
ISSUE 298 | MAY 2019

www.l inuxjournal .com

Since 1994: The original magazine of the Linux community

Sign Git Commits
with GPG

Open Source and
Human Genomes

Tighten Your Code
with Mypy

HOW THE
KERNEL HANDLES
MEMORY

A TALK WITH
THREE KERNEL
DEVELOPERS

DEBUGGING
LINUX KERNEL
PANICS

HOW TO
BUILD YOUR
OWN KERNEL

THE

KERNEL

ISSUE

https://www.linuxjournal.com

CONTENTS MAY 2019
ISSUE 298

2 | May 2019 | https://www.linuxjournal.com

75 What Does It Take to Make a Kernel?
by Petros Koutoupis

 People often refer to an operating system’s kernel without truly knowing
 what it does or how it works or what it takes to make one. What does it
 take to write a custom (and non-Linux) kernel?

90 Memory Footrpint of Processes
by Frank Edwards

 The amount of memory your system needs depends on the memory
 requirements of the programs you run. Do you want to know how to
 figure that out?

98 Oops! Debugging Kernel Panics
by Petros Koutoupis

 A look at what causes kernel panics and some utilities to help gain
 more information.

118 A Conversation with Kernel Developers
from Intel, Red Hat and SUSE
by Bryan Lunduke

 Three kernel developers describe what it’s really like to work on the
 kernel, how they interact with developers from other companies,
 some pet peeves and how to get started.

74 DEEP DIVE: THE KERNEL

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | May 2019 | https://www.linuxjournal.com

6 The Kernel Issue
by Bryan Lunduke

10 From the Editor
by Doc Searls

 We Need to Save What Made Linux and FOSS Possible

15 Letters

 UPFRONT
20 Visualizing Science with ParaView

by Joey Bernard

28 Patreon and Linux Journal

29 Reality 2.0: a Linux Journal Podcast

30 Signing Git Commits
by Kyle Rankin

33 FOSS Project Spotlight: Bareos, a Cross-Network,
Open-Source Backup Solution
by Heike Jurzik and Maik Aussendorf

38 News Briefs

 COLUMNS
42 Kyle Rankin’s Hack and /
 Digital Will, Part I: Requirements

48 Reuven M. Lerner’s At the Forge
 Introducing Mypy, an Experimental Optional Static Type Checker for Python

58 Dave Taylor’s Work the Shell
 Breaking Up Apache Log Files for Analysis

66 Zack Brown’s diff -u
 What’s New in Kernel Development

164 Glyn Moody’s Open Sauce
 Open Source—It’s in the Genes

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-360-890-6285.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | May 2019 | https://www.linuxjournal.com

 ARTICLES
128 Using Machine Learning to Optimize Linux Networking

by Damian Valles and Stan McClellan

 The Linux networking stack can benefit from “inferences” due to machine learning,
 which may be used in “smart” applications.

139 Linux TCP SO_REUSEPORT: Usage and Implementation
 by Krishna Kumar

 Improve your server performance using a relatively new feature of the
 Linux networking stack: the SO_REUSEPORT socket option.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

DIRECTOR OF SALES: Danna Vedder, danna@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

COVER IMAGE: Carty Sewell

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Lawrence D’Oliveiro, Waikato Linux Users Group; Chris
Ebenezer, Silicon Corridor Linux User Group; David Egts, Akron Linux Users Group;

Michael Fox, Peterborough Linux User Group; Braddock Gaskill, San Gabriel Valley Linux Users’ Group;
Roy Lindauer, Reno Linux Users Group; James Mason, Bellingham Linux User Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com
Contact: Director of Sales Danna Vedder

Phone: +1-360-890-6285

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | May 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
http://blug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:danna@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
http://subscribe.linuxjournal.com

6 | May 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...and
current Deputy Editor of Linux
Journal as well as host of the
(aptly named) Lunduke Show.

By Bryan Lunduke

How much do you know about your kernel? Like really know?

Considering how critically important the Linux kernel is
to the world—and, perhaps just as important, to our own
personal computers and gadgets—it’s rather amazing
how little most people actually know about it.

There might as well be magical hamsters in there,
pushing 1s and 0s around with their enchanted hamster
gloves of computing power. How do kernels (in a
general sense) actually work, anyway? How does one
sit down and debug a specific Linux kernel issue? How
does a kernel allocate and work with the memory in your
computer? Those are questions most of us never need to
ask—because Linux works.

Me, personally? Never submitted a single patch to the
kernel. Not one.

I mean, sure. I’ve looked at little snippets of Linux
kernel source code—mostly out of idle curiosity or to
investigate a topic for a story. And I’ve compiled the
kernel plenty of times to get one hardware driver or
feature working. But, even so, my knowledge of the
inner-workings of the kernel is mostly limited to “Linux
power user” level.

THE KERNEL
ISSUE

https://www.linuxjournal.com

7 | May 2019 | https://www.linuxjournal.com

THE KERNEL ISSUE

So, it’s time for a little kernel boot camp in this issue of Linux Journal to get a bit
more up to speed.

Let’s start with the basics. What is a kernel, and how, exactly, does a person go
about making a brand-new one? Like...from scratch.

Linux Journal Editor at Large Petros Koutoupis previously has walked us through
building a complete Linux distribution (starting from the very basics—see Part I and
Part II). Now he does the same thing, but this time for building a brand-new kernel.

What tools are needed? What code must be written? Petros provides a step-by-
step rundown of kernel building. In the end, you’ll have a fully functional kernel
(well, functional enough to boot a computer, at any rate) that you can build on
further. Plus, you’ll have a better understanding of how kernels actually work,
which is pretty darn cool.

Moving back to Linux land, Frank Edwards gives a rundown on how the kernel
handles memory: how virtual memory works and is structured, how the kernel
reports memory usage and information to userland applications and the like.
If you’ve ever wondered how the memory in your system is structured and
interacted with by the applications and the kernel, give that a read.

Now that you know the basics of how to build a kernel, and a primer on how
memory is used, let’s turn to something directly practical for Linux developers
and pro users: debugging Linux kernel panics.

Let’s say, hypothetically, your machine has a kernel panic. Sure, they’re rare, but
they happen! But, but, why do they happen? How can you dig in and figure out
the cause behind such a catastrophic event?

We bring Petros Koutoupis back in to give a detailed primer and how-to on doing
exactly that. Hopefully, you never need to debug a kernel panic. But, just in case,
best be prepared. (In the words of a famously pixelated old guy living in a cave,
“It’s dangerous to go alone! Take this.”)

https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/build-custom-minimal-linux-distribution-source-part-ii
https://www.linuxjournal.com

8 | May 2019 | https://www.linuxjournal.com

THE KERNEL ISSUE

All of this information is great—detailed, technical and nerdy as can be (in the
best possible way).

But, let’s get a bit higher-level for a moment. What is being a kernel developer
actually like?

What gets them started down the kernel programming path? What does an
average day in the life of a kernel developer look like? What are their pet peeves
about Linux (every developer on every project has complaints about it)?

To answer those questions, I sat down with prominent kernel developers from
three of the most active companies in the Linux world: Red Hat, SUSE and Intel.
(Since we had all three of those companies represented, this seemed like a good
chance to talk about how they interact with other kernel developers working at
other companies—often competitors.)

In the end, after reading all of the articles in the pages to follow, maybe you’ll
be inspired to take your first steps into the world of Linux kernel work. Or, heck,
maybe you won’t. But, either way, you’ll hopefully have a deeper understanding
of how Linux (and, by extension, your own computer) works.

Which is empowering. And awesome. And the Linux-y way.◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

Subscr ibe .L inuxJourna l . com

https://subscribe.linuxjournal.com

10 | May 2019 | https://www.linuxjournal.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

We Need to
Save What
Made Linux and
FOSS Possible
If we take freedom and openness for granted,
we’ll lose both. That’s already happening, and we
need to fight back. The question is how.

By Doc Searls

I am haunted by this passage in a letter we got from reader
Alan E. Davis (the full text is in our Letters section):

...the real reason for this letter comes from my
realization—in seeking online help—that the Linux
Documentation Project is dead, and that the
Linuxprinting.org project—now taken over by open
printing, I think, is far from functioning well. Linux has
been transformed into containers, and embedded
systems. These and other such projects were the heart
and soul of the Free Software movement, and I do not
want for them to be gone!

This is the kind of thing Bradley Kuhn (of the Software
Freedom Conservancy) lamented in his talk at Freenode.live

https://en.wikipedia.org/wiki/Bradley_M._Kuhn
https://sfconservancy.org/
https://sfconservancy.org/
https://www.youtube.com/watch?v=PLJjAupCMUg&index=10&list=PLsYAJYM22VA2NMo61bxIXowgXXHufwPm8&t=0s
https://freenode.live/
https://www.linuxjournal.com

11 | May 2019 | https://www.linuxjournal.com

FROM THE EDITOR

last year. So did Kyle Rankin in his talk at the same event (video, slides
and later, an LJ article). In an earlier conversation on the same stage (it was
a helluva show), Simon Phipps (of the Open Source Initiative) and I had our
own lamentations.

We all said it has become too easy to take Linux and FOSS for granted, and the
risks of doing that were dire. Some specifics:

• We collaborate inside proprietary environments, such as Slack and
Google Hangouts. Most of the chat and messaging systems in use today are
also proprietary and closed. So are most video-conferencing systems and the
codecs they use.

• Many Linux and FOSS geeks today use Linux only professionally. Most
of their personal work is on proprietary Apple and Microsoft gear. Many use
Windows or macOS boxes in presentations about FOSS topics.

• We’re not modeling our values. Bradley sourced this line from
Benjamin Mako Hill: “The use of nonfree tools sends an unacceptable
message...‘Software freedom is important for you as users’, developers seem
to say, ‘but not for us’. Such behavior undermines the basic effectiveness of
the strong ethical commitment at the heart of the free software movement.”

• We’ve allowed foundational ideas to collapse. We’ve gone along with
complicating the web, no longer respecting the simplicities in HTTP and HTML,
which allowed the web to work in the first place. For example, we hardly
still design for what Bradley calls “progressive enhancement and graceful
degradation”. We see this failure in the web development world, which now
depends almost utterly on JavaScript, most of which is proprietary and
downloaded constantly on the fly to run in browsers.

• We are also forgetting (or perhaps never learned) how a reciprocal
license, such as the GPL, can keep a project alive and a community
together. Simon blames SourceForge’s failures on a decision to replace its
original free (GPL-licensed) software base with a proprietary one. And now,

https://www.linuxjournal.com/users/kyle-rankin
https://www.youtube.com/watch?v=17JowhH57kg&list=PLsYAJYM22VA2NMo61bxIXowgXXHufwPm8&index=15
https://kylerank.in/talks/misc/ljfoss.html
https://www.linuxjournal.com/content/what-linux-journals-resurrection-taught-me-about-foss-community
https://www.youtube.com/watch?v=oOFuQLTVdZc
https://webmink.com/
https://opensource.org/
https://mako.cc/writing/hill-free_tools.html
https://www.linuxjournal.com

12 | May 2019 | https://www.linuxjournal.com

FROM THE EDITOR

even though we have Git, he says too many of us don’t know the difference
between Git and GitHub, or that GitHub runs proprietary JavaScript executed
in our browsers.

There were signs this was coming in 2002, when I wrote “A Tale of Three Cultures”.
I’ll unpack those a bit:

• Geeks at the time were busy inventing the world’s basic software building
materials. They operated in a culture that valued freedom, openness and
maximized usefulness to everybody and everything. They also had a strong
sense that they were winning the fight for freedom and openness in software
development and product design. In geek slang, they said they were at
“GandhiCon 3”. (The context is a Mohandas Gandhi one-liner: “First they
ignore you. Then they laugh at you. Then they fight you. Then you win.”)

• Hollywood as a label stood for all that is proprietary about business. I chose
that label because the biggest public fight at the time was over copyright,
and Hollywood was (and remains) the embodiment of copyright maximalism.
Larry Lessig, who with Aaron Swartz and others had recently minted Creative
Commons, characterized the fight as Silicon Valley vs. Hollywood, and
Northern vs. Southern California.

• Embedded developers were what I called “purely technical...pre-Net, pre-UNIX
and maybe even pre-cultural”, with concerns that were “utterly practical”.
In other words, not about free software, open source or Linux—beyond
its utilitarian value. I wrote that after attending the Embedded Systems
Conference that Rich Lehrbaum wrote about for Linux Journal, here. (That
may be the only surviving record of the conference on the web.)

What I didn’t see back then was that Hollywood and embedded would become
pretty much the same thing: business as usual. That happened because it was too
easy for too many developers to build proprietary and closed stuff, heads down,
in utterly practical ways, usually for what amounted to embedded purposes, on
top of Linux and FOSS foundations, with little respect for the virtues embodied
in those foundations. And by now, we’ve built a lot of it. One might even

https://www.linuxjournal.com/article/5912
http://catb.org/jargon/html/G/GandhiCon.html
https://en.wikipedia.org/wiki/Lawrence_Lessig
https://en.wikipedia.org/wiki/Aaron_Swartz
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://www.linuxjournal.com/article/5969
https://www.linuxjournal.com

13 | May 2019 | https://www.linuxjournal.com

FROM THE EDITOR

argue that most of the Linux deployed in the world today is embedded inside
proprietary and closed devices.

So the question is What should we do now?

From my notes, here are some things Bradley, Kyle, Simon and others said at
Freenode.live. It’s not all verbatim, but close enough:

• “Having real-time chat is absolutely essential to the advancement of
free software.”

• “We’re the resistance now.” “We need to create mass movement.”

• “Volunteer to write free and open code, to participate in communities.”

• “If you didn’t live the history, learn from those who did.”

• “If you did learn from history, teach those who need to know it. Respectfully.”

• “Be patient. Remember that the tortoise won not only because it was patient,
but because it ignored insult, ridicule and dismissal.”

• “Model your values. Use free software and hardware.”

• “Remember always how ‘the rights to copy, share, modify, redistribute and
improve software’ are fundamental rights that matter to people.”

• “Work to convince developers that their software freedom matters.”

That’s all necessary, but not sufficient. We need something more. Something big.

I suggest we pick a fight. Because fights raise emotions and have goals.

I just ran a playoff between many different fights on many tabs in a browser. The
winner—the last tab standing—is “The Era of General Purpose Computers Is

https://www.nextplatform.com/2019/02/05/the-era-of-general-purpose-computers-is-ending
https://www.linuxjournal.com

14 | May 2019 | https://www.linuxjournal.com

FROM THE EDITOR

Ending”, by Michael Feldman in The Next Platform website. It’s a sad bookend
to the history of a losing fight that Cory Doctorow forecast in 2011 with
“Lockdown: the coming war on general-purpose computing” and a year later in
“The Coming Civil War over General Purpose Computing”. Read all three.

I chose general-purpose computing as the winning fight—the one most worth
having—because we wouldn’t have Linux, free software or open source today
if there weren’t general-purpose computers to develop and use them on.
General-purpose computing is the goose that laid all our golden eggs. The fight
is to keep it alive. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.nextplatform.com/2019/02/05/the-era-of-general-purpose-computers-is-ending
https://www.nextplatform.com/author/michael
https://www.nextplatform.com/
https://craphound.com/
https://boingboing.net/2012/01/10/lockdown.html
https://boingboing.net/2012/08/23/civilwar.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
http://www.storix.com/linux

15 | May 2019 | https://www.linuxjournal.com

LETTERS

Thanks for the Ansible Articles
I’m Michael, a systems administrator in Waterloo, Canada. I was interested
in Ansible and tried to find some good articles or lectures on the internet,
but unfortunately, most of them just explain all the functions and are hard
for me to understand. When I read Shawn Powers’ article in Linux Journal, it
was really interesting and understandable and easy to understand. So, thank
you for that.

