

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

2

Introduction �� 5

What Is SSH? �� 6

Is SSH Unbreakable? �� 7

Tips for Hardening SSH �� 8

 Change the Standard SSH Port ��8

 Make Users Knock for Access ��9

 Avoid Configuration Weaknesses ���11

 Prefer Keys over Passwords ���12

 Limit Password-Based Logins ��14

 Enable Access Rules ��14

 Use PAM (Pluggable Authentication Modules) for Checks �������������������������15

 Block Brute-Force Attacks ���17

Upgrading the Lock: SSH Management ����������������������� 19

 Standards, Policies and Compliance Requirements �����������������������������������19

 SSH Management Risks ���21

 Software Management Requirements ���25

Conclusion �� 28

Table of Contents

FEDERICO KEREKI is a Uruguayan systems engineer with more than 25 years of
experience doing consulting work, developing systems and teaching at universities. He
is currently working as a UI Architect at Globant, using a good mixture of development
frameworks, programming tools and operating systems—and FLOSS, whenever possible!
He has written several articles on security, software development and other subjects for
Linux Journal, IBM developerWorks and other Web sites and publications. He also wrote
the Essential GWT book. You can reach Federico at fkereki@gmail.com.

mailto:fkereki@gmail.com

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

4

About the Sponsor
Fox Technologies

Fox Technologies is a global security company that helps

organizations centralize Linux and Unix identity and access

management across hybrid IT environments. Enterprises

worldwide rely on FoxT’s security solutions to enforce

granular security controls, simplify compliance, and increase

overall IT department efficiencies. By empowering IT

and security teams with control over security—they can

proactively prevent internal and external critical system

attacks—before they start. Fox Technologies has been a

leader in the data security industry for more than 30 years.

They are trusted by some of the world’s top fortune 500

companies, and protect over 20 trillion dollars in assets.

Fox Technologies’ BoKS® ServerControl solution

(http://www.foxt.com/boks) transforms your multi-vendor

Linux and Unix server environment into one centrally

managed security domain. It simplifies your organization’s

ability to enforce security policies and control access to

critical systems and information. With full control over

accounts, access and privilege—IT and security teams can

proactively prevent internal and external critical system

attacks—before they start.

To learn more, please visit: http://www.foxt.com.

http://www.foxt.com/boks
http://www.foxt.com

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

5

Introduction
In modern computer systems, privacy and security are

mandatory. However, connections from the outside over

public networks automatically imply risks. One easily available

solution to avoid eavesdroppers’ attempts is SSH. But, its

wide adoption during the past 21 years has made it a target

for attackers, so hardening your system properly is a must.

Additionally, in highly regulated markets, you must

comply with specific operational requirements, proving

that you conform to standards and even that you have

SSH:
a Modern
Lock for
Your Server?
 FEDERICO KEREKI

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

6

included new mandatory authentication methods, such as

two-factor authentication.

In this ebook, I discuss SSH and how to configure and

manage it to guarantee that your network is safe, your data

is secure and that you comply with relevant regulations.

What Is SSH?
SSH stands for Secure Shell, an encrypted protocol to

provide secure connections over unsecured networks. It was

created to send data back and forth between clients and

servers, using encryption so attackers can’t examine the

exchanges to access private data.

SSH is a proposed standard, produced by the Internet

Engineering Task Force (IETF: http://www.ietf.org). It was

developed by Tatu Ylönen, a Finnish researcher, to replace earlier

protocols that didn’t ensure confidentiality. SSH can be used for

user-to-machine sessions and for machine-to-machine (M2M)

connections (the latter is common in multi-server environments).

SSH has two versions: SSH-1 (from 1995) and SSH-2

(a standard since 2006). SSH-1 is now deprecated, because

it’s vulnerable to certain attacks. If you find SSH-1 in your

infrastructure, stop using it now!

The most typical implementation of SSH is OpenSSH, available

not only for UNIX, Linux and Mac OS X, but also for Windows.

