

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

2

About the Sponsor �� 4

Introduction �� 5

Challenges Facing Product Development ���������������������� 6

	 Current	Challenges	of	IoT	���6

	 A	Look	at	Systems	Engineering	��8

Agile Background and Benefits ������������������������������������ 10

Applying Agile to Systems Engineering ����������������������� 11

	 The	PO	Is	the	New	SE	���12

	 Focusing	on	Value	by	Managing	Requirements	������������������������������������14

	 Working	in	Increments	��17

	 Continuous	Verification,	Simulation	and	Testing	�����������������������������������18

	 Modeling	���20

Conclusion �� 23

Table of Contents

TED SCHMIDT is the Senior Project Manager and Product Owner of Digital Products
for a consumer products development company. Ted has worked in Project and Product
Management since before the agile movement began in 2001. He has managed project and
product delivery for consumer goods, medical devices, electronics and telecommunication
manufacturers for more than 20 years. When he is not immersed in product development,
Ted writes novels and runs a small graphic design practice at http://floatingOrange.com.
Ted has spoken at PMI conferences, and he blogs at http://floatingOrangeDesign.Tumblr.com.

http://floatingOrange.com
http://floatingOrangeDesign.Tumblr.com

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

4

About the Sponsor
IBM

IBM is a globally integrated technology and consulting

company headquartered in Armonk, New York. With

operations in more than 170 countries, IBM attracts

and retains some of the world’s most talented people to

help solve problems and provide an edge for businesses,

governments and non-profits. IBM is focused on five

growth initiatives: Cloud, Big Data and Analytics, Mobile,

Social Business and Security.

There are more than 9 billion connected devices operating

in the world today, generating 2.5 quintillion bytes of new

data daily. Cognitive systems help overcome this challenge—

learning at scale, reasoning with purpose, and interacting

with humans naturally. In March 2015, IBM announced that

it intended to invest more than $3 billion to address the

needs of organizations that are looking to capitalize on the

increasing instrumentation and interconnectedness of the

world driven by the Internet of Things (IoT).

Innovation is at the core of IBM’s strategy. The company

develops and sells software and systems hardware and

a broad range of infrastructure, cloud and consulting

services. IBMers are working with customers around

the world to apply the company’s business consulting,

technology and R&D expertise to enable systems of

engagement that deliver dynamic insights for businesses

and governments worldwide.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

5

Introduction
Every day, a new Internet-connected gadget hits the

market, promising to make everyone’s lives incrementally

more convenient. Devices like Fitbit and Sen.se Mother

help monitor your health. Trackdot and Bikn let you track

your possessions through GPS. Delphi Connect, Nest,

SkyBell and LIFX all make it possible to control home

appliances from anywhere. By 2020, Gartner forecasts

that there will be more than 25 billion of these “things”

connected to the Internet. And every day, consumers are

demanding more from these things: more features, more

interconnectivity, more convenience.

Agile
Product
Development
 TED SCHMIDT

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

6

Unfortunately, this makes the life of a systems engineer

(SE) much less than convenient. In this new world of an

Internet of Things (IoT), traditional, waterfall product

development processes fail. They fail to detect defects early.

They fail to avoid rework. They fail to provide fulfillment

to those using them. Ultimately, waterfall product

development processes fail to provide consumer value.

The problem is that the rate of change is so high, and

the complexity and integration of the IoT is so great, that

waterfall approaches simply don’t work anymore. By the

time a product is developed using a waterfall approach, it’s

already obsolete. What’s the answer? Agile is the answer.

What comes next is a look at some of the product

development challenges posed by the IoT and how taking

an agile approach to product development helps better

manage those challenges. I discuss agile and the potential

benefits offered by taking an agile approach to product

development. And finally, I explore some of the processes

and methods you can implement, so you actually can

realize the benefits of agile as you develop products in this

new world of IoT.

Challenges Facing Product Development
Current Challenges of IoT: There was a time when, if the

temperature in your home was uncomfortable, you simply

walked over to the thermostat on your wall and adjusted it

to your liking. Sounds pretty convenient, right? Well, what

if you travel for a living or simply don’t want to heat or

cool your home for the 10–12 hours every day that you are

away? The idea of keeping your place comfortable while

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

7

you aren’t there may start sounding a little expensive. If

you’re like me, you probably set your thermostat to use

less energy while you’re gone and then adjust it when you

get home. The problem with this approach is that you have

to wait for the temperature to stabilize after you return

home—not so convenient.