—Michael

Note: if you’re interested in Ansible, you can read Shawn Powers’ series on our
website: “Ansible: the Automation Framework That Thinks Like a Sysadmin”,
“Ansible: Making Things Happen”, “Ansible, Part III: Playbooks” and “Ansible,
Part IV: Putting It All Together”.—Ed.

Rankin, Searls and Taylor
Doc Searls’ editorials, Kyle Rankin’s “Hack and /” and Dave Taylor’s “Work the
Shell” keep me subscribing to LJ. Sure the specialty articles are great, but I am a
power user, not a sysadmin or “IT guy”. Keep feeding me tips on how to get more
from the Linux command line! Catching up on the January issue, I particularly
appreciated seeing the options on sort and uniq that had escaped my notice
(see Kyle Rankin’s “Back to Basics: sort and uniq”.) Nice work...all!

—Richard

Historical Errors
According to my friend, Robert Wachtel, Dave Taylor’s article from the
April 2019 issue “Back in the Day: UNIX, Minix and Linux” contains some
inaccuracies. Specifically:

Interesting but inaccurate regarding PARC and Doug Engelbart. Engelbart and
his group at SRI created the mouse and windows before PARC was founded.

LETTERS

https://www.linuxjournal.com/content/ansible-automation-framework-thinks-sysadmin
https://www.linuxjournal.com/content/ansible-making-things-happen
https://www.linuxjournal.com/content/ansible-part-iii-playbooks
https://www.linuxjournal.com/content/ansible-part-iv-putting-it-all-together
https://www.linuxjournal.com/content/ansible-part-iv-putting-it-all-together
https://www.linuxjournal.com/content/back-basics-sort-and-uniq
https://www.linuxjournal.com/content/back-day-unix-minix-and-linux
https://www.linuxjournal.com

16 | May 2019 | https://www.linuxjournal.com

LETTERS

See The Mother of All Demos and PARC (company), on Wikipedia.

—Roger

Dave Taylor replies: Entirely possible I mis-remembered my timeline, but I do
know that Engelbart was working at SRI when we met, and I heard him talk about his
“mouse”. If I suggested that he was at PARC, that was my mistake, although the PARC
systems definitely utilized that mouse device!

A Matter, Perhaps, of Philosophy
I have recently subscribed to LJ. When LJ first come into being, I was
unable to subscribe, literally; I was a teacher on an undeveloped island, with
an embarrassingly low salary. I actually began to use GNU/Linux because I
could not afford to buy Multiedit, which would have granted access to the
documentation. I needed to be able to type diacritics, and without access to the
documentation, I couldn’t figure out how to do so. I wrote a request letter to
the Free Software Foundation, begging for a free text editor. Little would I have
suspected how their gift to me—13 3-1/2" diskettes of GNU software ported to
Windows—would change my life. Emacs is the self-documenting editor, and the
documentation is at one’s fingertips at all times. My project was a lexicon; text
tools like grep, a functioning sort, and ptx were extremely useful.

I started out on the wrong side of the Free Beer vs. Freedom divide. Maybe
not, though, because the availability of tools is extremely important in the
struggle for freedom, at all levels. I was a science teacher, so this was critically
important to me. I started reading the GNU’s Bulletin, wearing out each issue as
they arrived when I was able to travel to a less remote island. I learned of two
free operating systems through GNU’s Bulletin: FreeBSD and “Linux”. It came
to pass that I was able to download a copy of Slackware and started using it.
I never looked back.

I tell this tale to accentuate the liberating nature of Free Software. The tool-lending
library in my city makes a range of useful hardware available to anyone with a

https://en.wikipedia.org/wiki/The_Mother_of_All_Demos
https://en.wikipedia.org/wiki/PARC_%28company%29
https://www.linuxjournal.com

17 | May 2019 | https://www.linuxjournal.com

LETTERS

library card, without charge. I cannot explain the passion that these developments
awaken within me.

I grew up in a relatively well-to-do environment, at almost every level. Yet, I ended
up living on an island, on which cash has a minimal importance except to buy those
things that were introduced by the benevolent other-world empire. I bring this up
because I now am living back in my own “world” where I am constantly being reminded
of the preeminence of money.

Linux Journal represented to me an attempt to grow a business for profit through
association with an ecosystem that is free—not only in the “open source” manner
of thinking, but as something that could be used even by those who were unable to
afford, say, a copy of Word or Word Perfect costing several hundred dollars—not to
mention the superior quality of the tools that Free Software has made available.

Yet I have scoured every Linux Journal I could get hold of. They were sold in some
bookshops, and I occasionally could allocate a few dollars to purchase a copy. I did
subscribe, but could not pay.

I do not and would not resent the efforts of another to feed himself and his family
through publishing. I get it that Linux Journal was not a hugely successful capitalistic
enterprise. I don’t mind paying for a subscription for a year. (Heck, even the libraries
around here do not carry it.) LJ is still the best of the Linux magazines. But something
has happened, and that something—whatever it is—is reflected in the manner of
content that is offered within its covers.

Today, I am writing because I just spent borrowed money to purchase a printer. It is
one of the new breed that promises (and to some extent seems to deliver) a new
paradigm—ink tanks. My old printer was still on warranty, but I have been using
unblessed ink, and to take it to the repair shop for promised repair at the authorized
service center will probably require me to purchase a full set of ink cartridges. The
cheapest I have found costs about 60.00. I have been able to print for less than 20.00
a year in ink with oversize ink cartridges made in China, with quality that is good

https://www.linuxjournal.com

18 | May 2019 | https://www.linuxjournal.com

LETTERS

enough, if not absolutely matched in color. Now I have received an error message:
“Ink Absorber Pad Full”. The service department had advised me over the phone to
purge the cartridges, emptying them of ink. I’ll say this, the drivers were easy to install
on an Arch Linux system, or Manjaro.

Cutting to the chase, this new printer is a different beast. The drivers are more
difficult to install, and the scanner does not work as it should. The settings in CUPS
are few, compared with the many I have seen in the pictures of Windows’ settings
windows. It does interesting things. It is a new model, and the manufacturer has
provided it with an email address: all I need is to send a document to that email
address, and it will be printed. We’ll see. I have access to it from my Android phone,
and presumably a tablet, including nozzle cleaning and etc.

It’s on me for not shopping more specifically for a Linux-friendly printer. Are there
any? Really? But the real reason for this letter comes from my realization—in seeking
online help—that the Linux Documentation Project is dead, and that the Linuxprinting.org
project—now taken over by open printing, I think—is far from functioning well. Linux
has been transformed into containers and embedded systems. These and other such
projects were the heart and soul of the Free Software movement, and I do not want
for them to be gone!

The spirit of free software is under threat in this perilous time. Microsoft is now
embracing Linux like a giant anaconda, seeking to squeeze more profit.

I don’t know what to suggest, but I would like to see more sensitivity to those people
who are still floundering, confused about installing printers, or unable—like my good
friend who has for years struggled to install and use Linux has recently experienced—
to get Secure Boot turned off on a Windows 10 laptop, several years old, to install
some distro of Linux.

Is there some contribution that Linux Journal can make to the community of users
who are being worn down by the corporate flim flam? I have tried for years to
advocate for GNU/Linux (with an affectionate, gentle touch on “GNU/”). GNU/Linux

https://www.linuxjournal.com

19 | May 2019 | https://www.linuxjournal.com

LETTERS

has changed my life. I have failed to convince those teachers around me—in schools
where Windows and Apple software are provided for by federal grants. A few students
picked it up. There is some really important work still to be done.

This all being said, I look forward to scouring every issue of LJ over the coming year. I
appreciate the new and enthusiastic leadership of Doc Searls and also Bryan Lunduke’s
wild bits. There are still some of us who actually are down here on Earth, storing our
bits on our own hardware, and struggling with the efforts of the corporate world not
only to ruin our political lives and steal our eyeballs, but also to force us to buy the bill
of goods they are wont to sell.

—Alan Davis

Doc Searls replies: Thanks, Alan. Your letter hit home for me in a big way, and I’ve
answered with my From the Editor column this month.

Great Article
Regarding Doc Searls’ article “The Kids Take Over” in the April 2019 issue, I
wish I was eight again and in school with that KidOYO program. That educational
program is stunning. And the part I like the most is no one is left behind. Thank
you for finding and sharing it. We need more people to think the way those folks in
New York are thinking.

—Bob Getsla

SEND LJ A LETTER We’d love to hear your feedback on the magazine and specific
articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll
publish the best ones here.

https://www.linuxjournal.com/content/kids-take-over-0
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

20 | May 2019 | https://www.linuxjournal.com

UPFRONT

Visualizing Science
with ParaView
I’d like to introduce one of the more popular tools used for visualizing data within
several scientific disciplines: ParaView. ParaView started as a joint project between
Kitware, Inc., and Los Alamos National Laboratory back in 2000. The first public
release was version 0.6, which came out in 2002. Since then, ParaView has become
one of the most popular visualization packages for visualizing large data sets.

UPFRONT

Figure 1. When you first start ParaView, you’ll see a new, empty layout to start your
visualization.

https://www.paraview.org/
https://www.linuxjournal.com

21 | May 2019 | https://www.linuxjournal.com

UPFRONT

Because it’s open source, it should be available in most, if not all, package repository
systems. For example, in Debian-based distributions, you should be able to install it
with the command:

sudo apt-get install paraview

Starting it the first time should give you an empty workspace, ready for you to
get to work.

Two major parts populate the bulk of the window. The right-hand side is the main
display pane where the visualization will appear. The left-hand pane shows the list of
objects being visualized, along with their properties. At the top, there is a toolbar of

Figure 2. The data in the sample file can.ex2 renders as a half cylinder attached to a
rectangle on the end.

https://www.linuxjournal.com

22 | May 2019 | https://www.linuxjournal.com

UPFRONT

the common functions in ParaView.

To play with ParaView, you’ll need some data. If you don’t have any data of your own
to use, you can grab some data provided as part of the ParaView Tutorial. More
documentation and sample scripts are also available there.

Let’s assume you’re going to use the sample data as you learn how to use ParaView. To
load the data, click File→Open, and navigate to where you unpacked the sample data.

While you’re here, take a quick look at the list of all of the file types ParaView supports.
For example, you can load the data stored in the file can.ex2. You won’t see anything
displayed right away. In the bottom part of the left-hand side pane, you should see the
properties for the newly loaded data file. For now, you can just accept the defaults and

Figure 3. You can add lots of different objects to your visualization, even a Mandelbrot set.

https://www.paraview.org/Wiki/The_ParaView_Tutorial
https://www.linuxjournal.com

23 | May 2019 | https://www.linuxjournal.com

UPFRONT

click the apply button. You then should see the data visualized in the main pane.

Clicking and dragging on the image allows you to rotate the view, so you can see the
entire object from various angles.

Along with visualizing data, ParaView includes a number of basic shapes you can
use to build up structures within your visualization. Clicking the Sources menu item
provides a fairly lengthy drop-down list of structures. And, you even can add more
complicated structures (like the Mandelbrot set) to your visualization.

This could be handy if you have some basic geometric structure or an image that you
want to use as a backdrop to your data visualization.

If the data you’re visualizing is more traditional (for example, if the data comes
from measurements), ParaView provides actual data analysis tools to complement

Figure 4. You can add statistical analysis to your pipeline of visualization steps in your analysis.

https://www.linuxjournal.com

24 | May 2019 | https://www.linuxjournal.com

UPFRONT

the visualization tools. For example, clicking the Filters→Statistics menu item
provides a drop-down list of statistical functions. Clicking the “Descriptive
Statistics” option adds a new entry in the “Pipeline Browser” where you can set the
options for the statistical analysis.

This opens a new pane where you can play with the data a bit more directly. This
particular data set is not very interesting, so descriptive statistics aren’t very useful in
this specific case.

You also can do more detailed data analysis by clicking the Filters→Data Analysis
menu item. For example, clicking the histogram entry gives you a new pane displaying
a histogram plot.

You also can do things like calculate quartiles or replot interpolated and analyzed data.

Figure 5. You even can do histograms of the data being visualized.

https://www.linuxjournal.com

25 | May 2019 | https://www.linuxjournal.com

UPFRONT

For repeated visualization, you probably won’t want to go through all of the required
steps every time. ParaView includes a Python engine, so you can write a Python script
that can run repeated processing steps easily. This also means you can script behavior
that can be processed when the GUI is not active. This comes in handy when you’re
running larger data analysis jobs on high-performance clusters remotely.

You can work on your Python scripting by clicking Tools→Python Shell. This pops
up a new window where you can write and evaluate your Python code directly
within ParaView.

Along with writing Python scripts, ParaView has been designed with a plugin
architecture. Clicking Tools→Manage Plugins pops up a new window where you can
select which plugins are loaded and active.

Figure 6. Within ParaView, you have access to a Python shell where you can interact with the
ParaView analysis tools directly.

https://www.linuxjournal.com

26 | May 2019 | https://www.linuxjournal.com

UPFRONT

If you’re in the middle of some visualization work, you can save the current state of
ParaView so that you can pick it up again later. Clicking File→Save State lets you save
the current state as a .pvsm (ParaView state) file. You can reload it later by clicking
File→Load State.

Once you’ve finished a visualization, there are a couple options that allow you to
generate files that you can use in other software packages. Clicking File→Save
Screenshot pops up a new window where you can set options like the image size.

Figure 7. ParaView supports plugins, but it’s up to you to select which ones are active and
loaded for use in a current session.

https://www.linuxjournal.com

27 | May 2019 | https://www.linuxjournal.com

UPFRONT

Then a second window will open where you can set the image filename.

The File→Export Scene menu item gives you a second option for saving your results.
In this case, you can save your results in other file formats, such as PostScript or PDF.
If your visualization includes an animation, click File→Save Animation to save it.

If you’re working with large or complicated data sets, I recommend making the move
to ParaView as your main visualization tool.

—Joey Bernard

https://www.linuxjournal.com

28 | May 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each
month in the magazine. A very special thank you this month goes to:

• Appahost.com
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• Fred
• Henrik Halbritter (Albritter)

• James Mayes
• James Weatherell
• Joe
• Josh Simmons
• LinuxMagic Inc.
• Lorin Ricker
• Taz Brown

Now also find @linuxjournal on Liberapay. Thank you to our very first
Liberapay supporter and the person who gave us this great suggestion:
Mostly_Linux.

https://www.patreon.com/linuxjournal
https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

29 | May 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

30 | May 2019 | https://www.linuxjournal.com

UPFRONT

Signing Git Commits
Protect your code commits from malicious changes by GPG-signing them.

Often when people talk about GPG, they focus on encryption—GPG’s ability to
protect a file or message so that only someone who has the appropriate private
key can read it. Yet, one of the most important functions GPG offers is signing.
Where encryption protects a file or message so that only the intended recipient
can decrypt and read it, GPG signing proves that the message was sent by the
sender (whomever has control over the private key used to sign) and has not
been altered in any way from what the sender wrote.

Without GPG signing, you could receive encrypted email that only you could
open, but you wouldn’t be able to prove that it was from the sender. But,
GPG signing has applications far beyond email. If you use a modern Linux
distribution, it uses GPG signatures on all of its packages, so you can be
sure that any software you install from the distribution hasn’t been altered
to add malicious code after it was packaged. Some distributions even GPG-sign
their ISO install files as a stronger form of MD5sum or SHA256sum to verify
not only that the large ISO downloaded correctly (MD5 or SHA256 can do that),
but also that the particular ISO you are downloading from some random
mirror is the same ISO that the distribution created. A mirror could change
the file and generate new MD5sums, and you may not notice, but it couldn’t
generate valid GPG signatures, as that would require access to the distribution’s
signing key.