If you find SSH-1 in your infrastructure,
stop using it now!

http://www.ietf.org

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

7

Is SSH Unbreakable?
SSH security is based on math with very large numbers, so

systematically trying all possibilities becomes practically

impossible. Of course, the ever-increasing power of

computers (and possible algorithmic breakthroughs) means

that what’s unreadable today may be readable tomorrow.

This discussion becomes moot if there are defects

in applications or configurations, so a determined

eavesdropper with plenty of computer power eventually

may be able to break in to your communications. According

Windows Does SSH?
SSH is classically a Linux/UNIX tool, so you might think it doesn’t apply

to Windows users. But, if people want to use SSH in Windows, there are

a couple well known options: Cygwin, which is a Linux-like console

(http://cygwin.com), and PuTTY, which is a terminal emulator

(http://www.chiark.greenend.org.uk/~sgtatham/putty). You also could

add WinSCP (Windows Secure Copy: http://winscp.net) and other

programs to the mix.

SSH usage may become even more popular in the future, as Microsoft

is including OpenSSH in Windows (see http://blogs.msdn.com/b/

powershell/archive/2015/10/19/openssh-for-windows-update.aspx),

and check GitHub at https://github.com/PowerShell/Win32-OpenSSH).

Note: OpenSSH for Windows will not just be a powershell extension.

It has its own ANSI-compliant terminal emulator separate from

cmd.exe or powershell.exe.

http://cygwin.com
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://winscp.net
https://github.com/PowerShell/Win32-OpenSSH
http://blogs.msdn.com/b/powershell/archive/2015/10/19/openssh-for-windows-update.aspx

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

8

to WikiLeaks, the NSA (National Security Agency) may

decode, at least sometimes, SSH communications. (Edward

Snowden’s attack on the NSA was helped by unmanaged

SSH keys that provided undetected access; it wasn’t a

protocol problem, but rather a management one.) Read

the Der Spiegel article “Prying Eyes: Inside the NSA’s

War on Internet Security” at http://www.spiegel.de/

international/germany/inside-the-nsa-s-war-on-internet-

security-a-1010361.html or “How the NSA can break

trillions of encrypted Web and VPN connections” at

http://arstechnica.com/security/2015/10/how-the-nsa-can-

break-trillions-of-encrypted-web-and-vpn-connections

for more information.

Tips for Hardening SSH
Once you’ve installed SSH, you need to make sure it is

configured safely and does not provide entrances for

intruders. Let’s look at a few methods that can make things

more difficult for would-be attackers—just remember,

there’s no “silver bullet” for security; you never can take

too few precautions.

Change the Standard SSH Port: The standard SSH port

is 22, so a server with that port open becomes a target

for attackers. You might get an extra bit of protection by

applying the well known (and well derided) concept of

“security through obscurity” by changing the port number to

a nonstandard number. Most ports above 1000 are safe, but

be sure to avoid reserved ones (see http://www.iana.org/

assignments/service-names-port-numbers/service-names-

port-numbers.txt for more details).

http://arstechnica.com/security/2015/10/how-the-nsa-can-break-trillions-of-encrypted-web-and-vpn-connections
http://arstechnica.com/security/2015/10/how-the-nsa-can-break-trillions-of-encrypted-web-and-vpn-connections
http://arstechnica.com/security/2015/10/how-the-nsa-can-break-trillions-of-encrypted-web-and-vpn-connections
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

9

Changing the port number requires changing the Port

parameter in the SSH configuration file. Users then will have

to specify the new port when connecting. Script kiddies,

upon finding port 22 closed, will skip your server—although

this change probably won’t really make a difference against

serious attacks.

One negative with this approach is that the extra

configuration details may confuse users. Also, some

monitoring tools may detect traffic on the alternate port

as suspect and return false positives. Take all of these

considerations into account when making security decisions.

Make Users Knock for Access: When running a public

server, if you go overboard with protection measures, you

likely will hinder valid users. However, when providing access

to just a few people, you can hide the SSH port, which won’t

even be visible unless users know how to make it appear.