But, what if your thermostat knew exactly when you

were going to walk in the door, the temperature you

preferred and how long it would take for the temperature

in your home to stabilize? Or better yet, what if you

could tell your thermostat when you were going to be

working late? All you’d need to do is figure out a way to

connect your mobile phone (because it’s the one thing

you always have with you) to your thermostat. Now,

that’s convenient, and smart, and it saves energy. That’s

the Internet of Things.

The IoT offers great opportunity. But as with any great

opportunity, in order to realize the benefits fully, some

challenges need to be overcome. In the example of the

smart thermostat, the most obvious challenges come from

complexity and integration.

Say you create a mobile app that tells the thermostat

when you’re 15 minutes from home, and that you would

The IoT offers great opportunity. But as with any
great opportunity, in order to realize the benefits
fully, some challenges need to be overcome.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

8

like the temperature to be 72° when you arrive. Even

though you probably carry only one mobile phone (er,

maybe not), not everyone carries the same phone, so the

mobile app needs to run on multiple mobile platforms.

It needs to work over both Wi-Fi and cell networks. It

has to be upgraded and tested every time the mobile OS

is upgraded. The thermostat has to be connected to the

Internet. It has the same software considerations that the

app does. So, you’re not just talking about a mechanical

device to regulate the temperature in your home; you’re

talking about a highly complex, tightly integrated system

with thousands of lines of code, and multiple mechanical

and electrical design considerations.

Now let’s say just as you get your heads around all

the complexity and integration demands of this smart

thermostat system, your customers decide they want their

lighting controlled by the system as well. Before you’ve

even finished designing the smart thermostat system, it

has changed into a smart home appliance system. Maybe

you should integrate the security system too? How about

turning the oven on, or recording TV shows on the DVR?

How can you actually hope to build anything with all the

complexity, integration and change constantly happening?

 A Look at Systems Engineering: When thinking about

IoT, the need for a holistic, multidisciplinary approach

to product development and management seems fairly

obvious. That’s where systems engineering comes in.

Because systems engineering takes a broader perspective

of the product, you are much more likely to pick up on

potential issues and risks earlier in the process. But even

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

9

using a systems approach, product development in the new

world of IoT is not without its challenges.

One of the great benefits of taking a systems

engineering approach to product development is the

creation of requirements specifications that span the

entire system. In the case of a product like the smart

thermostat example mentioned here, systems requirements

specifications (SRS) would include not only how the

thermostat should work, but also considerations regarding

network, mobile devices, software and so on. If you use

a waterfall approach in this smart thermostat system

scenario, by the time the requirements got through

functional and dependability analyses, the creation of

a systems architecture and into the hands of subsystem

teams, they likely would be obsolete. Even with

management tools like RequisitePro and Rational DOORS,

the opportunity for errors and omissions exists.

FIGURE 1. The Weakness of a Waterfall Approach

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

10

Precisely because of its cross-discipline reach and its

attention to detail through multiple levels of analysis,

systems engineering absolutely helps you manage the

issues of complexity and integration. But applying systems

engineering in a waterfall method leaves the challenges

presented by the rapid rate of change unaddressed. You can

have the best systems engineer in the world, but if you have

to wait six or even three months to get specs into the hands

of subsystem teams, you’ve missed the boat and failed to

deliver customer value.

Agile Background and Benefits
Agile is a concept that’s been around for a while. Until

recently, however, it has been limited in its application

to the world of software development. I’m not talking

about software development here; I’m instead focusing

on the ways that agile thinking can be applied to systems

engineering and product development, but it’s important to

understand a few, basic agile concepts.

Agile’s main premise is the idea of delivering customer

value in small, demonstrable pieces of a larger solution inside

short timeframes. It relies heavily on close collaboration

between cross-functional development teams and

stakeholders to ensure there is a constant feedback loop.

This constant feedback loop of small increments of product,

combined with an empowered technical team, is where

the agility comes in. Think back to that waterfall systems

engineering model. If you could manage to get feedback on

the compliance and, more important, the veracity of your

requirements and engineering data from all the different

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

11

engineering teams at the beginning of the process, instead

of at the end, you could save a lot of expensive rework.