Why Sign Git Commits
As useful as signing packages and ISOs is, an even more important use of
GPG signing is in signing Git commits. When you sign a Git commit, you can
prove that the code you submitted came from you and wasn’t altered while
you were transferring it. You also can prove that you submitted the code and

https://www.linuxjournal.com

31 | May 2019 | https://www.linuxjournal.com

UPFRONT

not someone else.

Being able to prove who wrote a snippet of code isn’t so you know who to blame for
bugs so the person can’t squirm out of it. Signing Git commits is important because in
this age of malicious code and back doors, it helps protect you from an attacker who
might otherwise inject malicious code into your codebase. It also helps discourage
untrustworthy developers from adding their own back doors to the code, because
once it’s discovered, the bad code will be traced to them.

How to Sign Git Commits
The simplest way to sign Git commits is by adding the -S option to the git commit
command. First, figure out your GPG key ID with:

gpg --list-secret-keys --keyid-format LONG
sec# rsa4096/B9EF770D6EFE360F 2019-02-06 [SC]
 ↪[expires: 2021-02-05]
. . .

In this case, B9EF770D6EFE360F is my long key ID. Why use this and not just my email
address associated with my key? In the event you have multiple keys with the same ID,
you might end up signing with the wrong key. By specifying the long key ID, you can
ensure that you use the right key every time.

Once you know the key ID, add it to the -S option when you git commit:

git commit -S B9EF770D6EFE360F

Now when you submit the commit, it will prompt you to unlock your GPG key so it
can sign the commit.

Of course, the goal is to sign every commit, and if you had to add this argument
every time you committed code, it would be pretty annoying. So instead, add it to
your ~/.gitconfig so it signs every time:

https://www.linuxjournal.com

32 | May 2019 | https://www.linuxjournal.com

UPFRONT

[user]
 name = Kyle Rankin
 email = kyle.rankin@puri.sm
 signingkey = B9EF770D6EFE360F
[commit]
 gpgsign = true

In the [user] section of your .gitconfig, after your name and email, add a
signingkey option, and set it to the same key ID you used for the -S argument in
git commit. Then add a new [commit] section, if it doesn’t already exist, and add
the gpgsign option set to true. This way, all of your GPG commits will be signed.

The final step once this is all set up, if you use a web-based Git repository like GitLab
or GitHub, is for you to go to your shared Git repository, log in to your account,
and find the section that lets you upload GPG public keys, so you can add your
corresponding GPG public key to your account. This way, when you do sign your
commits, the Git repository will be able to verify the signature against your public key
and add a handy “Verified” tag that denotes that the commit came from you.

—Kyle Rankin

https://www.linuxjournal.com
mailto:kyle.rankin@puri.sm

33 | May 2019 | https://www.linuxjournal.com

UPFRONT

FOSS Project Spotlight:
Bareos, a Cross-Network,
Open-Source Backup Solution
Bareos (Backup Archiving Recovery Open Sourced) is a cross-network, open-
source backup solution that preserves, archives and recovers data from all major
operating systems. The Bareos project started 2010 as a Bacula fork and is now
being developed under the AGPLv3 license.

The client/server-based backup solution is actually a set of computer programs
(Figure 1) that communicate over the network: the Bareos Director (BD), one
or more Storage Dæmons (SD) and the File Dæmons (FD). Due to this modular
design, Bareos is scalable—from single computer systems (where all components
run on one machine) to large infrastructures with hundreds of computers (even in
different geographies).

The director is the central control unit for all other dæmons. It manages the database
(catalog), the connected clients, the file sets (they define which data Bareos should
back up), the configuration of optional plugins, before and after jobs (programs to
be executed before or after a backup job), the storage and media pool, schedules and
the backup jobs. Bareos Director runs as a dæmon.

The catalog maintains a record of all backup jobs, saved files and volumes used.
Current Bareos versions support PostgreSQL, MySQL and SQLite, with PostgreSQL
being the preferred database back end.

The File Dæmon (FD) must be installed on every client machine. It is responsible for
the backup as well as the restore process. The FD receives the director’s instructions,
executes them and transmits the data to the Bareos Storage Dæmon. Bareos offers
pre-packed file dæmons for many popular operating systems, such as Linux, FreeBSD,

https://www.bareos.org/
https://www.linuxjournal.com

34 | May 2019 | https://www.linuxjournal.com

UPFRONT

AIX, HP-UX, Solaris, Windows and macOS. Like the director, the FD runs as a dæmon
in the background.

The Storage Dæmon (SD) receives data from one or more File Dæmons (at the
director’s request). It stores the data (together with the file attributes) on the
configured backup medium. Bareos supports various types of backup media, as shown
in Figure 1, including disks, tape drives and even cloud storage solutions. During the
restore process, the SD is responsible for sending the correct data back to the FD(s).
The Storage Dæmon runs as a dæmon on the machine handling the backup device(s).

Figure 1.
A Typical Bareos
Setup: Director
(with Database),
File Dæmon(s),
Storage Dæmon(s)
and Backup Media

https://www.linuxjournal.com

35 | May 2019 | https://www.linuxjournal.com

UPFRONT

Backup Jobs
A backup job defines what to back up (FileSet directive for the client),
when to back up (schedule) and where to back up (for example, on a disk,
tape, etc.). Bareos is quite flexible, and you can mix different directives. So
you can have different job definitions (resources), backing up different
machines, but using the same schedule, the same FileSet and even the
same backup medium.

The schedule describes what kind of backup (full, incremental or differential)
runs on different days of the week or month. If more than one backup job
relies on the same schedule, it’s possible to set the job priority and tell Bareos
which job is supposed to run first. Additionally, there are restore, verify and
admin jobs.

bconsole and WebUI
The Bareos configuration is stored in text files. In order to communicate with

Figure 2. The Bareos WebUI allows users to monitor the backup solution as well as restore
their data.

https://www.linuxjournal.com

36 | May 2019 | https://www.linuxjournal.com

UPFRONT

the director, administrators (and other authorized users) can use the command-
line tool Bareos Console (bconsole). The shell interface allows you to query
Bareos’ state, determine the status of a particular job, examine the contents of
the database and run jobs manually.

You can run bconsole basically anywhere on your network—it doesn’t have to be
the BD machine. Since Bareos Console is a shell interface, it also works via SSH.

The Bareos WebUI (Figure 2) has been part of the backup solution since version
15.2.0. The multilingual web interface can access multiple directors and catalogs.
Its main purpose is to monitor the backup software, but it’s also possible to
start, cancel or rerun jobs. You can use the WebUI to restore files (even to a
different client) and browse through a file tree of backup jobs.

Special Features
Bareos values security and safety and supports transport encryption as well as
data encryption. The software uses TLS (Transport Layer Security) for all network
connections. On top of that, it’s possible to encrypt and sign the data on the File
Dæmon before the backup is sent to the Storage Dæmon. Encryption and signing
are implemented using RSA private keys coupled with self-signed X.509 certificates
(PKI, Public Key Infrastructure).

You can extend Bareos’ functionality by adding plugins to the director, FD and
SD. For example, there are LDAP plugins, plugins to back up and restore various
database back ends (PGSQL, MySQL, MSSQL), extensions for GlusterFS and Ceph
filesystem, and a VMware plugin for agentless backups of virtual machines running
on VMware vSphere. The bpipe plugin is a generic pipe program that simply
transmits the data from a specified program to Bareos and back.

Documentation and Support
For more information on Bareos, please have a look at the official documentation.
There are also two mailing lists: bareos-users (for users, for help from the
community) and bareos-devel (for developers, for discussions on how to modify

https://docs.bareos.org/
https://groups.google.com/forum/#!forum/bareos-users
https://groups.google.com/forum/#!forum/bareos-devel
https://www.linuxjournal.com

37 | May 2019 | https://www.linuxjournal.com

UPFRONT

the Bareos code). The source code is available in the Bareos GitHub repository.

The Bareos download servers offer packages for all major operating systems
(stable Bareos version only). Subscription customers can get access to
repositories with maintenance and bug-fix releases. The company Bareos GmbH &
Co. KG (located in Cologne, Germany) also offers professional support.

—Heike Jurzik and Maik Aussendorf

https://github.com/bareos
http://download.bareos.org/bareos/release/latest
https://www.bareos.com/en/Subscription.html
https://www.bareos.com/en/Support.html
https://www.linuxjournal.com

38 | May 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• Microsoft has published the code for Windows Calculator and released it on

GitHub under the permissive MIT license. Ars Technica reports that “The repository
shows Calculator’s surprisingly long history. Although it is in some regards one of
the most modern Windows applications—it’s an early adopter of Fluent Design
and has been used to showcase a number of design elements—core parts of the
codebase date all the way back to 1995.”

• Audacity recently released version 2.3.1. This new version restores Linux
support, which was missing in the previous version, and also fixes more than 20
bugs and improves Audacity for macOS. For details on all the new features, go
here, and see also the release notes.

• Flickr has announced that all CC-licensed images will be protected. According to
the Creative Commons article, “all CC-licensed and public domain images on the
platform will be protected and exempted from upload limits. This includes images
uploaded in the past, as well as those yet to be shared. In effect, this means that
CC-licensed images and public domain works will always be free on Flickr for any
users to upload and share.”

• Purism announces that along with three kill switches, Librem 5 smartphone
also will have a new feature called “Lockdown Mode”. As far as the kill switches,
one is for cameras and microphone, one for WiFi and Bluetooth, and one for
cellular baseband. Lockdown Mode goes further and “extends our normal kill
switches to provide even more security and privacy”. Purism’s Chief Security
Officer Kyle Rankin writes, “When in Lockdown Mode, in addition to powering
off the cameras, microphone, WiFi, Bluetooth and cellular baseband we also cut
power to GNSS, IMU, and ambient light and proximity sensors. Lockdown Mode
leaves you with a perfectly usable portable computer, just with all tracking sensors
and other hardware disabled. If you switch any of the hardware kill switches back

Visit LinuxJournal.com for
daily news briefs.

https://arstechnica.com/gadgets/2019/03/calc-exe-is-now-open-source-theres-surprising-depth-in-its-ancient-code
https://www.audacityteam.org/audacity-2-3-1-released
https://wiki.audacityteam.org/wiki/New_features_in_Audacity_2.3.1
https://wiki.audacityteam.org/wiki/Release_Notes_2.3.1
https://creativecommons.org/2019/03/08/flickr-announcement
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches
http://linuxjournal.com
https://www.linuxjournal.com

39 | May 2019 | https://www.linuxjournal.com

UPFRONT

39 | May 2019 | https://www.linuxjournal.com

on, the hardware that corresponds to that switch powers on along with GNSS,
IMU, and ambient light and proximity sensors.”

• Firefox announced its new Firefox Send feature. According to the Mozilla
Blog post, “Send is a free encrypted file transfer service that allows users
to safely and simply share files from any browser. Additionally, Send will also
be available as an Android app in beta later this week.” You also can decide
when the link expires, select the number of downloads and optionally add a
password for more security.

• The FSF awarded seven devices from ThinkPenguin with its Respects Your
Freedom (RYF) certification. The devices include “The Penguin Wireless G USB
Adapter (TPE-G54USB2), the Penguin USB Desktop Microphone for GNU/Linux
(TPE-USBMIC), the Penguin Wireless N Dual-Band PCIe Card (TPE-N300PCIED2),
the PCIe Gigabit Ethernet Card Dual Port (TPE-1000MPCIE), the PCI Gigabit
Ethernet Card (TPE-1000MPCI), the Penguin 10/100 USB Ethernet Network
Adapter v1 (TPE-100NET1), and the Penguin 10/100 USB Ethernet Network
Adapter v2 (TPE-100NET2)”. This certification means that “products meet the
FSF’s standards in regard to users’ freedom, control over the product, and privacy.”

• The new PocketBeagle Linux computer is now available for $29.95 from Adafruit.
According to Geeky Gadgets, the PocketBeagle “offers a powerful 1GHz AM3358
powered Linux single board computer with a tiny form factor and open source
architecture”. The article quotes Adafruit on the new SBC: “what differentiates
the BeagleBone is that it has multiple I2C, SPI and UART peripherals (many boards
only have one of each), built in hardware PWMs, analog inputs, and two separate
200MHz microcontroller systems called the PRU that can handle real-time tasks like
displaying to RGB matrix displays or NeoPixels. It’s not too much larger than our
Feathers, but comes with 72 expansion pin headers, high-speed USB, 8 analog pins,
44 digital I/Os, and plenty of digital interface peripherals. You can also add a USB
host connection by wiring a USB A socket to the broken out USB host connections
labeled VI, D+, D-, ID and GND. Then plug in any USB Ethernet, Bluetooth, and Wi-
Fi device with available Linux drivers.”

https://send.firefox.com/
https://blog.mozilla.org/blog/2019/03/12/introducing-firefox-send-providing-free-file-transfers-while-keeping-your-personal-information-private
https://blog.mozilla.org/blog/2019/03/12/introducing-firefox-send-providing-free-file-transfers-while-keeping-your-personal-information-private
https://www.fsf.org/news/seven-new-devices-from-thinkpenguin-inc-now-fsf-certified-to-respect-your-freedom
https://www.fsf.org/news/seven-new-devices-from-thinkpenguin-inc-now-fsf-certified-to-respect-your-freedom
https://www.adafruit.com/product/4179
https://www.geeky-gadgets.com/pocketbeagle-pocket-21-03-2019
https://www.linuxjournal.com

40 | May 2019 | https://www.linuxjournal.com

UPFRONT

40 | May 2019 | https://www.linuxjournal.com

• The official Raspberry Pi keyboard and mouse are now available. You can
purchase them now from approved Raspberry Pi resellers. The keyboard is
available in six layouts—English (UK), English (US), Spanish, French, German and
Italian—with more in the works. The mouse is a “ three-button, scroll-wheel optical
device with Raspberry Pi logos on the base and cable, coloured to match the Pi
case”. View a video of the products for more details.

• SUSE is on track to become the largest independent Linux company. ZDNet
reports that this is due to IBM acquiring Red Hat and SUSE’s growth for the past
seven straight years. The ZDNet post quotes SUSE CEO Nils Braukmann, “We
believe that makes our status as a truly independent open-source company more
important than ever. Our genuinely open-source solutions, flexible business
practices, lack of enforced vendor lock-in, and exceptional service are more critical
to customer and partner organizations, and our independence coincides with our
single-minded focus on delivering what is best for them.”

• Chef has announced it is releasing all of its software as open source. According
to DevOps.com, “Chef has decided to open source its entire portfolio of IT
automation software as part of an effort to make it easier for organizations
to construct a DevOps pipeline using the company’s software. A part of that
effort, Chef also launched the Chef Enterprise Automation Stack—which
combines Chef Infra for managing infrastructure, Chef InSpec for maintaining
compliance, Chef Habitat for managing applications, Chef Automate for
managing hybrid clouds and Chef Workstation, a starter kit for launching Chef—
within a single distribution of Chef software. Chef Infra is the original Chef
project around which the company was launched.”

• Purism is partnering with Private Internet Access (PIA), “as its very first OEM
partner to bring an unprecedented combination of tracking-free and encrypted
tools and services to the people.” From the Purism blog post: “By combining its
signature VPN capabilities with Purism’s leading secure hardware and software
products, the two will create a first-of-its-kind bundle for users to set up a
privacy protecting and secure environment out of the box. The addition of PIA

https://www.raspberrypi.org/blog/official-raspberry-pi-keyboard-mouse
https://www.raspberrypi.org/products
https://youtu.be/DLRQMXUKF4E
https://www.zdnet.com/article/the-new-suse
https://www.zdnet.com/article/the-new-suse
https://devops.com/devops-chat-chef-goes-all-in-on-open-source
https://puri.sm/posts/purism-becomes-pia-first-oem-partner
https://www.linuxjournal.com

41 | May 2019 | https://www.linuxjournal.com

UPFRONT

as a VPN partner strengthens Purism’s growing roster of partners and services
that make its Librem line the most comprehensive privacy and security focused
offering on the market.”