(For Lord of the Rings fans: this is like the “Doors of Durin”

at Moria, visible only under moonlight after speaking certain

words.) Port knocking is simple to implement, requires little

resources and works by keeping ports invisible until users

provide a secret “knock”, which then (and only then) will

open the port for their exclusive use.

The idea is to close all ports, but monitor connection

attempts. Whenever a specific sequence of attempts is

recognized, the system can open a port and provide access

to your server. The “knock sequence” can be simple (like

first trying TCP port 7060, then UDP port 7009 and finally

TCP port 7022), or it can be a “use-only-once” sequence

from a list, as with cryptographically highly secure

“one-time pads”.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

10

Another option is to provide a timeout, so that after the

port is opened, the user has to connect quickly. And even

then, the port will be opened for that user and no one else, so

others can’t take advantage of the access window. Why does

this work? There are more than 64,000 available ports, and

after discarding pre-assigned ones, you are left with more than

50,000 possibilities. Guessing a five-knock sequence would

mean trying millions and millions of possible combinations.

FIGURE 1. With port knocking, a port won’t even be visible

unless a secret sequence of “knocks” is provided, which will

cause the port to open.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

11

From a management point of view, think of each port-

knocking sequence as a password and treat it the same

way (with expiration times, forced changes and so on).

Port knocking can’t be your only security protection (“hope

is not a strategy”, as the saying goes), but it can make it

more difficult for others to attack your computer.

Avoid Configuration Weaknesses: The first SSH protocol

(SSH-1) was vulnerable to man-in-the-middle attacks, so

eavesdroppers could intercept your communications and read

your (supposedly secure) traffic. Most distributions’ SSH setups

allow only SSH-2, but it’s a good idea to confirm that Protocol

2 is included in your configuration file. Also do the following:

n Although not common today, rhosts sometimes was

used to authenticate systems. Disable that by adding

IgnoreRhosts yes to SSH’s configuration file.

n If you won’t be doing X11 forwarding, set

X11Forwarding no to impede possible attacks.

n Set DSAAuthentication no to disable weak

DSA authentication.

n Don’t ever allow users to work without passwords:

set PermitEmptyPasswords no.

n Set PermitRootLogin no so nobody can log in as root.

Users who need to connect and work as root should

log in as common users (that is, unprivileged and as

restricted as possible) and then use sudo.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

12

Weaknesses don’t just come from bad parameters; users

also are a risk, and unattended SSH sessions can provide

unauthorized access in a ridiculous way. To minimize this

particular problem, do the following:

n Set ClientAliveInterval 300, so after five minutes

(the timeout must be given in seconds) with no activity

from the SSH client, a message will be sent requiring

an answer. Upon receiving no answer, and after

ClientAliveCountMax attempts (see below), the user

will be logged out. The default value is 0, implying no

automatic logouts.

n Set ClientAliveCountMax 1, so as soon as there is

no response from the SSH client, the logout process

will be executed. The default value is 3, so the user will

have three options to answer (in this case, 15 minutes)

before being forced out.

Prefer Keys over Passwords: Passwords are widely used,

but they are not very secure due to the following reasons:

n Social engineering attacks are quite successful at getting

passwords from users.

n Users are not very good at selecting hard-to-guess passwords

(see http://www.teamsid.com/worst-passwords-2015).

n Some users write passwords down, removing all pretenses

of security.

http://www.teamsid.com/worst-passwords-2015

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

13

n Keyboard sniffers or viruses can fish out passwords easily.

With public key cryptography, you can do without

passwords. After creating a public/private pair of keys,

install the public part on all the servers you want to

access, but keep the private key safe on your local

machine or stored in a USB keystore.

In your server’s SSH configuration fi le, set

PubkeyAuthentication yes to enable the new

method, and if/when you feel confident that everything

is right, add PasswordAuthentication no and

ChallengeResponseAuthentication no to disable

all other methods.

Creating a key pair requires ssh-keygen plus

ssh-copy-id to send the public part to the server. Use a

good passphrase to protect your key. This means you will

be able to take it anywhere (like on a USB stick) to log

in to remote servers. Otherwise, losing your stick would

compromise every server to which you connect.