Ultimately, the reason for taking an agile approach is

to support rapid delivery of high-quality products that are

tightly aligned to customer needs and company goals. Being

agile means staying close to the customer, and continually

integrating and verifying requirements in small increments.

I’ve discussed the challenges that IoT presents for product

development in the forms of complexity, integration and

change. I’ve also promoted the idea that systems engineering

is an incredibly valuable asset in managing the challenges

of integration and complexity, and I’ve argued that using

a waterfall approach leaves you vulnerable to the rapid

rate of change introduced by the IoT. I’ve introduced agile

and acknowledged some of the benefits offered by taking

an agile approach to systems engineering. Now, let’s look

at applying agile concepts within the context of product

development and see just how becoming agile can help you

respond to the challenges offered by the world of IoT.

Applying Agile to Systems Engineering
As I mentioned previously, the agile processes and

methods that currently exist were developed for software

Being agile means staying close to the
customer, and continually integrating and
verifying requirements in small increments.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

12

development. As such, they really can’t be applied

directly to systems engineering. It’s one thing to deliver

working software features in two-week increments.

It’s an entirely different matter to deliver working

hardware, much less a complex working system, in

two-week increments. Besides, the real output of systems

engineering is specifications (software, electronic,

mechanical), not the end consumer product. This is where

the concepts of iteration, continuous integration and

verification in small increments can be applied: to the

work products of systems engineering.

In order to apply agile thinking to systems engineering,

it is important to focus on the problems you are trying

to address—complexity, integration and change—as well

as the key agile concepts—stay close to the customer, do

only what’s valuable, deliver small increments and verify

constantly. Combine these ideas with the creation of

specifications of systems engineering, and you’ll reap the

benefits of agile.

The PO Is the New SE: In product development

organizations, not only are the systems engineers

responsible for managing requirements across multiple

technical disciplines and integrations, but they also are

expected to plan the development program, manage risks

and understand emerging trends in multiple technologies.

Often, they will partner with a product manager (PM)

when it comes to interfacing with the stakeholders and

understanding consumer sentiments. For the most part,

however, the SE maintains a highly technical focus, which

is a luxury that simply is untenable in the ever-changing

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

13

world of IoT.

In comparison to the SE, the product owner (PO) in

agile is an amalgamation of the SE and PM roles. Like the

SE, the PO is responsible for managing requirements. In

agile, requirements often are referred to as “features”

and maintained in what’s called a “product backlog”.

The product backlog is a constantly evolving list of

requirements that are sorted and resorted according to

business and customer value. Compare this to a system

requirements specification in a waterfall world, which

is completed, approved and handed to the next stage

in the process. By the time the SRS is fully consumed,

it’s probably full of errors and things that simply aren’t

needed anymore. This results in costly rework (known as

“technical debt” in agile) and lost value.

FIGURE 2. How the SE Role Changes with Agile

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

14

If the SE is going to maintain a product backlog that

constantly is changing based on business value and

consumer sentiment, it means the SE now has to be

closer to stakeholders and consumers. What used to

be the exclusive realm of the product manager now

belongs to the SE in the world of agile. Brace yourselves,

engineers. You’re going to have to work hand in hand

with marketing, sales and even embrace social media.

The bottom line is the SE now has to understand the

technology as well as the people who use it.

Focusing on Value by Managing Requirements:

Agile thinking focuses on delivering value to the customer,

as well as to the business. In a systems engineering world,

this means an end to documentation for documentation’s

sake. Of course, the amount of documentation created

for a product will depend on the product itself and the

industry and its associated regulation. But the point is to

reduce waste—do only that which is necessary—meaning

that it adds actual value.

Focusing on value also means valuing the SE’s time.

Time spent by an SE generating documentation solely

for compliance is not time well spent, especially when

the SE is now expected to spend more time getting closer

to the business and the customer. Leveraging concepts

like requirements traceability means looking at ways

to auto-generate non-value-added (but required)

documentation, like fault matrices and other summary

analysis documents, when they are required.

It’s absolutely necessary to have requirements traceability

across the systems engineering process. My favorite

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

15

illustration of this point comes from the Apollo 13 mission,

when it was discovered only during a critical emergency

that the air filter in the command module was a different

shape from the one in the lunar lander. Fortunately, some

heroic engineering saved the day, but the point is that

traceability of requirements solves that kind of problem

before it ever occurs.