• RaspberryPi.org reports that you can now build a digital Etch-A-Sketch. The
post notes that Martin Fitzpatrick built something called an “Etch-A-Snap”,
which is a Raspberry Pi Zero and camera module-connected Etch-A-Sketch:
“Etch-A-Snap is (probably) the world’s first Etch-A-Sketch Camera. Powered by
a Raspberry Pi Zero (or Zero W), it snaps photos just like any other camera,
but outputs them by drawing to an Pocket Etch-A-Sketch screen. Quite slowly.”
See Martin’s Reddit post for more details.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.raspberrypi.org/blog/hacking-etch-a-sketch-raspberry-pi-camera-etch-a-snap
https://www.reddit.com/r/raspberry_pi/comments/bai46e/etchasnap_the_raspberry_pi_powered_etchasketch
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

42 | May 2019 | https://www.linuxjournal.com

Digital Will,
Part I:
Requirements
Digital assets are becoming as important as
physical assets, so how you do manage them
after you die?

By Kyle Rankin

When you lose a member of your family, you may find
yourself at some point thinking about your own mortality,
which then may lead you to think through preparations
for your own death. I lost my father recently, but years
before his death, he set up a will that described how to
manage his estate, but he also made sure to share with
me login details for his important financial accounts
so I would have access when the time came. When the
time did come to put his plans into practice, those details
were invaluable.

All of this made me realize just how complicated it would
be for someone to manage my own accounts in the event
of my death, especially considering how much effort I’ve
gone through to secure my computers and accounts.
After all, unlike my dad, I don’t use the same password for
everything. What I realized I needed was the equivalent of
a digital will: instructions and credentials so my next of kin

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com

HACK AND /

43 | May 2019 | https://www.linuxjournal.com

had everything they needed to access my accounts and manage my affairs. In
this first article of what will be a two-part series, I describe the requirements and
plans to create a digital will in a way that would be manageable for my next of kin
while also not negatively affecting the security of my accounts. The second part
of the article will describe how I implemented these plans.

Defining Terms
This digital will is based on many of the ideas behind a traditional will, and I
intend on borrowing a lot of the framework and terms instead of “re-inventing
the will”. To get started, let me define a few terms, but I should make it clear
that I’m not an attorney, so these are just loose definitions to describe how some
common terms used in a will might be applied to this digital will:

• Decedent/Testator: the decedent is the person who has died, and the
testator is the person who signs the will and whose will it is. For our purposes,
this will be the same person—the person who currently controls these digital
assets that will be transferred upon his or her death.

• Beneficiary/Inheritor: the person or persons who are receiving a gift of
personal property from the decedent. For our purposes, this is the person or
persons who will get control of digital accounts or other assets.

• Administrator/Executor: the person who is to oversee the administration
of the estate and make sure the will is followed according to the testator’s
wishes. Often a testator will name a preferred executor in the will itself; other
times, they are appointed by the court. In the case of a traditional will, the
executor also may happen to be a beneficiary, but for some larger or more
complicated estates it’s often a third party selected for their financial or
business know-how. For our purposes here, the executor will need technical
know-how and will be the person who assists the beneficiary with getting
access to accounts and managing any digital assets up to the point that the
beneficiary can take over and will no longer need technical assistance.

https://www.linuxjournal.com

HACK AND /

44 | May 2019 | https://www.linuxjournal.com

Goals and Requirements
Unlike a traditional will, this digital will does not have a goal of defining who gets digital
assets like online financial accounts—a traditional will already can define that sort of
thing in an appropriate and legal way. Instead, the main goal of this digital will is to
enable the executor to grant the beneficiary access to digital assets left behind. This
main goal then helps with defining some related requirements.

Requirement 1: Simplicity
Dealing with a loved one’s death and regular estate is difficult enough as it is. The
extra complexity behind digital assets makes this even more difficult, and since
you’ll want to add security requirements on top, this very easily could result in a
complicated and hard-to-follow process. Simplicity has to be a primary requirement,
since you won’t be around to help with the administration. This means however
tempting it might be to use sophisticated cryptography algorithms or technologies,
you need to make the digital will as foolproof and simple as possible.

Requirement 2: Documentation
Since I work in technology, I set up and maintain a number of systems at home. These
include common household systems like wireless access points, a local file server and
media center computers. Those systems are pretty common for people who are into
computers, but as I have a sysadmin background, I also maintain email, web and DNS
servers for domains that we own and that I and my family use for our main email and
various blogs and other websites. All of these systems are largely undocumented,
since I am the one who set them up and no one else maintains them, but obviously,
that presents a problem if I die.

So one requirement for this project is to provide some kind of documentation
for all of those systems. This documentation is not just about which systems exist
(which is an important start), but it’s also some level of detail on how to maintain
those systems. The executor is the technical help here, but they can’t be expected
to perform their duties indefinitely. So the documentation also might need to cover
how to migrate to a replacement system in the future, since some systems need more
technical know-how to maintain long-term than the beneficiary may have. The person

https://www.linuxjournal.com

HACK AND /

45 | May 2019 | https://www.linuxjournal.com

writing the digital will is in the best place to make those determinations, as they know
the skill levels and time commitment necessary to maintain the systems as well as the
skill levels and free time available to both the executor and the beneficiary.

Requirement 3: Secure Transfer of Account Authentication
Whether you maintain local IT systems in your house or not, you still likely have a
number of online accounts that you don’t share with anyone else. Each of those
accounts has its own set of credentials, and although some online services have
support in place so that a beneficiary or next of kin can take over the decedent’s
account with a valid death certificate, many don’t.

The digital will needs to provide a way to transfer access to those accounts over
to the beneficiary, possibly with the help of the executor, without putting those
accounts at risk from outside attackers. Ideally, the accounts would sit in a kind of
digital trust so that the executor can’t independently get access to those accounts
prematurely—no matter how much you trust your executor, you probably don’t want
that person to have access to all your accounts and systems while you are alive. In
some circumstances, you also might choose to prevent the beneficiary from getting
premature access as well (for instance, if the beneficiary is your child). Even if you do
trust your executor and beneficiary fully, you may not trust your full set of secrets on
their systems since they could get hacked.

Requirement 4: Maintenance
If you ever have been responsible for technical documentation, you know how
quickly that sort of thing can become out of date. This digital will process is no
different, but it’s even more important that it be kept up to date. This means you
need to add an additional requirement that you build in some process to keep the
documentation, credentials and everything else related to this digital will up to
date via some periodic process.

Requirement 5: Fault Tolerance
Technology and people can fail, so this digital will needs to account for and be
resilient to failure both in any technology it picks and mistakes or memory lapses

https://www.linuxjournal.com

HACK AND /

46 | May 2019 | https://www.linuxjournal.com

for any people involved. Systems should be redundant and account for failures and
mistakes. You should be careful when choosing any solutions that rely on third parties
that could go out of business or shut down a particular service they provide.

Requirement 6: FOSS
The technologies for this digital will should rely on free and open-source software
(FOSS) not just because that matches my own ideals (and the ideals of Linux
Journal), but also because a FOSS solution helps with the fault-tolerance requirement.
FOSS software, even if it becomes unmaintained, still should be available for use in the
future, whereas proprietary software or services may not.

Conclusion
Thinking through these requirements was hard, but not nearly as hard as figuring out
an implementation that satisfies these requirements! In the next part of this article
series, I will describe the solution I came up with for my own digital will. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

http://witi.com/summit

48 | May 2019 | https://www.linuxjournal.com

UPFRONT

Introducing
Mypy, an
Experimental
Optional Static
Type Checker
for Python
Tighten up your code and identify errors before
they occur with mypy.

By Reuven M. Lerner

I’ve been using dynamic languages—Perl, Ruby and Python—for
many years. I love the flexibility and expressiveness that such
languages provide. For example, I can define a function that
sums numbers:

def mysum(numbers):
 total = 0
 for one_number in numbers:
 total += one_number
 return total

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

http://lerner.co.il/
https://www.linuxjournal.com

49 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

The above function will work on any iterable that returns numbers. So I can run the
above on a list, tuple or set of numbers. I can even run it on a dictionary whose keys
are all numbers. Pretty great, right?

Yes, but for my students who are used to static, compiled languages, this is a very
hard thing to get used to. After all, how can you make sure that no one passes you a
string, or a number of strings? What if you get a list in which some, but not all, of the
elements are numeric?

For a number of years, I used to dismiss such worries. After all, dynamic languages
have been around for a long time, and they have done a good job. And really, if people
are having these sorts of type mismatch errors, then maybe they should be paying
closer attention. Plus, if you have enough testing, you’ll probably be fine.

But as Python (and other dynamic languages) have been making inroads into large
companies, I’ve become increasingly convinced that there’s something to be said for
type checking. In particular, the fact that many newcomers to Python are working on
large projects, in which many parts need to interoperate, has made it clear to me that
some sort of type checking can be useful.

How can you balance these needs? That is, how can you enjoy Python as a dynamically
typed language, while simultaneously getting some added sense of static-typing stability?

One of the most popular answers is a system known as mypy, which takes advantage
of Python 3’s type annotations for its own purposes. Using mypy means that you can
write and run Python in the normal way, gradually adding static type checking over
time and checking it outside your program’s execution.

In this article, I start exploring mypy and how you can use it to check for problems
in your programs. I’ve been impressed by mypy, and I believe you’re likely to see it
deployed in a growing number of places, in no small part because it’s optional, and
thus allows developers to use it to whatever degree they deem necessary, tightening
things up over time, as well.

https://www.linuxjournal.com

50 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

Dynamic and Strong Typing
In Python, users enjoy not only dynamic typing, but also strong typing. “Dynamic”
means that variables don’t have types, but that values do. So you can say:

>>> x = 100
>>> print(type(x))
int

>>> x = 'abcd'
>>> print(type(x))
str

>>> x = [10, 20, 30]
>>> print(type(x))
list

As you can see, I can run the above code, and it’ll work just fine. It’s not particularly
useful, per se, but it never would pass even a first-pass compilation in a statically
compiled language. That’s because in such languages, variables have types—meaning
that if you try to assign an integer to a string variable, you’ll get an error.

In a dynamic language, by contrast, variables don’t have types at all. Running the type
function, as I did above, doesn’t actually return the variable’s type, but rather the type
of data to which the variable currently points.

Just because a language is dynamically typed doesn’t mean that it’s totally loosey-
goosey, letting you do whatever you want. (And yes, that is the technical term.) For
example, I can try this:

>>> x = 1
>>> y = '1'
>>> print(x+y)

https://www.linuxjournal.com

51 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

That code will result in an error, because Python doesn’t know how to add integers
and strings together. It can add two integers (and get an integer result) or two strings
(and get a string result), but not a combination of the two.

The mysum function that you saw earlier assigns 0 to the local “total” variable, and
then adds each of the elements of numbers to it. This means that if numbers contains
any non-numbers, you’re going to be in trouble. Fortunately, mypy will be able to solve
this problem for you.

Type Annotations
Python 3 introduced the idea of “type annotations,” and as of Python 3.6, you can
annotate variables, not just function parameters and return values. The idea is that
you can put a colon (:) and then a type following parameter names. For example:

def hello(name:str):
 return f'Hello, {name}'

Here, I’ve given the name parameter a type annotation of str. If you’ve used a
statically typed language, you might believe that this will add an element of type
safety. That is, you might think that if I try to execute:

hello(5)

I will get an error. But in actuality, Python will ignore these type annotations
completely. Moreover, you can use any object you want in an annotation; although it’s
typical to use a type, you actually can use anything.

This might strike you as completely ridiculous. Why introduce such annotations, if
you’re never going to use them? The basic idea is that coding tools and extensions will
be able to use the annotations for their own purposes, including (as you’ll see in just a
bit) for the purposes of type checking.

This is important, so I’ll repeat and stress it: type annotations are ignored by the Python

https://www.linuxjournal.com

52 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

language, although it does store them in an attribute called __annotations__. For
example, after defining the above hello function, you can look at its annotations,
which are stored as a dictionary:

>>> hello.__annotations__
{'name': <class 'str'>}

Using Mypy
The mypy type checker can be downloaded and installed with the standard Python pip
package installer. On my system, in a terminal window, I ran:

$ pip3 install -U mypy

The pip3 reflects that I’m using Python 3, rather than Python 2. And the -U option
indicates that I’d like to upgrade my installation of mypy, if the package has been
updated since I last installed it on my computer. If you’re installing this package
globally and for all users, you might well need to run this as root, using sudo.

Once mypy is installed, you can run it, naming your file. For example, let’s assume that
hello.py looks like this:

def hello(name:str):
 return f"Hello, {name}"

print(hello('world'))
print(hello(5))
print(hello([10, 20, 30]))

If I run this program, it’ll actually work fine. But I’d like to use that type annotation to
ensure that I’m only invoking the function with a string argument. I can thus run, on
the command line:

$ mypy ./hello.py

https://www.linuxjournal.com

53 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

And I get the following output:

hello.py:7: error: Argument 1 to "hello" has incompatible type
 ↪"int"; expected "str"
hello.py:8: error: Argument 1 to "hello" has incompatible type
 ↪"List[int]"; expected "str"

Sure enough, mypy has identified two places in which the expectation that I’ve
expressed with the type annotation—namely, that only strings will be passed as
arguments to “hello”—has been violated. This doesn’t bother Python, but it should
bother you, either because the type annotation needs to be loosened up, or because
(as in this case), it’s calling the function with the wrong type of argument.

In other words, mypy won’t tell you what to do or stop you from running your
program. But it will try to give you warnings, and if you hook this together with a
Git hook and/or with an integration and testing system, you’ll have a better sense of
where your program might be having problems.

Of course, mypy will check only where there are annotations. If you fail to annotate
something, mypy won’t be able to check it.

For example, I didn’t annotate the function’s return value. I can fix that, indicating that
it returns a string, with:

def hello(name:str) -> str:
 return f"Hello, {name}"

Notice that Python introduced a new syntax (the -> arrow), and allowed me to stick
an annotation before the end-of-line colon, in order for annotations to work. The
annotation dictionary has now expanded too:

>>> hello.__annotations__
{'name': <class 'str'>, 'return': <class 'str'>}

https://www.linuxjournal.com

54 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

And in case you’re wondering what Python will do if you have a local variable named
return that conflicts with the return value’s annotation...well, “return” is a reserved
word and cannot be used as a parameter name.

More Sophisticated Checking
Let’s go back to the mysum function. What will (and won’t) mypy be able to check?
For example, assume the following file:

def mysum(numbers:list) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

print(mysum([10, 20, 30, 40, 50]))
print(mysum((10, 20, 30, 40, 50)))
print(mysum([10, 20, 'abc', 'def', 50]))
print(mysum('abcd'))

As you can see, I’ve annotated the numbers parameter to take only lists and to
indicate that the function will always return integers. And sure enough, mypy
catches the problems:

mysum.py:10: error:
 Argument 1 to "mysum" has incompatible type
 "Tuple[int, int, int, int, int]"; expected
 ↪"List[Any]"

mysum.py:12: error:
 Argument 1 to "mysum" has incompatible type
 "str"; expected "List[Any]"

The good news is that I’ve identified some problems. But in one case, I’m calling mysum with

https://www.linuxjournal.com

55 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

a tuple of numbers, which should be fine, but is flagged as a problem. And in another case,
I’m calling it with a list of both integers and strings, but that’s seen as just fine.

I’m going to need to tell mypy that I’m willing to accept not just a list, but any sequence,
such as a tuple. Fortunately, Python now has a typing module that provides you with
objects designed for use in such circumstances. For example, I can say:

from typing import Sequence

def mysum(numbers:Sequence) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

I’ve grabbed Sequence from the typing module, which includes all three Python
sequence types—strings, lists and tuples. Once I do that, all of the mypy problems
disappear, because all of the arguments are sequences.