Try logging in to the machine and check to make sure

that only the key(s) you wanted were added. After this,

try to log in to the remote host; you should succeed

without entering a password. If you used a passphrase

when generating the key, you’ll be asked for it. To

avoid re-entering it every time, use ssh-agent (do man

ssh-agent or read http://linux.die.net/man/1/ssh-agent

for more information).

If you have access to several servers, your public key will

be replicated on them all. You can use LDAP as a common

store, and SSH can access it to get keys. I won’t go into

http://linux.die.net/man/1/ssh-agent

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

14

implementation details here, but it’s a good combination for

centralized passwordless access.

Limit Password-Based Logins: If you can’t do just with

public keys and need password-based authentication after

all, do the following:

n Set a maximum time limit to log in with LoginGraceTime

30, so if a user hasn’t managed to enter the password in

30 seconds, the login process will have to be restarted.

n Set a maximum number of retries with MaxAuthTries 3,

so after three wrong attempts at entering a password,

the connection will be broken.

n For extra security, you can implement host denying

techniques to block users for longer periods of time.

Enable Access Rules: SSH includes rules (AllowUsers,

DenyUsers, AllowGroups and DenyGroups) that can

provide or deny access. Patterns, using * and ? wild cards,

also are possible. SSH first applies DenyUsers (so users

blocked thereby won’t be allowed in, no matter what other

rules may indicate) followed in sequence by AllowUsers,

DenyGroups and AllowGroups.

Rules can take users’ source IPs into account, so for

example, you could allow access to anybody from the

internal network, but only a few people from the outside.

SSH accepts connections over all network interfaces, but

if your server has “trusted” and “untrusted” interfaces,

you can accept connections only from trusted parts of the

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

15

network with the ListenAddress option.

You can add even more specific rules, but if things start

getting out of hand, use PAM (see below) so rules can be

changed on the fly, without needing to restart SSH.

Use PAM (Pluggable Authentication Modules)

for Checks: If every program had to implement its own

authentication logic, things would be a mess, because

nobody could be certain that every application included

the same tests, made the same checks and correctly

implemented the same code. And, if extra controls were

needed, everything would have to be reprogrammed!

With Linux servers, whenever a program needs some

authentication task, it can call the PAM API, which will

run all the required checks in its configuration files. If

you modify such files on the fly, all PAM-aware programs

instantly will apply the new rules. And, to include new

devices (such as USB tokens or iris scanners), you simply

need to add the corresponding PAM modules.

PAM deals with four security areas, identified by

specific keywords:

n Account l imitations: what is a valid user allowed to

do, and when?

n Auth (authentication) details: how is a valid user recognized?

n Password-related functions, including password

changing, for example.

n Session management, including connection and logging.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

16

You can specify a series of modules to run in

sequence, implying checks to be performed.

Depending on those checks, user requests will be

approved or denied.

A check can be required (it must succeed to approve

a request, and if it fails, the request will be denied,

but all other modules will run anyway) or optional

(at least one must succeed to get approval). Modules

also can be requisite (their failure instantly produces

a rejection, without more modules) or sufficient (their

FIGURE 2. Whenever an application makes a security
request, PAM executes modules as specified in its configuration
file to approve or reject said request.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

17

success automatically implies an approval).

The list of all available PAM modules is quite long;

see http://www.linux-pam.org/Linux-PAM-html/

Linux-PAM_SAG.html for an incomplete l ist. There

are modules for user/password authentication (and to

enforce good practices for passwords), for LDAP, for

certificates and for other methods for identifying a

user. You can use modules for specific restrictions (as

mentioned previously), and you won’t have to restart SSH

in order for the new rules to be incorporated, so you can

specify your own stack of checks dynamically.