Using traceability, systems engineers can see the

ripple effect of changing a requirement. They also can

confirm that all requirements actually are implemented

by using coverage analysis. Finally, they can see

whether the various elements across multiple work

products are in sync with one another. Traceability,

per se, is not necessarily agile. Incremental traceability

is agile. Using a tool like IBM Rational DOORS, an SE can

create traceability, using drag-and-drop functionality

as requirements are created or changed, and see the

links between stakeholder requirements and system

requirements, as well as potential gaps.

Using a tool like IBM Rational DOORS, an
SE can create traceability, using drag-and-drop
functionality as requirements are created
or changed, and see the links between
stakeholder requirements and system
requirements, as well as potential gaps.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

16

Consider also the time spent managing changes.

Requirements traceability provides systems engineers with

the ability to make changes to a product backlog and

have that change ripple through not only all the required,

compliance documentation, but all the downstream

architectural specifications as well. The overhead associated

with change management and audit in a waterfall approach

is reason enough to think about being agile.

Think back to the topics mentioned earlier in this ebook. The

biggest challenge offered by the IoT is its rapid rate of change.

The biggest limitation of waterfall is the inability to absorb

change as it occurs. And, the greatest advantage of agile (if

you couldn’t guess it by its name) is precisely its ability to

FIGURE 3. IBM Rational DOORS

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

17

shift and adapt to change—changing requirements, changing

priorities and changing consumer tastes. If you aren’t

managing your requirements effectively, you aren’t agile.

Tools like IBM Rational DOORS/DOORS Next Generation

provide the requirements traceability that enables agile

by providing centralized control of specifications and

visualizing the linkages and dependencies between

requirements. Bruce Douglass also explores this topic in

depth in his new book, Agile Systems Engineering

(https://www.elsevier.com/books/agile-systems-engineering/

douglass/978-0-12-802120-0).

Working in Increments: I’ve touched on the idea of

small, incremental delivery several times. In systems

engineering, where the output is specifications, this works

on several levels. Not only do you build specifications

documents incrementally from requirements, but you

also strive to group requirements into testable use cases

incrementally. From a systems perspective, traceability

FIGURE 4. Managing Requirements by Grooming the Backlog

https://www.elsevier.com/books/agile-systems-engineering/douglass/978-0-12-802120-0
https://www.elsevier.com/books/agile-systems-engineering/douglass/978-0-12-802120-0

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

18

becomes very valuable if you want to derive requirements

for each sub-team based on a system-wide use case. You also

want to develop the system architecture incrementally based

on those use cases, rather than making broad architectural

assumptions that are riddled with errors. Finally, you want to

verify those incremental steps along the way.

The way it works is quite simple. The SE begins by

constructing a use case, adding requirements to it

and verifying each increment. This is repeated until all

requirements are added, and then repeated for all use cases.

In a traditional sense, a use case could contain other use cases.

In an agile sense, you begin as small as possible, in what’s called

a “nano-cycle”, and then begin adding to it after validation.

Continuous Verification, Simulation and Testing:

Remember, one of the problems with the waterfall approach

is that requirements aren’t validated until months after

they are written in textual form. One of the benefits you

get from agile is the ability to respond to change earlier by

receiving validation earlier and more often. For an SE, that

translates into the need to take a use case and model the

entire system for just that case. Then, based on the results

of the verification, either correct any errors or deficiencies,

or incrementally add to the model.

In a waterfall world, requirements are defined, the system

is designed, engineers build it and QA validates it. In an agile

world, using approaches like test-driven development (TDD),

testing is moved to the front of the process to improve quality

and reduce rework. In small increments, requirements-based

test cases are created. As those test cases are executed and

fail, specifications are changed to address only the failures.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

19

The idea is that efficiency comes in addressing only the

limitations (failures) of the system. This echoes the idea I

discussed earlier about focusing on delivering the most value.

In a typical use case, the actor performs an action, and

the system reacts. In the case of systems engineering, use

cases are based on high-fidelity models, with specific states,

transitions and system actions. By using automated tools, like

IBM Rhapsody Test Conductor, systems engineers can create

and update highly detailed use cases from new requirements

and execute them multiple times a day in nano-cycles.