That went a bit overboard, admittedly. What I really want to say is that I’ll accept any
sequence whose elements are integers. I can state that by changing my function’s
annotations to be:

from typing import Sequence

def mysum(numbers:Sequence[int]) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

Notice that I’ve modified the annotation to be Sequence[int]. In the wake of that
change, mypy has now found lots of problems:

https://www.linuxjournal.com

56 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

mysum.py:13: error: List item 2 has incompatible type "str";
 ↪expected "int"
mysum.py:13: error: List item 3 has incompatible type "str";
 ↪expected "int"
mysum.py:14: error: Argument 1 to "mysum" has incompatible type
 ↪"str"; expected "Sequence[int]"

I’d call this a big success. If someone now tries to use my function with the wrong type
of value, it’ll call them out on it.

But wait: do I really only want to allow for lists and tuples? What about sets, which
also are iterable and can contain integers? And besides, what’s this obsession with
integers—shouldn’t I also allow for floats?

I can solve the first problem by saying that I’ll take not a Sequence[int], but
Iterable[int]—meaning, anything that is iterable and returns integers. In other
words, I can say:

from typing import Iterable

def mysum(numbers:Iterable[int]) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

Finally, how can I allow for either integers or strings? I use the special Union type,
which lets you combine types together in square brackets:

from typing import Iterable, Union

def mysum(numbers:Iterable[Union[int, float]]) ->
 ↪Union[int,float]:

https://www.linuxjournal.com

57 | May 2019 | https://www.linuxjournal.com

AT THE FORGE

 output = 0
 for one_number in numbers:
 output += one_number
 return output

But if I run mypy against this code, and try to call mysum with an iterable containing at
least one float, I’ll get an error:

mysum.py:9: error: Incompatible types in assignment
 ↪(expression has type "float", variable has type "int")

What’s the problem? Simply put, when I create output as a variable, I’m giving it an
integer value. And then, when I try to add a floating-point value to it, I get a warning
from mypy. So, I can silence that by annotating the variable:

def mysum(numbers:Iterable[Union[int, float]])
 ↪-> Union[int,float]:
 output : Union[int,float] = 0
 for one_number in numbers:
 output += one_number
 return output

Sure enough, the function is now pretty well annotated. I’m too experienced to know
that this will catch and solve all problems, but if others on my team, who want to use
my function, use mypy to check the types, they’ll get warnings. And that’s the whole
point here, to catch problems before they’re even close to production. ◾

Resources
You can read more about mypy here. That site has documentation, tutorials
and even information for people using Python 2 who want to introduce mypy
via comments (rather than annotations).

http://mypy-lang.org/
https://www.linuxjournal.com

58 | May 2019 | https://www.linuxjournal.com

UPFRONT

58 | May 2019 | https://www.linuxjournal.com

Breaking Up
Apache Log Files
for Analysis
Dave tackles analysis of the ugly Apache web
server log.

By Dave Taylor

I know, in my last article I promised I’d jump back into the
mail merge program I started building a while back. Since
I’m having some hiccups with my AskDaveTaylor.com web
server, however, I’m going to claim editorial privilege and
bump that yet again.

What I need to do is be able to process Apache log files
and isolate specific problems and glitches that are being
encountered—a perfect use for a shell script. In fact, I have
a script of this nature that offers basic analytics in my book
Wicked Cool Shell Scripts from O’Reilly, but this is a bit
more specific.

Oh Those Ugly Log Files
To start, let’s take a glance at a few lines out of the latest log
file for the site:

$ head sslaccesslog_askdavetaylor.com_3_8_2019

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.linuxjournal.com/content/fun-mail-merge-and-cool-bash-arrays
https://www.askdavetaylor.com/
https://www.linuxjournal.com

59 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

18.144.59.52 - - [08/Mar/2019:06:10:09 -0600] "GET /wp-content/
↪themes/jumpstart/framework/assets/js/nivo.min.js?ver=3.2
 ↪HTTP/1.1" 200 3074
"https://www.askdavetaylor.com/how-to-play-dvd-free-windows-
↪10-win10/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
 ↪64.0.3282.140 Safari/537.36 Edge/18.17763 X-Middleton/1"
 ↪52.53.151.37 - - [08/Mar/2019:06:10:09 -0600] "GET
 ↪/wp-includes/js/jquery/jquery.js?ver=1.12.4 HTTP/1.1"
 ↪200 33766 "https://www.askdavetaylor.com/how-to-play
↪-dvd-free-windows-10-win10/" "Mozilla/5.0 (Windows NT
 ↪10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1" 18.144.59.52 - - [08/Mar/2019:06:10:09
 ↪-0600] "GET /wp-content/plugins/google-analytics-for-
↪wordpress/assets/js/frontend.min.js?ver=7.4.2 HTTP/1.1"
 ↪200 2544 "https://www.askdavetaylor.com/how-to-play
↪-dvd-free-windows-10-win10/"
 ↪"Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1"

It’s big and ugly, right? Okay, then let’s just isolate a single entry to see how
it’s structured:

18.144.59.52 - - [08/Mar/2019:06:10:09 -0600] "GET
 ↪/wp-content/themes/jumpstart/framework/assets/js/
↪nivo.min.js?ver=3.2 HTTP/1.1" 200 3074
"https://www.askdavetaylor.com/how-to-play-dvd-free-windows-
↪10-win10/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140
 ↪Safari/537.36 Edge/18.17763 X-Middleton/1"

https://www.linuxjournal.com

60 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

That’s still obfuscated enough to kick off a migraine!

Fortunately, the Apache website has a somewhat clearer explanation of what’s known
as the custom log file format that’s in use on my server. Of course, it’s described in a
way that only a programmer could love:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
 ↪'\"%{User-agent}i\""

That’s enough info to help decode the log entry. I’ll define each of the percent-format
sequences as I go, so you can get a sense of how it’s all tied together too:

%h = IP Address = 18.144.59.52
%l = ID of client = -
%u = UserID of client = -
%t = Time of request = [08/Mar/2019:06:10:09 -0600]
%r = Request = "GET /wp-content/themes/jumpstart/framework/
↪assets/js/nivo.min.js?ver=3.2 HTTP/1.1"
%>s = Status code = 200
%b = Size of request = 3074
Referrer = "https://www.askdavetaylor.com/how-to-play-dvd-
↪free-windows-10-win10/"
User Agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1"

Or, to make it a bit clearer yet:

IP - - TIMESTAMP REQUEST STATUS SIZE REFERRER USERAGENT

This becomes complicated to parse because there are two different types of field
separator: a space for each of the major fields, but since some of the values can

http://www.apache.org/
https://www.linuxjournal.com

61 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

contain spaces, quotes to delimit the start/end of fields Request, Referrer and
User Agent.

As a general rule, shell utilities aren’t so good at these sort of mixed field separators,
so it’s time for a bit of out-of-the-box thinking!

Breaking Down Fields with Dissimilar Delimiters
It’s true that the fields are divided up with dissimilar delimiters (say that ten times
fast), but you can process the information in stages. You can examine the line by just
processing the quote delimiter with this clumsy code block:

while read logentry
do
 echo "f1 = $(echo "$logentry" | cut -d\" -f1)"
 echo "f2 = $(echo "$logentry" | cut -d\" -f2)"
 echo "f3 = $(echo "$logentry" | cut -d\" -f3)"
 echo "f4 = $(echo "$logentry" | cut -d\" -f4)"
 echo "f5 = $(echo "$logentry" | cut -d\" -f5)"
 echo "f6 = $(echo "$logentry" | cut -d\" -f6)"
done < $accesslog

Since it’s just an interim step on the development of the final shell script, I’m not
going to bother cleaning it up or making it more efficient.

Running this against the first line of the accesslog, here’s what’s revealed:

f1 = 18.144.59.52 - - [08/Mar/2019:06:10:09 -0600]
f2 = GET /wp-content/themes/jumpstart/framework/assets/
↪js/nivo.min.js?ver=3.2 HTTP/1.1
f3 = 200 3074
f4 = https://www.askdavetaylor.com/how-to-play-dvd-free-
↪windows-10-win10/
f5 =

https://www.linuxjournal.com

62 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

f6 = Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140
Safari/537.36 Edge/18.17763 X-Middleton/1

What’s important to notice here is field 3. Field 3 (f3) has both the return code—
200, in this case—and the total number of bytes in this transaction, 3074.

This means that if f3 is then divided by the space delimiter, you can identify both
return code and bytes easily enough:

f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

Using a space as a delimiter makes for a weird-looking command line, as you can see,
but the \ forces the very next character to be interpreted as the specified value, first a
double quote, then a space character.

Extracting Just the Errors
Now, can you spin through the entire log file and just pull out error codes? Sure you
can, with just a simplification and tweak of the while loop:

while read logentry
do
 f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

 echo "$entry: returncode = $returncode, bytes = $bytes"
 entry=$(($entry + 1))
done < $accesslog

Since a return code of 200 is a success, it's easy to grep -v and see what other

https://www.linuxjournal.com

63 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

return codes show up in the log file:

$ sh breakdown.sh | grep -v 200
113: returncode = 405, bytes = 42
138: returncode = 405, bytes = 42
177: returncode = 301, bytes = -
183: returncode = 301, bytes = -
186: returncode = 405, bytes = 42
187: returncode = 404, bytes = 11787
220: returncode = 404, bytes = 11795
279: returncode = 405, bytes = 42
397: returncode = 301, bytes = -

Error 405 is (according to the W3 Web standards site) “Method Not Allowed”, while
301 is “Moved Permanently”, and 404 is a standard “Not Found” error when someone
requests a resource that the server cannot find.

Useful, but let’s take the next step. For every query where the return code is not a 200
“OK” status, let’s show the original log file line in question. This time, let’s modify the
script to do the 200 filtering too:

while read logentry
do
 f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

 if [$returncode != "200"] ; then
 echo "$returncode ($entry): $logentry"
 fi

 entry=$(($entry + 1))
done < $accesslog

https://www.w3.org/
https://www.linuxjournal.com

64 | May 2019 | https://www.linuxjournal.com

WORK THE SHELL

The results then look like this:

$ sh breakdown.sh
405 (113): 3.122.179.106 - - [08/Mar/2019:06:10:11 -0600]
"GET /xmlrpc.php HTTP/1.1" 405 42 "-" "Mozilla/5.0 (X11;
Linux i686; rv:2.0.1) Gecko/20100101 Firefox/4.0.1
 ↪X-Middleton/1"
405 (138): 35.180.37.73 - - [08/Mar/2019:06:10:21 -0600]
"GET /xmlrpc.php HTTP/1.1" 405 42 "-" "Mozilla/5.0 (X11;
Linux i686; rv:2.0.1) Gecko/20100101 Firefox/4.0.1
 ↪X-Middleton/1"
301 (177): 34.239.180.102 - - [08/Mar/2019:06:10:30 -0600]
"GET /how_do_i_restructure_my_wordpress_blog_without_losing_seo
 ↪HTTP/1.1" 301 - "-" "Mozilla/5.0 (Windows NT 6.1;
 ↪WOW64; rv:29.0) Gecko/20120101 Firefox/29.0
 ↪X-Middleton/1"

It’s useful to be able to see the log file entry line, the return error code and the full log
file entry line. Is there a pattern? Do they all have the same user agent (for example, a
bot)? Are they from the same IP address? A pattern based on time of day?

With a judicious use of wc, I also can ascertain that this particular log file
encompasses 99,309 total hits, of which 4,393 (4.4%) are non-200 results.

Another useful feature for this script would be to create multiple output files
automatically, one per error code. I shall leave that, however, as an exercise for
you, dear reader!

And, for my next article, I’ll jump back into that mail merge script! ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

https://handshake.org/signup

66 | May 2019 | https://www.linuxjournal.com

diff -u

What’s New
in Kernel
Development
By Zack Brown

KUnit and Assertions
KUnit has been seeing a lot of use and development recently.
It’s the kernel’s new unit test system, introduced late last year
by Brendan Higgins. Its goal is to enable maintainers and other
developers to test discrete portions of kernel code in a reliable
and reproducible way. This is distinct from various forms of
testing that rely on the behavior of the system as a whole and,
thus, do not necessarily always produce identical results.

Lately, Brendan has submitted patches to make KUnit
work conveniently with “assertions”. Assertions are like
conditionals, but they’re used in situations where only one
possible condition should be true. It shouldn’t be possible for
an assertion to be false. And so if it is, the assertion triggers
some kind of handler that the developer then uses to help
debug the reasons behind the failure.

Unit tests and assertions are to some extent in opposition to
each other—a unit test could trigger an assertion when the
intention was to exercise the code being tested. Likewise, if
a unit test does trigger an assertion, it could mean that the
underlying assumptions made by the unit test can’t be relied on,

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

https://www.linuxjournal.com

67 | May 2019 | https://www.linuxjournal.com

diff -u

and so the test itself may not be valid.

In light of this, Brendan submitted code for KUnit to be able to break out of a
given test, if it triggered an assertion. The idea behind this was that the assertion
rendered the test invalid, and KUnit should waste no time, but proceed to the next
test in the queue.

There was nothing particularly controversial in this plan. The controversial part came
when Frank Rowand noticed that Brendan had included a call to BUG(), in the event
that the unit test failed to abort when instructed to do so. That particular situation
never should happen, so Brendan figured it didn’t make much difference whether
there was a call to BUG() in there or not.

But Frank said, “You will just annoy Linus if you submit this.” He pointed out that the
BUG() was a means to produce a kernel panic and hang the entire system. In Linux,
this was virtually never an acceptable solution to any problem.

At first, Brendan just shrugged, since as he saw it, KUnit was part of the kernel’s
testing infrastructure and, thus, never would be used on a production system. It was
strictly for developers only. And in that case, he reasoned, what difference would it
make to have a BUG() here and there between friends? Not to mention the fact that,
as he put it, the condition producing the call to BUG() never should arise.

But, Frank said this wasn’t good enough. He said that whether you felt that KUnit
belonged or didn’t belong in production systems, it almost certainly would find its
way into production systems in the real world. That’s just how these things go. People
do what isn’t recommended. But even if that were not the case, said Frank, non-
production systems likewise should avoid calling BUG(), unless crashing the system
were the only way to avoid actual data corruption.

Brendan had no serious objection to ditching the call to BUG(), he was just posing
questions, because it seemed odd that there would be any problem. But, he was fine
with ditching it.

https://www.linuxjournal.com

68 | May 2019 | https://www.linuxjournal.com

diff -u

So the feature remains, while the error handling will change. An interesting thing
about this particular debate is that it underscores the variety of conflicts that can
emerge with so many debugging and error-handling aspects of the kernel. All sorts of
conflicts and race conditions might emerge.

For example, a developer might write a new driver and want to test how it behaves
under heavy load. So they’ll run a memory-intensive process while using their driver,
only to discover that the kernel’s out-of-memory (OOM) killer kills the process
generating the load, before the key test situation can be triggered within the driver.

It’s amazing to consider the sheer quantity of testing and debugging features that have
encrusted themselves on every aspect of the Linux kernel development process. Even
git itself, the revision control system created by Linus Torvalds specifically to host
kernel development, is itself a debugging tool that ensures it is possible to identify and
possibly revert changes that turn out to cause a problem. In addition to everything
else, there also are a wide array of automated systems running within a variety of
private enterprises. Some of those load up running systems with particular workloads;
some read the source code directly, looking for patterns. It’s impossible to know the
full variety and extent of testing that the Linux kernel receives on a daily basis.

Crazy Compiler Optimizations
Kernel development is always strange. Andrea Parri recently posted a patch to change
the order of memory reads during multithreaded operation, such that if one read
depended upon the next, the second could not actually occur before the first.