Block Brute-Force Attacks: Publicly available servers

always are targets for attack. Security logs are full of

“authentication failure” l ines, derived from brute-force

attacks that try one possible password after another

to attempt to get into your system—and given enough

time, such attacks eventually wil l succeed. A three-

pronged way to deal with them requires first detecting

entry attempts, then deciding whether they should be

considered real attacks and finally denying access for

a sufficiently long while to stop would-be intruders on

their tracks.

DenyHosts, available at http://www.denyhosts.

sourceforge.net, can help, but also consider other

tools l ike BlockHosts (http://www.aczoom.com/tools/

blockhosts) and Fail2Ban (http://www.fail2ban.org).

DenyHosts usually runs in the background, checking

access logs, analyzing access attempts and locking out

attacker IPs when the number of consecutive failures

reaches a threshold.

http://www.aczoom.com/tools/blockhosts
http://www.aczoom.com/tools/blockhosts
http://www.fail2ban.org
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.denyhosts.sourceforge.net

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

18

DenyHosts instances can share information with

other instances to build “IP blacklists”. Whenever an

IP is banned, it is sent to a central server. If the IP has

been detected by enough distinct servers, it wil l be

blacklisted and broadcast to all participating servers

for their protection.

Host denying won’t hinder valid users, but it wil l

stave off malicious attempts and even some Denial of

Service (DoS) attacks. It doesn’t require any specific

management (it works automatically, after all), so all

you need to do is verify that it’s up and running—a

“fire-and-forget” weapon against attackers.

FIGURE 3. DenyHosts continuously monitors access logs
to detect and lock out attackers’ hosts.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

19

Upgrading the Lock: SSH Management
So far, I’ve shown several ways to harden SSH for normal

use. However, in highly regulated businesses, having

provably safe methods and automated tools in place is a

must, so let’s consider SSH management more in depth.

Standards, Policies and Compliance Requirements: In

the modern world, compliance is increasingly important, and

many security-related standards exist, such as the following:

n Army Regulation AR 25-2 for the military.

n Basel II and Basel III Accords for banking institutions.

n FISMA (Federal Information Security Management Act)

for US federal agencies.

SSH Roots
There are more than 20 official IETF RFC (request for comments)

documents on SSH; the full list is at https://datatracker.ietf.org/doc/

search/?name=ssh&sort=&rfcs=on, but the principal ones are

RFC 4250 to RFC 4256 (https://tools.ietf.org/html/rfc4250 through

https://tools.ietf.org/html/rfc4256). For official OpenSSH

documentation, check the manual pages on ssh, sshd, ssh-keygen and

all the rest of the SSH suite (http://www.openssh.com/manual.html), or

use the man command directly.

https://tools.ietf.org/html/rfc4250
https://tools.ietf.org/html/rfc4250through
https://tools.ietf.org/html/rfc4256
http://www.openssh.com/manual.html
https://datatracker.ietf.org/doc/search/?name=ssh&sort=&rfcs=on

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

20

n GLBA (Gramm-Leach-Bliley Act) for banking and financial

services companies.

n HIPPA (Health Insurance Portability and Accountability

Act) for health-care organizations.

n PCI-DSS (Payment Card Industry—Data Security Standard)

for organizations that work with credit cards.

n Sarbanes Oxley Act (SOX) for public company boards,

management or public accounting firms.

n And, of course, ISO 27001, for all kinds of companies.

All of these standards and laws include security

considerations and minimum configuration requirements,

and failure to comply even can lead to jail time,

typically for sysadmins and CTO/CISOs. SSH usage can

provide a way to access (without permission) a server and

then hack into sensitive information, so let’s consider

All of these standards and laws include
security considerations and minimum
configuration requirements, and failure to
comply even can lead to jail time, typically
for sysadmins and CTO/CISOs.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

21

how it should be managed and what characteristics

should be required for tools to accomplish that.

SSH Management Risks: SSH is used in most network

environments, but not all companies manage access adequately,

possibly providing pathways for intruders who then can exploit

unapproved rights. Passwords aren’t the safest way to get

access, and SSH keys do not expire and may not be under the

overview of security teams, so they both pose security risks.