FIGURE 5. IBM Rational Test Director

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

20

Using an approach like TDD not only improves quality

and reduces rework, it also often reveals the future,

because creating small incremental “fixes” to failed tests

typically causes other parts of the system to fail as well,

thereby revealing future needs before customers even

know they exist. This pulls dependability analysis into the

systems engineering workflow.

Because it’s difficult, at best, to predict future

consumer tastes accurately (take, for example, The

Segway, Google Glass or Microsoft Zune), the next

best thing is to verify that you are moving in the

right direction through the creation of executable

specifications to simulate system behaviors. Although it’s

not the same as releasing a working system to customers,

it does support the ideas of iterative verification and

ensuring quality of your work early and often—certainly

it’s more agile than waiting several months to find out if

you’re building a quality product like you would using a

waterfall approach.

Modeling: I’ve already acknowledged that product

development is inherently more complex than software

development because of all the additional considerations

and integrations that have to work. There is simply

no way to build an entire system in small, working

increments. So the way to solve for this in systems

engineering is through modeling.

In modeling, you take requirements, again in the form

of use cases, and break them into engineering data. In

other words, you model the behavior of the entire system,

using diverse engineering data (integration, architecture,

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

21

component behaviors and so on) according to specific use

cases. It’s not a new concept. What makes it agile is that

it’s done, again, in small increments, and those increments

are validated before additional detail is added.

Typically, a good model will describe what it’s trying

to test, including the levels of precision and accuracy

required. It will describe who owns the model and is

responsible for validating it. Additionally, it will describe

what is included in the model, why and what diagrams

are used to support its purpose. It’s important to

remember that the model is not the diagramming used in

support; rather, the model is all the data that goes into

FIGURE 6. IBM Rational Rhapsody 8.0

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

22

describing the model itself.

Using modeling languages, such as Unified Modeling

Language (UML) and Systems Modeling Language

(SysML), an appropriate level of detail can be achieved

in engineering data to allow this type of incremental

modeling of use cases. With this approach, defects are

found earlier in the process, during modeling and not

later, when rework is hugely expensive. If the same

modeling language is used by systems engineers and

subsystem engineers, misinterpretation of downstream

specifications is greatly reduced, and rework is again

avoided. Finally, because modeling is represented visually,

it improves overall understanding by adding another

dimension of interpretation.

Tools like IBM’s Rational Rhapsody help cross-functional

teams work together to produce and validate models

using SysML and UML much earlier in the process.

Again, the idea of modeling complex systems is not

really new or agile, per se. What makes it agile is the

application of the tool. Validating small increments and

then adding on to those validated pieces is where the

application becomes agile.

Tools like IBM’s Rational Rhapsody help
cross-functional teams work together to
produce and validate models using SysML
and UML much earlier in the process.

GEEK GUIDE AGILE PRODUCT DEVELOPMENT

23

Conclusion
The Internet of Things is a complex, tightly integrated place

where change occurs at a dizzying pace. It’s easy to see that

using a waterfall approach to developing products for the

IoT isn’t a competitive approach. Change happens too fast.

What’s needed is a more agile approach, an approach that

focuses on delivering what the customer values despite all

the complexity, integration and change.

The role of systems engineers is going to evolve to be

more engaged with stakeholders and the end consumer.

Although it may not be practical to implement agile

methods wholesale, you can adopt specific agile approaches

and tools to systems engineering and expect several

benefits. You can expect to identify and remedy defects

earlier, when they are least costly to correct. You can

reduce misinterpretation of requirements specifications and

focus on delivering value. Through iterative requirements

management, you will understand the impact of change

and improve traceability across the system and all

documentation. Test-driven development and modeling

allow systems engineers to verify engineering data precisely

in the work products from different engineering teams.

Tools like IBM’s Rational DOORS and Rational Rhapsody

provide the agile, collaborative environment necessary

for engineers to identify errors using traceability and

hi-fi models early in the process by simulating system

behaviors based on real engineering data and use cases.

For a deeper examination of the application of agile

concepts to systems engineering, read Agile Systems

Engineering by Bruce Douglass.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Agile Product Development
	Introduction
	Challenges Facing Product Development
	Current Challenges of IoT
	A Look at Systems Engineering

	Agile Background and Benefits
	Applying Agile to Systems Engineering
	The PO Is the New SE
	Focusing on Value by Managing Requirements
	Working in Increments
	Continuous Verification, Simulation and Testing
	Modeling

	Conclusion