The problem with this was that the bug never could actually occur, and the fix made
the kernel’s behavior less intuitive for developers. Peter Zijlstra, in particular, voted
nay to this patch, saying it was impossible to construct a physical system capable of
triggering the bug in question.

And although Andrea agreed with this, he still felt the bug was worth fixing, if only for
its theoretical value. Andrea figured, a bug is a bug is a bug, and they should be fixed.
But Peter objected to having the kernel do extra work to handle conditions that could

https://www.linuxjournal.com

69 | May 2019 | https://www.linuxjournal.com

diff -u

never arise. He said, “what I do object to is a model that’s weaker than any possible
sane hardware.”

Will Deacon sided with Peter on this point, saying that the underlying hardware
behaved a certain way, and the kernel’s current behavior mirrored that way.
He remarked, “the majority of developers are writing code with the underlying
hardware in mind and so allowing behaviours in the memory model which are
counter to how a real machine operates is likely to make things more confusing,
rather than simplifying them!”

Still, there were some developers who supported Andrea’s patch. Alan Stern, in
particular, felt that it made sense to fix bugs when they were found, but that it also
made sense to include a comment in the code, explaining the default behavior and the
rationale behind the fix, even while acknowledging the bug never could be triggered.

But, Andrea wasn’t interested in forcing his patch through the outstretched hands of
objecting developers. He was happy enough to back down, having made his point.

It was actually Paul McKenney, who had initially favored Andrea’s patch and had
considered sending it up to Linus Torvalds for inclusion in the kernel, who identified
some of the deeper and more disturbing issues surrounding this whole debate.
Apparently, it cuts to the core of the way kernel code is actually compiled into
machine language. Paul said:

We had some debates about this sort of thing at the C++ Standards Committee
meeting last week.

Pointer provenance and concurrent algorithms, though for once not affecting RCU! We
might actually be on the road to a fix that preserves the relevant optimizations while
still allowing most (if not all) existing concurrent C/C++ code to continue working
correctly. (The current thought is that loads and stores involving inline assembly, C/C++
atomics, or volatile get their provenance stripped. There may need to be some other
mechanisms for plain C-language loads and stores in some cases as well.)

https://www.linuxjournal.com

70 | May 2019 | https://www.linuxjournal.com

diff -u

But if you know of any code in the Linux kernel that needs to compare pointers, one of
which might be in the process of being freed, please do point me at it. I thought that
the smp_call_function() code fit, but it avoids the problem because only the sending
CPU is allowed to push onto the stack of pending smp_call_function() invocations.

That same concurrent linked stack pattern using cmpxchg() to atomically push
and xchg() to atomically pop the full list -would- have this problem. The old
pointer passed to cmpxchg() might reference an object that was freed between
the time that the old pointer was loaded and the time that the cmpxchg()
executed. One way to avoid this is to do the push operation in an RCU
read-side critical section and use kfree_rcu() instead of kfree(). Of course,
code in the idle loop or that might run on offline CPUs cannot use RCU, plus
some data structures are not happy with kfree_rcu() delays, so...

In other words, the issue of how the C compiler should treat pointers depends to
some extent on whether they are pointers at all. There’s nothing about a pointer
that distinguishes it from any other number, except that the compiler knows it’s a
pointer and can therefore do certain things with it that wouldn’t make sense in other
contexts. It’s this issue of the origins of a number—that is, their provenance—that
the standards committee was trying to resolve. The reason any of this is useful and
relevant is that the compiler can only optimize code to be faster and more efficient if
it can understand what’s happening and what’s going to happen.

Peter poked around online until he found a paper describing the situation in detail.

It horrified him. His conclusion was, “that’s all massive bong-hits. That’s utterly insane.
Even the proposed semantics are crazy.”

Paul did not dissent from that view, though obviously more efficient code is better
than less efficient code, and the compiler should go to whatever extremes it can
manage to achieve it.

Paul said that none of this was new. In fact, it all dated back 20 years and more to the

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf
https://www.linuxjournal.com

71 | May 2019 | https://www.linuxjournal.com

diff -u

relatively early days of multithreaded operation. There were, Paul said, a variety of
approaches, and he said he hoped to be able to show the kernel folks some of what
the GCC folks were thinking on the matter to get feedback and suggestions.

Peter still was a bit freaked out by the situation. In particular, he was concerned about
whether the compiler could produce reliable code at all. He remarked, “at the very
least we should get this fixed and compile a kernel with the fixed compiler to see what
(if anything) changes in the generated code and analyze the changes (if any) to make
sure we were ok (or not).”

The GNU C compiler is definitely filled with insanity. The whole question of how to
convert C code into the best possible machine code is one that can never fully be
answered—and in fact, the question continually changes as new CPUs come out on
the market. Not to mention that the compiler also has to work around processor-
specific security flaws like the ones plaguing Intel chips in recent years.

Add to this the fact that GCC needs to produce good code not just for the Linux
kernel, but for any coding project that someone might dream up. So GCC has to
remain both highly specialized and highly generalized at the same time. It makes
perfect sense that its dark innards would be dark and innardly.

CGroup Interactions
CGroups are under constant development, partly because they form the core of many
commercial services these days. An amazing thing about this is that they remain an
unfinished project. Isolating and apportioning system elements is an ongoing effort,
with many pieces still to do. And because of security concerns, it never may be
possible to present a virtual system as a fully independent system. There always may
be compromises that have to be made.

Recently, Andrey Ryabinin tried to fix what he felt was a problem with how CGroups
dealt with low-memory situations. In the current kernel, low-memory situations would
cause Linux to recuperate memory from all CGroups equally. But instead of being
fair, this would penalize any CGroup that used memory efficiently and reward those

https://www.linuxjournal.com

72 | May 2019 | https://www.linuxjournal.com

diff -u

CGroups that allocated more memory than they needed.

Andrey’s solution to this was to have Linux recuperate unused memory from CGroups
that had it, before recuperating any from those that were in heavy use. This would
seem to be even less fair than the original behavior, because only certain CGroups
would be targeted and not others.

Andrey’s idea garnered support from folks like Rik van Riel. But not everyone was so
enthralled. Roman Gushchin, for example, pointed out that the distinction between
active and unused memory was not as clear as Andrey made it out to be. The two
of them debated this issue quite a bit, because the whole issue of fair treatment
hangs in the balance. If Andrey’s whole point is to prevent CGroups from “gaming the
system” to ensure more memory for themselves, then the proper approach to low-
memory conditions depends on being able to identify clearly which CGroups should
be targeted for reclamation and which should be left alone.

At the same time, the situation could be seen as a security concern, with an absolute
need to protect independent CGroups from each other. If so, something like Andrey’s
patch would be necessary, and many more security-minded developers would start to
take an interest in getting the precise details exactly right.

Note: if you’re mentioned in this article and want to send a response, please send
a message with your response text to ljeditor@linuxjournal.com and we’ll run
it in the next Letters section and post it on the website as an addendum to the
original article. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

THE LINUX KERNEL OPEN SOURCE AND COMMUNITY MANAGEMENT USER
EXPERIENCE USER INTERFACES AND OPEN SOURCE DESIGN OPEN SOURCE
GRAPHICS AND MULTIMEDIA FREE SOFTWARE LICENSING TRADEMARKS AND
PATENTS OPEN SOURCE IN GOVERNMENT AND CIVICS EMBEDDED LINUX AND
OPEN SOURCE ON MOBILE DEVICES OPEN HARDWARE OPEN SOURCE
PROGRAMMING LANGUAGES PRIVACY AND ANONYMITY ONLINE ENCRYPTION
AND SECURITY APPLICATION DEVELOPMENT BIG DATA STREAMING EVENT
PROCESSING REACTIVE PROGRAMMING LINUX AND OPEN SOURCE FOR
BEGINNERS WEB DEVELOPMENT OPEN SOURCE MARKETING AND OUTREACH
LINUX PERFORMANCE TUNING OPEN SOURCE IN HEALTHCARE AND MEDICINE
ROBOTICS AND DRONES DATA JOURNALISMOPEN ACCESS PUBLISHING OPEN
SOURCE IN THE CLASSROOM ELEMENTARY THROUGH HIGHER EDUCATION OPEN
DATA AND OPEN CULTURETHE LINUX KERNEL OPEN SOURCE AND COMMUNITY
MANAGEMENT USER EXPERIENCE USER INTERFACES AND OPEN SOURCE DESIGN
OPEN SOURCE GRAPHICS AND MULTIMEDIA FREE SOFTWARE LICENSING
TRADEMARKS AND PATENTS OPEN SOURCE IN GOVERNMENT AND CIVICS
EMBEDDED LINUX AND OPEN SOURCE ON MOBILE DEVICES OPEN HARDWARE
OPEN SOURCE PROGRAMMING LANGUAGES PRIVACY AND ANONYMITY ONLINE
ENCRYPTION AND SECURITY APPLICATION DEVELOPMENT BIG DATA STREAMING
EVENT PROCESSING REACTIVE PROGRAMMING LINUX AND OPEN SOURCE FOR
BEGINNERS WEB DEVELOPMENT OPEN SOURCE MARKETING AND OUTREACH
LINUX PERFORMANCE TUNINGOPEN SOURCE IN HEALTHCARE AND MEDICINE
ROBOTICS AND DRONESDATA JOURNALISM OPEN ACCESS PUBLISHING OPEN
SOURCE IN THE CLASSROOM ELEMENTARY THROUGH HIGHER EDUCATIONOPEN
DATA AND OPEN CULTURE THE LINUX KERNEL OPEN SOURCE AND COMMUNITY
MANAGEMENT USER EXPERIENCE USER INTERFACES AND OPEN SOURCE DESIGN
OPEN SOURCE GRAPHICS AND MULTIMEDIA FREE SOFTWARE LICENSING
TRADEMARKS AND PATENTS OPEN SOURCE IN GOVERNMENT AND CIVICS
EMBEDDED LINUX AND OPEN SOURCE ON MOBILE DEVICES OPEN HARDWARE
OPEN SOURCE PROGRAMMING LANGUAGES PRIVACY AND ANONYMITY ONLINE
ENCRYPTION AND SECURITY APPLICATION DEVELOPMENT BIG DATA STREAMING
EVENT PROCESSING REACTIVE PROGRAMMING LINUX AND OPEN SOURCE FOR
BEGINNERS WEB DEVELOPMENT OPEN SOURCE MARKETING AND OUTREACH
LINUX PERFORMANCE TUNINGOPEN SOURCE IN HEALTHCARE AND MEDICINE
ROBOTICS AND DRONES DATA JOURNALISM OPEN ACCESS PUBLISHING OPEN
SOURCE IN THE CLASSROOM ELEMENTARY THROUGH HIGHER EDUCATIONOPEN
DATA AND OPEN CULTURETHE LINUX KERNEL OPEN SOURCE AND COMMUNITY
MANAGEMENT USER EXPERIENCE USER INTERFACES AND OPEN SOURCE DESIGN
OPEN SOURCE GRAPHICS AND MULTIMEDIA FREE SOFTWARE LICENSING
TRADEMARKS AND PATENTS OPEN SOURCE IN GOVERNMENT AND CIVICS
EMBEDDED LINUX AND OPEN SOURCE ON MOBILE DEVICESJOURNALISM OPEN
ACCESS PUBLISHING OPEN SOURCE IN THE CLASSROOM ELEMENTARY
THROUGH HIGHER EDUCATIONOPEN DATA AND OPEN CULTURETHE LINUX

Irving Convention Center
texaslinuxfest.org

May 31st - June 1st

2019T
E
X
A

S
 L

INUX
 F

E
S
T

 Irving, T
X

http://texaslinuxfest.org

74 | May 2019 | https://www.linuxjournal.com

DEEP DIVE
THE KERNEL

https://www.linuxjournal.com

DEEP
DIVE

75 | May 2019 | https://www.linuxjournal.com

What Does It Take
to Make a Kernel?
The kernel this. The kernel that. People often refer to one operating
system’s kernel or another without truly knowing what it does or
how it works or what it takes to make one. What does it take to
write a custom (and non-Linux) kernel?

By Petros Koutoupis

So, what am I going to do here? In June 2018, I wrote a guide to build a
complete Linux distribution from source packages, and in January 2019, I
expanded on that guide by adding more packages to the original guide. Now
it’s time to dive deeper into the custom operating system topic. This article
describes how to write your very own kernel from scratch and then boot up into
it. Sounds pretty straightforward, right? Now, don’t get too excited here. This
kernel won’t do much of anything. It’ll print a few messages onto the screen and
then halt the CPU. Sure, you can build on top of it and create something more,
but that is not the purpose of this article. My main goal is to provide you, the
reader, with a deep understanding of how a kernel is written.

Once upon a time, in an era long ago, embedded Linux was not really a thing. I
know that sounds a bit crazy, but it’s true! If you worked with a microcontroller,
you were given (from the vendor) a specification, a design sheet, a manual of
all its registers and nothing more. Translation: you had to write your own
operating system (kernel included) from scratch. Although this guide assumes
the standard generic 32-bit x86 architecture, a lot of it reflects what had to be
done back in the day.

https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/build-custom-minimal-linux-distribution-source-part-ii
https://www.linuxjournal.com

The exercises below require that you install a few packages in your preferred Linux
distribution. For instance, on an Ubuntu machine, you will need the following:

• binutils
• gcc
• grub-common
• make
• nasm
• xorriso

An Extreme Crash Course into the Assembly Language
Note: I’m going to simplify things by pretending to work with a not-so-complex
8-bit microprocessor. This doesn’t reflect the modern (and possibly past)
designs of any commercial processor.

When the designers of a microprocessor create a new chip, they will write
some very specialized microcode for it. That microcode will contain defined
operations that are accessed via operation codes or opcodes. These defined
opcodes contain instructions (for the microprocessor) to add, subtract, move
values and addresses and more. The processor will read those opcodes as part
of a larger command format. This format will consist of fields that hold a series
of binary numbers—that is, 0s and 1s. Remember, this processor understands
only high (the 1s) and low (the 0s) signals, and when those signals (as part of
an instruction) are fed to it in the proper sequence, the processor will parse/
interpret the instruction and then execute it.

Now, what exactly is assembly language? It’s as close to machine code as you can
get when programming a microprocessor. It is human-readable code based on
the machine’s supported instruction set and not just a series of binary numbers. I
guess you could memorize all the binary numbers (in their proper sequence) for
every instruction, but it wouldn’t make much sense, especially if you can simplify
code writing with more human-readable commands.

DEEP
DIVE

76 | May 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

77 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

This make-believe and completely unrealistic processor supports only four
instructions of which the ADD instruction maps to an opcode of 00 in binary code,
and SUB (or subtract) maps to an opcode of 01 in binary. You’ll be accessing four
total CPU memory registers: A or 00, B or 01, C or 10 and D or 11.

Using the above command structure, your compiled code will send the following
instruction:

ADD A, B, C

Or, “add the contents of A and B and store them into register C” in the following
binary machine language format:

00000110

Let’s say you want to subtract A from C and store it in the B register. The human-
readable code would look like the following:

SUB C, A, D

And, it will translate to the following machine code for the processor’s microcode to
process:

01100011

As you would expect, the more advanced the chip (16-bit, 32-bit, 64-bit), the more

Figure 1. A Command Structure for the Made-Up Processor

https://www.linuxjournal.com

78 | May 2019 | https://www.linuxjournal.com

instructions and larger address spaces are supported.

The Boot Code
The assembler I’m using in this tutorial is called NASM. The open-source NASM, or the
Net-Wide Assembler, will assemble the assembly code into a file format called object
code. The object file generated is an intermediate step to produce the executable
binary or program. The reason for this intermediate step is that a single large source
code file may end up being cut up into smaller source code files to make them more
manageable in both size and complexity. For instance, when you compile the C code,
you’ll instruct the C compiler to produce only an object file. All object code (created
from your ASM and C files) will form bits and pieces of your kernel. To finalize the
compilation, you’ll use a linker to take all necessary object files, combine them, and
then produce the program.