Here are some common problems:

n Visibility: do you know all current possible accesses

using SSH? Who can access what? How is SSH used

and secured? Without centralized control, private SSH

keys could end up in the hands of unauthorized users,

without being noticed by security teams.

n Level: are users restricted to their least-possible access

level? Are there users with high-level access, even

though they do not (or no longer) need it?

n Rogue keys: can you detect rogue keys? How would you

do it? With audits? Log analysis? The presence of such

keys may be due to a simple operations error or a full-scale

attack that adds its own keys to provide back-door access.

n Rotation: are keys changed on a periodic basis? Is it done

automatically? Or, does it depend on manual processes,

which implies higher costs, more time and probability

of errors? Shorter rotation times do not imply higher

security automatically (attackers may have introduced

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

22

back doors or new keys unaffected by rotations), but

long periods certainly are worrisome.

n Termination: are keys revoked when users leave the

company? Is the process controlled to make sure access

is revoked everywhere? If a user has new, different access

requirements, are old keys revoked before issuing new ones?

n Human mistakes: what happens if a configuration is

edited incorrectly and access is granted to unauthorized

users? Or what if keys that grant access to development

environments also are used mistakenly for production

environments? How do you guard against such errors?

n Updating: are security patches applied regularly in

a controlled manner? Many security agencies report

on software vulnerabilities or produce security

recommendations that require software or process

updates. Are those applied?

n Auditing: are audits performed regularly? Are their

results acted upon? Several of the standards mentioned

previously mandate that companies protect, control and

track all access to privileged accounts, implying the need

to secure and monitor the usage of SSH keys. The lack of

centralized control may result in failed audits.

The typical results of audits are that large numbers of

(valid, current, usable) SSH keys are no longer necessary and

even may correspond to people no longer authorized to use

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

23

them. Even worse, some of those keys may allow the key

granting process itself to be compromised, in which case

the potential security problem would escalate exponentially.

SSH by itself is not the problem. Rather, the issues stem

from the way companies manage it in the face of an ever-

more severe compliance environment, the growth of the

threats landscape (including intruders and malware), and the

many problems that might be caused by the high-level access

that SSH users can have. Doing SSH key management by

hand adds several problems of its own. Beyond the possibility

of missed or misapplied processes, there is a hidden cost

involved by having IT staff manually doing tasks that could be

automated, with safer and more consistent results.

A 2014 Forrester Research report shows some disturbing

results (http://www.venafi.com/assets/pdf/wp/Gaps_In_

SSH_Security_Create_An_Open_Door_For_Attackers.pdf):

n 36% of companies do not perform regular system scans

to detect unauthorized added keys.

n 19% of companies do not rotate SSH keys, and 54% of

companies do it on a less than yearly basis, so keys may

end up being used for more than a year in practically

three out of four companies.

Doing SSH key management by hand adds
several problems of its own.

http://www.venafi.com/assets/pdf/wp/Gaps_In_SSH_Security_Create_An_Open_Door_For_Attackers.pdf
http://www.venafi.com/assets/pdf/wp/Gaps_In_SSH_Security_Create_An_Open_Door_For_Attackers.pdf

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

24

n 40% of companies depend on sysadmins for detection of

rogue keys instead of systematic methods.

n In 34% of studied companies, SSH keys are secured by

operations or sysadmin people, rather than by IT security.

Another 2014 study by the Ponemon Institute shows

similar negative results (http://www.venafi.com/assets/pdf/

Ponemon_2014_SSH_Security_Vulnerability_Report.pdf):

n About 50% of companies had been impacted by SSH

key-related compromises in the last two years.

n 82% of companies do not rotate keys or do it on a less

than once a year basis. (The Forrester report number in

this category was 73%.)

n 60% of companies said that they couldn’t detect new

SSH keys that were introduced into their networks.

n 68% of companies had no automated processes for

SSH key policy enforcement; usually, sysadmins are

responsible for control and management of keys, possibly

giving would-be attackers unrestricted access to servers.

