and sit unpatched�

 The faster and easier patch management is, the more

likely you are to do it� You should have a system in place that

quickly can tell you which servers are running a particular

piece of software at which version� Ideally, that system also

can push out updates� Personally, I prefer orchestration tools

like MCollective for this task, but Red Hat provides Satellite,

and Canonical provides Landscape as central tools that let you

view software versions across your fleet of servers and apply

patches all from a central place�

 Patching should be fault-tolerant as well� You should be

able to patch a service and restart it without any overall down

time� The same idea goes for kernel patches that require a

reboot� My approach is to divide my servers into different high

availability groups so that lb1, app1, rabbitmq1 and db1 would

all be in one group, and lb2, app2, rabbitmq2 and db2 are in

another� Then, I know I can patch one group at a time without it

causing downtime anywhere else�

 So, how fast is fast? Your system should be able to roll

out a patch to a minor piece of software that doesn’t have

an accompanying service (such as bash in the case of the

ShellShock vulnerability) within a few minutes to an hour

at most� For something like OpenSSL that requires you to

restart services, the careful process of patching and restarting

SysAdmin 101

40

services in a fault-tolerant way probably will take more time,

but this is where orchestration tools come in handy� I gave

examples of how to use MCollective to accomplish this in my

MCollective orchestration articles (see Part I and Part II), but

ideally, you should put a system in place that makes it easy to

patch and restart services in a fault-tolerant and automated

way�

 When patching requires a reboot, such as in the case

of kernel patches, it might take a bit more time, but again,

automation and orchestration tools can make this go much

faster than you might imagine� I can patch and reboot the

servers in an environment in a fault-tolerant way within an

hour or two, and it would be much faster than that if I didn’t

need to wait for clusters to sync back up in between reboots�

 Unfortunately, many sysadmins still hold on to the

outdated notion that uptime is a badge of pride—given that

serious kernel patches tend to come out at least once a year

if not more often, to me, it’s proof you don’t take security

https://www.linuxjournal.com/content/orchestration-mcollective
https://www.linuxjournal.com/content/orchestration-mcollective-part-II

SysAdmin 101

41

seriously�

 Many organizations also still have that single point of

failure server that can never go down, and as a result, it never

gets patched or rebooted� If you want to be secure, you need

to remove these outdated liabilities and create systems that at

least can be rebooted during a late-night maintenance window�

 Ultimately, fast and easy patch management is a sign of

a mature and professional sysadmin team� Updating software

is something all sysadmins have to do as part of their jobs,

and investing time into systems that make that process easy

and fast pays dividends far beyond security� For one, it helps

identify bad architecture decisions that cause single points

of failure� For another, it helps identify stagnant, out-of-date

legacy systems in an environment and provides you with an

incentive to replace them� Finally, when patching is managed

well, it frees up sysadmins’ time and turns their attention to

the things that truly require their expertise�

SysAdmin 101

42

In this chapter, I describe the overall sysadmin career path and

what I consider the attributes that might make you a “senior

sysadmin” instead of a “sysadmin” or “junior sysadmin”, along

with some tips on how to level up�

 Keep in mind that titles are pretty fluid and loose things,

and that they mean different things to different people� Also,

it will take different people different amounts of time to “level

up” depending on their innate sysadmin skills, their work ethic

and the opportunities they get to gain more experience� That

said, be suspicious of anyone who leveled up to a senior level in

any field in only a year or two—it takes time in a career to make

the kinds of mistakes and learn the kinds of lessons you need

to learn before you can move up to the next level�

Junior Systems Administrator
Junior sysadmins are early on in their sysadmin training� It

might be their first sysadmin job where they are learning

everything from scratch, or they might have a few years of

experience under their belts� Either way, a few attributes are

common among junior sysadmins:

 Tasks will require help from other members of the team

 to complete�

Leveling Up

SysAdmin 101

43

 They will rely heavily on documentation and may not

 understand what individual tasks do�

 It may take weeks or even months to be productive at a

 new job�

 Most of their time will be spent with daily tickets�

 Eventually they might take on a project, but will need

 quite a bit of help to complete it�

One of the first attributes that defines junior sysadmins is

the amount of outside help they will need to do their jobs�

Generally speaking, they will need help and direction to

perform day-to-day tasks, especially at first� If you document

your routine tasks (and you should!), you will find that junior

sysadmins will dutifully follow your procedures step by step,

but they may not understand exactly what those steps do� If a

task deviates from the norm, or if for some reason a step fails,

they will escalate up to a more senior member of the team for

help—this is a good thing, because this mentoring is one of the

main ways that junior sysadmins build their experience besides

making mistakes and fixing them�

 It might take sysadmins at this level a few weeks or even

months at a new organization until they are productive and

can start doing daily tasks independently without help� These

are great opportunities for a team to audit documentation and

for junior members of the team to flag gaps in documentation

or places where they are out of date� If you have junior team

SysAdmin 101

44

members add documentation themselves, just make sure that a

more senior team member goes over it to make sure it’s correct

and complete�

 A sysadmin’s task list is usually divided into two main

categories: day-to-day tasks and projects� Junior sysadmins

often end up being assigned more of the day-to-day “grunt

work”, not as a punishment, but just because projects usually

require more experience—experience they will get as they

master daily tickets�

 That said, at some point, it will be important for junior

sysadmins to take on their first project� Ideally, this will be a

project without a strict deadline, so they can take the time they

need to research and get it right� At this level, a more senior

team member will need to devote a fair amount of time to act

as a mentor and help direct the planning and research for the

project and answer any questions�

 Both daily tasks and projects are important for junior

sysadmins, as it’s the mastery of daily tasks and the successful

completion of a couple projects that will help prepare junior

sysadmins to level up� Each task they master will add a certain

level of confidence and proficiency in routine sysadmin tasks,

and projects will help develop their research skills and the

ability to complete tasks that fall outside a playbook�

Mid-Level Systems Administrator
It can be difficult to draw the exact line where a sysadmin

levels up past the junior level� There isn’t an exact number

of years’ experience needed; instead, it has more to do with

sysadmins’ competency with their craft and their overall

confidence and independence�

SysAdmin 101

45

Here are a few attributes that are common to mid-level

sysadmins:

 They generally perform day-to-day tasks independently�

 They understand some of the technology behind their

 routine tasks and don’t just parrot commands they see in

 documentation�

 It takes a few weeks up to a month to be productive at a

 new job�

 Their time is pretty equally balanced between daily

 tickets and longer-term projects�

 They are able to come up with new approaches and

 improvements to existing tasks�

 They can complete simple projects independently and

SysAdmin 101

46

 more complex projects with some help from more senior

 team members�

The main difference between junior sysadmins and mid-level

sysadmins has to do with their independence� As sysadmins

become more comfortable with servers in general, and the

processes within an organization specifically, they start to

be able to perform typical tasks by themselves� Mid-level

sysadmins should be able to handle all of the normal tasks

that are thrown at them without outside help� It’s only when

they get an odd “curve ball”, such as a one-off task that hasn’t

been done before or some unique emergency, that mid-level

sysadmins may need to reach out to the more senior members

of the team for some guidance� As with junior sysadmins, this

type of help is very important, and it would be a mistake for

mid-level sysadmins not to ask for help with odd requests just

to try to be “more senior”� Asking questions and getting advice

from more experienced sysadmins will help them level up� If

they try to go it completely alone, no matter what, it will take

much longer�

 Mid-level sysadmins also take on more projects than

their junior counterparts, and they are able to complete simple

projects independently� Junior sysadmins might be able to

maintain an existing system, but mid-level sysadmins actually

might be able to set it up from scratch� They also can start

tackling larger, more complicated projects that may require

them to learn new technologies and come up with some

approaches independently, although in those cases, they’ll

still sometimes need to reach out to more experienced team

members to make sure they are on the right track�

SysAdmin 101

47

 As sysadmins master all of the day-to-day tasks, they

also naturally will start to come up with improvements

and efficiencies for those tasks, and they may make some

suggestions to the team along those lines� These improvements

may become projects for them in their own right� They also

should be able to provide some level of mentorship and

training for junior members on the team, at least with daily

tasks�

 One of the most important things for mid-level

sysadmins to do if they want to level up is to take on projects

and help triage emergencies� Projects and emergencies often

provide opportunities to think outside established playbooks�

It’s this kind of critical thinking, research and problem-

solving that builds the experience that’s so important for

sysadmins� They will start to notice some common patterns

the more emergencies and projects they work through, and

that realization builds a certain level of confidence and deeper

understanding that is vital for moving to the next level�

Senior Systems Administrator
Although some may consider people to be senior sysadmins

based on a certain number of years’ experience, to me, what

makes someone a senior sysadmin versus a mid-level sysadmin

isn’t years of experience or number of places worked at, it’s

more a particular state of mind that one can get to via many

different means� Many people get the title before they get the

state of mind, and often it takes getting the title (or some of

the responsibilities associated with it) to make a person level

up�

SysAdmin 101

48

 The main difference between senior sysadmins and mid-

level sysadmins is that one day, something clicks in senior

sysadmins’ minds when they realize that basically every

emergency they’ve responded to and every project they’ve

worked on to that point all have a common trait: given enough

time and effort, they can track down the cause of just about

any problem and complete just about any sysadmin task� This is

a matter of true confidence, not false bravado, and it’s this kind

of real independence that marks senior sysadmins�

 Early on in your career, certain tasks or projects just

seem over your head, and you absolutely need help to complete

them� Later on, you master daily tasks, but weird emergencies

or complex projects still may intimidate you� Senior sysadmins

have completed so many projects and responded to so many

emergencies, that they eventually build the confidence such

that they aren’t intimidated by the next project, the next

emergency or the prospect of being responsible for important

mission-critical infrastructure� Like mid-level sysadmins might

approach their daily tickets, senior sysadmins approach any

task that comes their way�

Here are some attributes common to senior sysadmins:

 They can perform both daily tasks and complex projects

 independently�

 They understand the fundamentals behind the

 technologies they use and can distill complex tasks down

 into simple playbooks everyone on the team can follow�

SysAdmin 101

49

 They can be productive at a new job within a week or

 two�

 Their time is spent more on large projects and odd

 requests that fall outside the norm�

 They mentor other team members and have a good

 sense of best practices�

 They come up with new projects and improvements and

 can suggest appropriate designs to solve new problems�

 They understand their own fallibility and develop

 procedures to protect themselves from their own

 mistakes�

Again, it’s the confidence and independence of senior

sysadmins that separates them from mid-level sysadmins�

That’s not to say that senior sysadmins never ask for help�

Along with the confidence of being able to tackle any sysadmin

task is the humility that comes with a career full of mistakes� In

fact, part of their experience will have taught them the wisdom

of asking other people on the team for feedback to make sure

they haven’t missed anything� Often senior sysadmins will

come up with multiple ways to tackle a problem, each with pros

and cons, and use the rest of the team as a sounding board to

help choose which approach would work best in a specific case�

 Senior sysadmins’ experiences exposes them to many

different technologies, systems and architectures through the

years� This means they start to notice which approaches work,

SysAdmin 101

50

which don’t, and which work at first but cause problems in

the long run� In particular, they might track some project they

completed themselves through its lifetime and note how their

initial solutions worked to a particular point and then either

failed as it scaled, or needed to change with the advent of

some new technology� The more this happens, the more senior

sysadmins start to develop a natural sense of best practices

and what I call the “sysadmin sense”, which, like Spiderman’s

“spidey sense”, starts to warn them when they see something

that is going to result in a problem down the road, like a backup

system that’s never been tested or a system that has a single

point of failure� It’s in developing this expertise that they are

able to level up to the last major level outside management�

Systems Architect
Although every organization is a bit different, there are two

main career paths senior sysadmins might choose from as they

gain experience� The most common path is in management�

Senior sysadmins over time end up spending more time

mentoring their team and often are promoted to team leads

and from there into full managers over their teams� The other

path continues on with the “individual-contributor” role

where they may or may not act as team leads, but they don’t

have any direct reports and don’t spend time doing employee

evaluations or things of that sort� Of course, there also are

paths that blend those two extremes� In this last section, I

describe one of the last levels for an individual-contributor

sysadmin to move to: systems architect�

 In many organizations, the line between a systems

architect and a senior sysadmin can be blurry� Equally blurry

SysAdmin 101

51

are the qualifications that may make someone a systems

architect� That said, generally speaking, systems architects

have spent a number of years as senior sysadmins� During

the course of their careers, they have participated in a large

number of projects, both with a team and independently, and

they have started to see what works and what doesn’t� It’s this

accumulation of experience with a wide variety of technologies

and project designs that starts to build this inherent sense of

best practices that makes someone a systems architect�

The following are some attributes common to systems

architects:

 They are familiar with many different technologies that

 solve a particular problem along with their pros and

 cons�

 When solving a problem, they come up with multiple

 approaches and can explain and defend their preferred

 approach�

 They understand the limitations to a solution and where

 it will fail as it scales�

 They can distill a general problem down to individual

 tasks as part of a larger project that can be divided

 among a team�

 They can evaluate new technologies based on their

 relative merits and not be distracted by hype or

SysAdmin 101

52

 popularity�

Systems architects aren’t necessarily married to a particular

approach, although they may have a set of approaches for

tackling certain problems based on what’s worked for them

in the past� Because they have operated at a senior level for

some time, they have developed a deeper understanding of

what defines a good architecture versus a bad one and how

to choose one technology over the other� Technology moves

in trends, and those trends tend to repeat themselves over a

long enough timeline� Systems architects have been around

long enough that they have seen at least one of those trend

cycles for some hyped technology, and they probably have

been burned at some point in the past by adopting an immature

technology too quickly just because it was popular� Whereas

junior administrators are more likely to get caught up in the

hype behind a particular new technology and want to use it

everywhere, systems architects are more likely to cut through

the hype and, for any new technology, be able to identify where

it would be useful and where it wouldn’t�

SysAdmin 101

53

I hope this description of levels in systems administration

has been helpful as you plan your own career� When it comes

to gaining experience, nothing quite beats making your own

mistakes and having to recover from them yourself� At the

same time, it sure is a lot easier to invite battle-hardened

senior sysadmins to beers and learn from their war stories� I

hope this ebook on sysadmin fundamentals has been helpful

for those of you new to the sysadmin trenches, and also I hope

it helps save you from having to learn from your own mistakes

as you move forward in your career�

Conclusion