The following code should be written to and saved in a file named boot.asm. You
should store the file in the dedicated working directory for the project.

boot.asm

bits 32

section .multiboot ;according to multiboot spec
 dd 0x1BADB002 ;set magic number for
 ;bootloader
 dd 0x0 ;set flags
 dd - (0x1BADB002 + 0x0) ;set checksum

section .text
global start
extern main ;defined in the C file

start:
 cli ;block interrupts

DEEP
DIVE

https://www.linuxjournal.com

79 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 mov esp, stack_space ;set stack pointer
 call main
 hlt ;halt the CPU

section .bss
resb 8192 ;8KB for stack
stack_space:

So, this looks like a bunch of nonsensical gibberish, right? It isn’t. Again, this
is supposed to be human-readable code. For instance, under the multiboot
section, and in the proper order of the multiboot specification (refer to
the section labeled “References” below), you’re defining three double words
variables. Wait, what? What is a double word? Well, let’s take a step back. The
assembly DD pseudo-instruction translates to Define Double (word), which on
an x86 32-bit system is 4 bytes (32-bits). A DW or Define Word is 2 bytes (or 16
bits), and moving even further backward, a DB or Define Byte is 8-bits. Think of
it as your integers, short and long in your high-level coding languages.

Note: pseudo-instructions are not real x86 machine instruction. They are special
instructions supported by the assembler and for the assembler to help facilitate
memory initialization and space reservation.

Below the multiboot section, you have a section labeled text, which is shortly
followed by a function labeled start. This start function will set up the
environment for your main kernel code and then execute that kernel code. It
starts with a cli. The CLI command, or Clear Interrupts Flag, clears the IF flag in
the EFLAGS register. The following line moves the empty stack_space function
into the Stack Pointer. The Stack Pointer is small register on the microprocessor
that contains the address of your program’s last request from a Last-In-First-Out
(LIFO) data buffer referred to as a Stack. The example assembly program will
call the main function defined in your C file (see below) and then halt the CPU.
If you look above, this is telling the assembler via the extern main line that the
code for this function exists outside this file.

https://www.linuxjournal.com

80 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

The Kernel’s Main Function
So, you wrote your boot code, and your boot code knows that there is an external
main function it needs to load into, but you don’t have an external main function—at
least, not yet. Create a file in the same working directory, and name it kernel.c. The
file’s contents should be the following:

kernel.c

#define VGA_ADDRESS 0xB8000 /* video memory begins here. */

/* VGA provides support for 16 colors */
#define BLACK 0
#define GREEN 2
#define RED 4
#define YELLOW 14
#define WHITE_COLOR 15

unsigned short *terminal_buffer;
unsigned int vga_index;

void clear_screen(void)
{
 int index = 0;
 /* there are 25 lines each of 80 columns;
 each element takes 2 bytes */
 while (index < 80 * 25 * 2) {
 terminal_buffer[index] = ' ';
 index += 2;
 }
}

void print_string(char *str, unsigned char color)
{

https://www.linuxjournal.com

81 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 int index = 0;
 while (str[index]) {
 terminal_buffer[vga_index] = (unsigned
 ↪lsshort)str[index]|(unsigned short)color << 8;
 index++;
 vga_index++;
 }
}

void main(void)
{
 /* TODO: Add random f-word here */
 terminal_buffer = (unsigned short *)VGA_ADDRESS;
 vga_index = 0;

 clear_screen();
 print_string("Hello from Linux Journal!", YELLOW);
 vga_index = 80; /* next line */
 print_string("Goodbye from Linux Journal!", RED);
 return;
}

If you scroll all the way to the bottom of the C file and look inside the main function,
you’ll notice it does the following:

• Assigns the start address of your video memory to the string buffer.

• Resets your internal location marker for where you are in that string buffer.

• Clears the terminal screen.

• Prints a message (in one color).

https://www.linuxjournal.com

82 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

• Sets your internal location marker for the next line.

• Prints another message (in another color).

• And, returns back to the boot code (where, if you recall, it halts the CPU).

In the current x86 architecture, your video memory is running in protected mode and
starts at memory address 0xB8000. So, everything video-related will start from this
address space and will support up to 25 lines with 80 ASCII characters per line. Also,
the video mode in which this is running supports up to 16 colors (of which I added a
few to play with at the top of the C file).

Following these video definitions, a global array is defined to map to the video
memory and an index to know where you are in that video memory. For instance, the
index starts at 0, and if you want to move to the first character space of the next line
on the screen, you’ll need to increase that index to 80, and so on.

As the names of the following two functions imply, the first clears the entire screen
with an ASCII empty character, and the second writes whatever string you pass into
it. Note that the expected input for the video memory buffer is 2 bytes per character. The
first of the two is the character you want to output, while the second is the color. This is
made more obvious in the print_string() function, where the color code is actually
passed into the function.

Anyway, following those two functions is the main routine with its actions
already mentioned above. Remember, this is a learning exercise, and this kernel
will not do anything special other than print a few things to the screen. And aside
from adding real functions, this kernel code is definitely missing some profanity.
(You can add that later.)

In the real world...

Every kernel will have a main() routine (spawned by a bootloader), and within that

https://www.linuxjournal.com

83 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

main routine, all the proper system initialization will take place. In a real and functional
kernel, the main routine eventually will drop into an infinite while() loop where all
future kernel functions take place or spawn a thread accomplishing pretty much the
same thing. Linux does this as well. The bootloader will call the start_kernel()
routine found in init/main.c, and in turn, that routine will spawn an init thread.

Linking It All Together
As mentioned previously, the linker serves a very important purpose. It is what will
take all of the random object files, put them together and provide a bootable single
binary file (your kernel).

linker.ld

OUTPUT_FORMAT(elf32-i386)
ENTRY(start)
SECTIONS
 {
 . = 1M;
 .text BLOCK(4K) : ALIGN(4K)
 {
 *(.multiboot)
 *(.text)
 }
 .data : { *(.data) }
 .bss : { *(.bss) }
 }

Let’s set the output format to be a 32-bit x86 executable. The entry point into this
binary is the start function from your assembly file, which eventually loads the main
program from the C file. Further down, this essentially is telling the linker how to
merge your object code and at what offset. In the linker file, you explicitly specify the
address in which to load your kernel binary. In this case, it is at 1M or a 1 megabyte
offset. This is where the main kernel code is expected to be, and the bootloader will

https://www.linuxjournal.com

84 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

find it here when it is time to load it.

Booting the Kernel
The most exciting part of the effort is that you can piggyback off the very popular
GRand Unified Bootloader (GRUB) to load your kernel. In order to do this, you need
to create a grub.cfg file. For the moment, write the following contents into a file of
that name, and save it into your current working directory. When the time comes to
build your ISO image, you’ll install this file into its appropriate directory path.

grub.cfg

set timeout=3

menuentry "The Linux Journal Kernel" {
 multiboot /boot/kernel
}

Compilation Time
Build the boot.asm into an object file:

$ nasm -f elf32 boot.asm -o boot.o

Build the kernel.c into an object file:

$ gcc -m32 -c kernel.c -o kernel.o

Link both object files and create the final executable program (that is, your kernel):

$ ld -m elf_i386 -T linker.ld -o kernel boot.o kernel.o

Now, you should have a compiled file in the same working directory labeled kernel:

$ ls

https://www.linuxjournal.com

85 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

boot.asm boot.o grub.cfg kernel kernel.c kernel.o
 ↪linker.ld

This file is your kernel. You’ll be booting into that kernel shortly.

Building a Bootable ISO Image
Create a staging environment with the following directory path (from your current
working directory path):

$ mkdir -p iso/boot/grub

Let’s double-check that the kernel is a multiboot file type (no output is expected with
a return code of 0):

$ grub-file --is-x86-multiboot kernel

Now, copy the kernel into your iso/boot directory:

$ cp kernel iso/boot/

And, copy your grub.cfg into the iso/boot/grub directory:

$ cp grub.cfg iso/boot/grub/

Make the final ISO image pointing to your iso subdirectory in your current working
directory path:

$ grub-mkrescue -o my-kernel.iso iso/
xorriso 1.4.8 : RockRidge filesystem manipulator,
 ↪libburnia project.

Drive current: -outdev 'stdio:my-kernel.iso'
Media current: stdio file, overwriteable

https://www.linuxjournal.com

86 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Media status : is blank
Media summary: 0 sessions, 0 data blocks, 0 data, 10.3g free
Added to ISO image: directory '/'='/tmp/grub.fqt0G4'
xorriso : UPDATE : 284 files added in 1 seconds
Added to ISO image: directory
 ↪'/'='/home/petros/devel/misc/kernel/iso'
xorriso : UPDATE : 288 files added in 1 seconds
xorriso : NOTE : Copying to System Area: 512 bytes from file
 ↪'/usr/lib/grub/i386-pc/boot_hybrid.img'
ISO image produced: 2453 sectors
Written to medium : 2453 sectors at LBA 0
Writing to 'stdio:my-kernel.iso' completed successfully.

Additional Notes
Say you want to expand on this tutorial by automating the entire process of building
the final image. The best way to accomplish this is by throwing a Makefile into the
project’s root directory. Here’s an example of what that Makefile would look like:

Makefile

CP := cp
RM := rm -rf
MKDIR := mkdir -pv

BIN = kernel
CFG = grub.cfg
ISO_PATH := iso
BOOT_PATH := $(ISO_PATH)/boot
GRUB_PATH := $(BOOT_PATH)/grub

.PHONY: all
all: bootloader kernel linker iso
 @echo Make has completed.

https://www.linuxjournal.com

87 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

bootloader: boot.asm
 nasm -f elf32 boot.asm -o boot.o

kernel: kernel.c
 gcc -m32 -c kernel.c -o kernel.o

linker: linker.ld boot.o kernel.o
 ld -m elf_i386 -T linker.ld -o kernel boot.o kernel.o

iso: kernel
 $(MKDIR) $(GRUB_PATH)
 $(CP) $(BIN) $(BOOT_PATH)
 $(CP) $(CFG) $(GRUB_PATH)
 grub-file --is-x86-multiboot $(BOOT_PATH)/$(BIN)
 grub-mkrescue -o my-kernel.iso $(ISO_PATH)

.PHONY: clean
clean:
 $(RM) *.o $(BIN) *iso

To build (including the final ISO image), type:

$ make

To clean all of the build objects, type:

$ make clean

The Moment of Truth
You now have an ISO image, and if you did everything correctly, you should be able
to boot into it from a CD on a physical machine or in a virtual machine (such as
VirtualBox or QEMU). Start the virtual machine after configuring its profile to boot

https://www.linuxjournal.com

88 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 2. The GRUB Bootloader Counting Down to Load the Kernel

Figure 3. The Linux Journal kernel booted. Yes, it does only this.

https://www.linuxjournal.com

89 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

from the ISO. You’ll immediately be greeted by GRUB (Figure 2).

After the timeout elapses, the kernel will boot.

Summary
You did it! You wrote your very own kernel from scratch. Again, it doesn’t do much of
anything, but you definitely can expand upon this. Now, if you will excuse me, I need
to post a message to the USENET newsgroup, comp.os.minix, about how I developed a
new kernel, and that it won’t be big and professional like GNU. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its
Lustre High Performance File System division. He is also the creator and maintainer of the RapidDisk Project.
Petros has worked in the data storage industry for well over a decade and has helped pioneer the many
technologies unleashed in the wild today.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• “DIY: Build a Custom Minimal Linux Distribution from Source” by Petros

Koutoupis, LJ, June 2018

• “Build a Custom Minimal Linux Distribution from Source, Part II” by
Petros Koutoupis, LJ, January 2019

• The Required Fields for the Multiboot Header

• The Computer Display Common Text Modes

• The Official NASM Project Page

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source
https://www.linuxjournal.com/content/build-custom-minimal-linux-distribution-source-part-ii
https://www.linuxjournal.com/content/build-custom-minimal-linux-distribution-source-part-ii
https://www.gnu.org/software/grub/manual/multiboot/html_node/Header-magic-fields.html
https://en.wikipedia.org/wiki/Text_mode#PC_common_text_modes
https://www.nasm.us/
https://www.linuxjournal.com

DEEP
DIVE

Memory Footprint
of Processes
The amount of memory your system needs depends on the memory
requirements of the programs you run. Do you want to know how
to figure that out? It’s not as simple as adding up the amount of
memory used by each process individually, because some of that
memory can be shared. Read on to learn the details.

By Frank Edwards

System administrators want to understand the applications that run on their systems.
You can’t tune a machine unless you know what the machine is doing! It’s fairly easy to
monitor a machine’s physical resources: CPU (mpstat, top), memory (vmstat), disk
IO (iotop, blktrace, blkiomon) and network bandwidth (ip, nettop).

Logical resources are just as important—if not more important—yet the tools to
monitor them either don’t exist or aren’t exactly “user-friendly”. For example, the
ps command can report the RSS (resident set size) for a process. But how much
of that is shared library and how much is application? Or executable code vs. data
space? Those are questions that must be answered if a system administrator wants to
calculate an application’s memory footprint.

To answer these questions, and others, I describe extracting information from
the /proc filesystem. First, let’s look at terminology relevant to Linux memory
management. If you want an exhaustive look at memory management on Linux,
consider Mel Gorman’s seminal work Understanding the Linux Virtual Memory Manager.
His book is an oldie but goodie; the hardware he describes hasn’t changed much over

90 | May 2019 | https://www.linuxjournal.com

https://www.kernel.org/doc/gorman

DEEP
DIVE

91 | May 2019 | https://www.linuxjournal.com

the intervening years, and the changes that have occurred have been minor. This
means the concepts he describes and much of the code used to implement those
concepts is still spot-on.

Before going into the nuts and bolts of the answers to those questions, you first need
to understand the context in which those questions are answered. So let’s start with a
high-level overview.

Linux Memory Usage
Your computer system has some amount of physical RAM installed. RAM is needed
to run all software, because the CPU will fetch instructions and data from RAM and
nowhere else. When a system doesn’t have enough RAM to satisfy all processes, some
of the process memory is written to an external storage device and that RAM then
can be freed for use by other processes. This is called either swapping, when the RAM
being freed is anonymous memory (meaning that it isn’t associated with file data, such
as shared memory or a process’s heap space), or paging (which applies to things like
memory-mapped files).

(By the way, a process is simply an application that’s currently running. While the
application is executing, it has a current directory, user and group credentials, a list of
open files and network connections, and so on.)

Some types of memory don’t need to be written out before they can be freed and
reused. For example, the executable code of an application is stored in memory and
protected as read-only. Since it can never be changed, when Linux wants to use that
memory for something else, it just takes it! If the application ever needs that memory
back again, Linux can reload it from the original application executable on disk. Also,
since this memory is read-only, it can be used by multiple processes at the same time.
And, this is where the confusion comes in regarding calculating how much memory a
process is using—what if some of that memory is being shared with other processes?
How do you account for it?

Before getting to that, I need to define a few other terms. The first is pinned memory.

https://www.linuxjournal.com

92 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Most memory is pageable, meaning that it can be swapped or paged out when the
system is running low on RAM. But pinned memory is locked in place and can’t be
reused. This is obviously good for performance—the memory never can be taken
away, so you never have to wait for it to be brought back in. The problem is that such
memory can never be reused, even if the system is running critically low on RAM.
Pinned memory reduces the system’s flexibility when it comes to managing memory,
and no one likes to be boxed into a corner.