What is behind these problems? It’s not a matter of simple

oversights, but rather a combination of several complicated

factors. SSH keys typically are not regenerated, as expiring

and renewing an SSH host key on a single system requires a

major outage. Here are some problems related to this:

http://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf
http://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

25

n Checking all operational and data processes that

uti l ize the key can take days, since later you also

wil l need to check that all processes sti l l work after

the change.

n Deleting and updating a key itself is practically

immediate; however, testing that all processes sti l l

work can take hours—on average two hours per OS.

n If you have 50 production servers that need keys to

be renewed during a specific six-hour change window

on a Saturday, manual processes just wil l not hack it;

you will need an automation framework.

n And worse, financial services and Critical National

Infrastructure (CNI) are moving to a six- to one-month

rolling renewal cycle for SSH host keys. So with such

mandated shorter renewal cycles for SSH host keys,

a “business-as-usual” automated process will be

required; manual methods will no longer be feasible.

Software Management Requirements: An appropriate

process for managing SSH should include:

n Centralized control and storage: keys for all servers

(both physical and cloud-based) should be managed

centrally. This allows for globally enabling or disabling

keys. Key management should not depend on

independent sysadmins, but rather should come under

the purview of a centralized security group.

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

26

n Key rotation: keys must be rotated periodically, just as

with common passwords. Rotation periods should not

be overly long, and there should be a way to assign

one-time-access keys, if required for business reasons.

n Usage policies: there should be policies to limit usage of

SSH keys and reduce the possibility of expanded access.

A baseline for normal, valid, key usage should be defined.

n Usage logging: there should be reports on who used what

keys, when and for how long. These reports will let you

know what systems were accessed and by whom.

n Move quickly to SSH two-factor authentication: financial

services, government and CNI sectors already have moved

quickly (in 2014/2015) to requiring that all servers have

mandatory SSH 2FA configured. For example, PCI/DSS

requirement 8.3 requires its incorporation, and various

technologies (tokens, cards and even mobile phones,

despite some disadvantages) are available for this.

n Continuous monitoring: automated procedures must

scan for rogue key usage. Given correct levels of usage

logging, it becomes feasible to provide a way to detect

anomalies, such as unexpected or unusual accesses.

These controls shouldn’t depend on sysadmin users,

the same way that malware detection shouldn’t depend

on individual users.

n SSH configuration control: an even worse case of

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

27

wrongful key usage is if the configuration files

themselves for your SSH setup are accessed and

modified. After such a change, security policies for the

involved server would be defeated, and that machine

would become a point for further attacks on your

infrastructure. Access to SSH configuration should be

closely limited and monitored, and all changes should

be reported and reviewed instantly

n Commercial SSH products that centralize SSH

configuration and control: standard OpenSSH depends

on changes to many config and key files on each and

every server, as I already mentioned. If your root account

has been pwned, your SSH config on that server also is

compromised, and there is no central register to notice

a change has been made. Commercial OpenSSH-based

products move the active SSH config to secure networked

databases, accessed via PAM. If the local files are

compromised, your SSH security keeps working.

n Vulnerability fixing: server and SSH configurations should

be updated according to current best practices. This

includes the need for software updates, especially in

the case of discovered security “holes”. Specific allowed

cryptographic methods also should be updated as needed

once details of possible weaknesses are revealed or

current methods become prone to attacks.

n Software patching: due to its worldwide deployment and

mind numbingly detailed analysis by security researchers

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

28

and sysadmins, OpenSSH typically has somewhere

between 10–20 CVEs (Common Vulnerabilities and

Exposures) reported annually, many with critical or major

classifications. If you are not patching SSH at least two

to six times per year, your organization could be a)

non-compliant and b) you as an individual sysadmin or

your DevOps team and your organization together may

be legally liable in the event of a breach.

n Require minimum key sizes: from OpenSSH 6.X

onward, you can define minimum acceptable key sizes

and report on existing keys that do not meet those

criteria, making them candidates for a quick renewal.

n Compliance verification: by managing and controlling

access to SSH configuration and SSH keys, companies

comply with standards and policies, and the produced

reports can show their compliance. All types of audit

processes should be made possible by the software itself.

Conclusion
In this ebook, I have described various methods for

hardening SSH and have considered desirable aspects of

an SSH management systems in terms of security and of

compliance with standards.

SSH isn’t likely to go away, but it can be managed in

provably secure ways if the right processes and tools are

used. All servers are liable to be attacked, but sane, modern

policies can diminish those perils, making SSH a valuable,

quite usable, tool for your environment.n

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

29

Books that cover some SSH fundamentals:

n Daniel Barrett and Richard Silverman, SSH: The Secure Shell,

O’Reilly, 2001.

n Himanshu Dwivedi, Implementing SSH: Strategies for

Optimizing the Secure Shell, Wiley Publishing, Inc., 2004.

n Michael Stahnke, Pro OpenSSH, Apress, 2006.

n Brad Sibley, OpenSSH—A Survival Guide for Secure Shell

Handling, Sans Press, 2003.

The following are articles I have written on SSH security:

n “PAM—Securing Linux Boxes Everywhere”, Linux Journal,

January 2009: http://www.linuxjournal.com/magazine/

pammdashsecuring-linux-boxes-everywhere

n “The rsync family”, IBM developerWorks, April 2009:

http://www.ibm.com/developerworks/aix/library/au-rsyncfamily

n “Implement Port-Knocking Security with knockd”,

Linux Journal, January 2010: http://www.linuxjournal.com/

magazine/implement-port-knocking-security-knockd

n “Three locks for your SSH door”, IBM developerWorks,

August 2010: http://www.ibm.com/developerworks/aix/

library/au-sshlocks

Resources

http://www.ibm.com/developerworks/aix/library/au-rsyncfamily
http://www.linuxjournal.com/magazine/pammdashsecuring-linux-boxes-everywhere
http://www.linuxjournal.com/magazine/implement-port-knocking-security-knockd
http://www.ibm.com/developerworks/aix/library/au-sshlocks

GEEK GUIDE SSH: A MODERN LOCK FOR YOUR SERVER?

30

n “More locks for your SSH door”, IBM developerWorks,

September 2011: http://www.ibm.com/developerworks/aix/

library/au-moresshlocks

n “More Secure SSH Connections”, Linux Journal,

January 2014: http://www.linuxjournal.com/content/

more-secure-ssh-connections

n “Security in Three Ds: Detect, Decide, and Deny”,

Linux Journal, January 2015: http://www.linuxjournal.com/

content/security-three-ds-detect-decide-and-deny

Since SSH is pretty mature, even though these texts or

art icles may be some years old, they are actual ly st i l l val id.

However, there have been several advances on operational

requirements and configuration sett ings since then, and

these management aspects are being constantly updated;

see just a few examples:

n Payment Card Industry (PCI) Data Security Standard version

3.1, dated April 2015, at http://www.pcisecuritystandards.org/

documents/PCI_DSS_v3-1.pdf

n National Institute of Standards and Technology (NIST) at

http://csrc.nist.gov/publications, specifically “NIST Internal

Report 7966 — Security of Interactive and Automated

Access Management using SSH”, dated October 2015, at

http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf

http://csrc.nist.gov/publications
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf
http://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf
http://www.linuxjournal.com/content/security-three-ds-detect-decide-and-deny
http://www.linuxjournal.com/content/more-secure-ssh-connections
http://www.ibm.com/developerworks/aix/library/au-moresshlocks

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	SSH: a Modern Lock for Your Server?
	Introduction
	What Is SSH?
	Is SSH Unbreakable?
	Tips for Hardening SSH
	Change the Standard SSH Port
	Make Users Knock for Access
	Avoid Configuration Weaknesses
	Prefer Keys over Passwords
	Limit Password-Based Logins
	Enable Access Rules
	Use PAM (Pluggable Authentication Modules) for Checks
	Block Brute-Force Attacks

	Upgrading the Lock: SSH Management
	Standards, Policies and Compliance Requirements
	SSH Management Risks
	Software Management Requirements

	Conclusion
	Resources