Simple Example
I made reference above to read-only memory, memory that is shared, memory used
for heap space, and so on. Below is some sample output that shows how memory is
being used by my Bash shell (I want to emphasize that this output has been trimmed
to fit into the allotted space, but all relevant fields are still represented. You can run
the two commands you see on your own system and look at real data, if you wish.
You’ll see full pathnames instead of “...” as shown below, for example):

fedwards@local:~$ cd /proc/$$
fedwards@local:/proc/3867$ cat maps
00400000-004f4000 r-xp 00000000 08:01 260108 /bin/bash
006f3000-006f4000 r--p 000f3000 08:01 260108 /bin/bash
006f4000-006fd000 rw-p 000f4000 08:01 260108 /bin/bash
006fd000-00703000 rw-p 00000000 00:00 0
00f52000-01117000 rw-p 00000000 00:00 0 [heap]
f4715000-f4720000 r-xp 00000000 08:01 267196 /.../libnss_files-2.23.so
f4720000-f491f000 ---p 0000b000 08:01 267196 /.../libnss_files-2.23.so
f491f000-f4920000 r--p 0000a000 08:01 267196 /.../libnss_files-2.23.so
f4920000-f4921000 rw-p 0000b000 08:01 267196 /.../libnss_files-2.23.so
f4921000-f4927000 rw-p 00000000 00:00 0
f4f55000-f5914000 r--p 00000000 08:01 139223 /.../locale-archive
f6329000-f6330000 r--s 00000000 08:01 396945 /.../gconv-modules.cache
f6332000-f6333000 rw-p 00000000 00:00 0
fd827000-fd848000 rw-p 00000000 00:00 0 [stack]
fd891000-fd894000 r--p 00000000 00:00 0 [vvar]

https://www.linuxjournal.com

93 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

fd894000-fd896000 r-xp 00000000 00:00 0 [vdso]
ff600000-ff601000 r-xp 00000000 00:00 0 [vsyscall]
fedwards@local:/proc/3867$

Each line of output represents one vm_area. A vm_area is a data structure inside the
Linux kernel that keeps track of how one region of virtual memory is being used inside
a process. The sample output has /bin/bash on the first three lines, because Linux has
created three ranges of virtual memory that refer to the executable program. The first
region has permissions r-xp, because it is executable code (r = read, x = execute and
p = private; the dash means write permission is turned off). The second region refers
to read-only data within the application and has permissions r--p (the two dashes
represent write and execute permission).

The third region represents variables that have been given initial values in the
application’s source code, so it must be loaded from the executable, but it could
be changed during runtime (hence the permissions rw-p that shows only execute
is turned off). These regions can be any size, but they are made of up pages, which
are each 4K on Linux. The term page means the smallest allocatable unit of virtual
memory. (In technical documentation, you’ll see two other terms: frame and slot.
Frames and slots are the same size as pages, but frames refer to physical memory and
slots refer to swap space.)

You know from my previous discussion that read-only regions are shared with other
processes, so why does “p” show up in the permissions for the first region? Shouldn’t
it be a shared region? You have a good eye to spot that! Yes, it should. And in fact, it
is shared. The reason it shows up as “p” here is because there are actually 14 different
permissions and room only for four letters, so some condensing had to be done.
The “p” means private, because while the memory is currently marked read-only, the
application could change that permission and make it read-write, and if it did make
that change and then modified the memory, you would not want other processes
to see those changes! That would be similar to one process changing directory, and
every other process on the system changing at the same time! Oops! So the letter
“p” that marks the region as private really means copy-on-write. All of the memory

https://www.linuxjournal.com

94 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

starts out being shared among all processes using that region, but if any part of it
is modified in the future, that one tiny piece is copied into another part of RAM so
that the change applies only to the one process that attempted the write. In essence,
it’s private, even though 99% of the time, the memory in that region will be shared
with other processes. Such copying applies on a page-by-page basis, not the entire
vm_area. Now you can begin to see the difficulty in calculating how much memory a
process actually consumes.

But while I’m on this topic, there’s a region in the list that has an “s” in the permission
field. That region is a memory-mapped file, meaning that the data blocks on disk are
mapped to the virtual memory addresses shown in the listing. Any reference the
process makes to the memory addresses are translated automatically into reads and
writes to the corresponding data blocks on disk. The memory used by this region is
actually shared by all processes that map the file into memory, meaning no duplicated
memory for file access by those processes.

Just because a region represents some given size of virtual memory does not necessarily
mean that there are physical frames of RAM for every virtual page. In fact, this is often
the case. Imagine an application that allocates 100MB of memory. Should the operating
system actually allocate 100MB right then? UNIX systems do not—they allocate a region
of virtual memory like those above, but no physical RAM. As the process tries to access
those virtual addresses, page faults will be generated, and the operating system will
allocate the memory at that time. Deferring memory allocation until the last possible
moment is one way that Linux optimizes the use of memory, but it complicates the task
in trying to determine how much memory an application is using.

Recap So Far
A process’s address space is broken up into regions called vm_areas. These vm_areas
are unique to each process, but the frames of memory referred to by the pages
within the vm_area might be shared across processes. If the memory is read-only
(like executable code), all processes share the frame equally. Any attempt to write to
virtual pages that are read-only triggers a page fault that is converted into a SIGSEGV
and the process is killed. (You may have seen the message pop up on your terminal

https://www.linuxjournal.com

95 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

screen, “Segmentation fault.” That means the process was killed by SIGSEGV.)

Memory that is read/write also can be shared, such as shared memory. If multiple
processes can write to the frames of the vm_area equally, some form of
synchronization inside the application will be necessary, or multiple processes could
write at the same time, possibly corrupting the contents of that shared memory.
(Most applications will use some kind of mutex lock for this, but synchronization and
locking is outside the scope of this article.)

Adding Up the Memory Actually Used
So, determining how much memory a process consumes is difficult. You could add
up the space allocated to the vm_areas, but that’s virtual memory, not physical; large
portions of that space could be unused or swapped out. This number is not a true
representation of the amount of memory being used by the process.

You could add up only the frames that are used by this process and not shared. (This
information is available in /proc/pid/smaps.) You might call this the “USS” (Unique Set
Size), as it defines how much memory will be freed when an application terminates
(shared libraries typically stay in RAM even when no processes are currently using
them as a performance optimization for when they are needed again). But this isn’t
the true memory cost of a process either, as the process likely uses one or more
shared libraries. For example, if an application is executed and it uses a shared library
that isn’t already in memory, that library must be loaded—some part of that library
should be allocated against the new process, right?

The ps command reports the “RSS” (Resident Set Size), which includes all frames
used by the process, regardless of whether they’re shared. Unfortunately, this number
is going to inflate the memory size when all processes are summed up—adding up this
number for all processes running on the system will count all shared libraries multiple
times, greatly inflating the actual memory requirement.

The /proc/pid/smaps file includes yet another memory category, PSS (Proportional Set
Size). This is the amount of unique memory just for one process (the USS), plus a

https://www.linuxjournal.com

96 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

proportion of the memory that is shared by other running processes. For example, let’s
assume the USS for a process is 2MB and it uses another 4MB of shared libraries, but
those shared libraries are used by three other processes. Since there are four processes
using the shared libraries, they should each only be accounted for 25% of the overall
library size. That would make the PSS of the process 2MB + (4MB / 4) = 3MB. If you now
add together the PSS values of all processes on the system, the shared library memory
will be totally accounted for, meaning the whole is equal to the sum of its parts.

It’s not perfect—when one of those processes terminates, the memory returned to
the system will be USS, and because there’s one less process using the shared libraries,
the PSS of all other processes will appear to increase! A naïve system administrator
might wonder why the memory usage on the remaining processes has suddenly
spiked, but in truth, it hasn’t. In this example, 4MB/4 becomes 4MB/3, so any process
using the shared libraries will see an adjusted PSS value that goes up by .33MB.

As the last step, I’m going to demonstrate a command that performs these calculations.

Automating the Work
The one-line command shown below will accumulate all of the PSS values for all
processes on the system:

awk '/^Pss:/ { ttl += $2 }; END { print ttl }' /proc/[0-9]*/smaps
 ↪2>/dev/null

Note that stderr is redirected to /dev/null. This is because the shell replaces the wildcard
string with a list of all filenames that match and then executes the awk command. This
means that by the time the awk command is running, some of those processes already may
have terminated. That will cause awk to print an error message about a non-existent file,
hence redirecting stderr to avoid that error. (Astute readers will note that this command
line will never factor in the memory consumed by the awk command itself!)

Many of the processes that the awk command is going to be reading will not be accessible
to an unprivileged account, so system administrators should consider using sudo to run the

https://www.linuxjournal.com

97 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

command. (Inaccessible processes will produce error messages that are then redirected to
/dev/null, thus the command will report a total of the memory used by all processes that are
accessible—in other words, those owned by the current user.)

Summary
I’ve covered a lot of ground in this article, from terminology (pages, frames, slots)
and background information on how virtual memory is organized (vm_areas), to
details on how memory usage is reported to userspace (the maps and smaps files
under /proc). I’ve barely scratched the surface of the type of information that the
Linux kernel exposes to userspace, but hopefully, this has piqued your interest enough
that you’ll explore it further. ◾

Frank Edwards has been a programmer since the days of the Zilog Z-80 in the TRS-80 computer, circa 1978. For some people,
programming is a hobby, or a job or a career—for him, it’s an obsession. He once disassembled an operating system just to see how it
worked. Most of his early life was spent in C, but he has branched out considerably since then (Java, Python, Perl, Swift and UNIX shell
being where he spends most of his time).

Resources
My favorite source for technical details is LWN.net if I’m looking for discussion and
analysis, but I frequently will go straight to the Linux source code when I’m looking
for implementation details. See “ELC: How much memory are applications really
using?” for the discussion around adding PSS to smaps, and see “Tracking actual
memory utilization” for a discussion of memory used by a process but that
belongs to the kernel (something this article doesn’t touch upon).

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://lwn.net/
https://lwn.net/Articles/230975
https://lwn.net/Articles/230975
https://lwn.net/Articles/642202
https://lwn.net/Articles/642202
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

98 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Oops! Debugging
Kernel Panics
A look into what causes kernel panics and some utilities to help gain
more information.

By Petros Koutoupis

Working in a Linux environment, how often have you seen a kernel panic? When it
happens, your system is left in a crippled state until you reboot it completely. And,
even after you get your system back into a functional state, you’re still left with the

Figure 1. A Typical Kernel Panic

https://www.linuxjournal.com

99 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

question: why? You may have no idea what happened or why it happened. Those
questions can be answered though, and the following guide will help you root out the
cause of some of the conditions that led to the original crash.

Let’s start by looking at a set of utilities known as kexec and kdump. kexec allows you
to boot into another kernel from an existing (and running) kernel, and kdump is a
kexec-based crash-dumping mechanism for Linux.

Installing the Required Packages
First and foremost, your kernel should have the following components statically built
in to its image:

CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_DEBUG_INFO=y
CONFIG_MAGIC_SYSRQ=y
CONFIG_PROC_VMCORE=y

You can find this in /boot/config-'uname -r'.

Make sure that your operating system is up to date with the latest-and-greatest
package versions:

$ sudo apt update && sudo apt upgrade

Install the following packages (I’m currently using Debian, but the same should and
will apply to Ubuntu):

$ sudo apt install gcc make binutils linux-headers-'uname -r'
 ↪kdump-tools crash 'uname -r'-dbg

Note: Package names may vary across distributions.

https://www.linuxjournal.com

100 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 2. kexec Configuration Menu

Figure 3. kdump Configuration Menu

https://www.linuxjournal.com

101 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

During the installation, you will be prompted with questions to enable kexec to
handle reboots (answer whatever you’d like, but I answered “no”; see Figure 2).

And to enable kdump to run and load at system boot, answer “yes” (Figure 3).

Configuring kdump
Open the /etc/default/kdump-tools file, and at the very top, you should see the following:

USE_KDUMP=1
#KDUMP_SYSCTL="kernel.panic_on_oops=1"

Eventually, you’ll write a custom module that will trigger an OOPS kernel condition,
and in order to have kdump gather and save the state of the system for post-mortem
analysis, you’ll need to enable your kernel to panic on this OOPS condition. In order
to do this, uncomment the line that starts with KDUMP_SYSCTL:

USE_KDUMP=1
KDUMP_SYSCTL="kernel.panic_on_oops=1"

The initial testing will require that SysRq be enabled. There are a few ways to do that,
but here I provide instructions to enable support for this feature on system reboot.
Open the /etc/sysctl.d/99-sysctl.conf file, and make sure that the following line (closer
to the bottom of the file) is uncommented:

kernel.sysrq=1

Now, open this file: /etc/default/grub.d/kdump-tools.default. You will find a single line
that looks like this:

GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT
 ↪crashkernel=384M-:128M"

Modify the section that reads crashkernel=384M-:128M to crashkernel=128M.

https://www.linuxjournal.com

102 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Now, update your GRUB boot configuration file:

$ sudo update-grub
[sudo] password for petros:
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.9.0-8-amd64
Found initrd image: /boot/initrd.img-4.9.0-8-amd64
done

And, reboot the system.

Verifying Your kdump Environment
After coming back from the reboot, dmesg will log the following:

$ sudo dmesg |grep -i crash
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-4.9.0-8-amd64
 ↪root=UUID=bd76b0fe-9d09-40a9-a0d8-a7533620f6fa ro quiet
 ↪crashkernel=128M
[0.000000] Reserving 128MB of memory at 720MB for crashkernel
 ↪(System RAM: 4095MB)
[0.000000] Kernel command line: BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64
 ↪root=UUID=bd76b0fe-9d09-40a9-a0d8-a7533620f6fa ro
 ↪quiet crashkernel=128M

While your kernel will have the following features enabled (a “1” means enabled):

$ sudo sysctl -a|grep kernel|grep -e panic_on_oops -e sysrq
kernel.panic_on_oops = 1
kernel.sysrq = 1

Your kdump service should be running:

https://www.linuxjournal.com

103 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

$ sudo systemctl status kdump-tools.service
 kdump-tools.service - Kernel crash dump capture service
 Loaded: loaded (/lib/systemd/system/kdump-tools.service;
 ↪enabled; vendor preset: enabled)
 Active: active (exited) since Tue 2019-02-26 08:13:34 CST;
 ↪1h 33min ago
 Process: 371 ExecStart=/etc/init.d/kdump-tools start
 ↪(code=exited, status=0/SUCCESS)
 Main PID: 371 (code=exited, status=0/SUCCESS)
 Tasks: 0 (limit: 4915)
 CGroup: /system.slice/kdump-tools.service

Feb 26 08:13:34 deb-panic systemd[1]: Starting Kernel crash
 ↪dump capture service...
Feb 26 08:13:34 deb-panic kdump-tools[371]: Starting
 ↪kdump-tools: loaded kdump kernel.
Feb 26 08:13:34 deb-panic kdump-tools[505]: /sbin/kexec -p
 ↪--command-line="BOOT_IMAGE=/boot/vmlinuz-4.9.0-8-amd64 root=
Feb 26 08:13:34 deb-panic kdump-tools[506]: loaded kdump kernel
Feb 26 08:13:34 deb-panic systemd[1]: Started Kernel crash dump
 ↪capture service.

Your crash kernel should be loaded (into memory and in the 128M region you defined
earlier):

$ cat /sys/kernel/kexec_crash_loaded
1

You can verify your kdump configuration further here:

$ sudo kdump-config show
DUMP_MODE: kdump
USE_KDUMP: 1

https://www.linuxjournal.com

104 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

KDUMP_SYSCTL: kernel.panic_on_oops=1
KDUMP_COREDIR: /var/crash
crashkernel addr: 0x2d000000
 /var/lib/kdump/vmlinuz: symbolic link to /boot/
↪vmlinuz-4.9.0-8-amd64
kdump initrd:
 /var/lib/kdump/initrd.img: symbolic link to /var/lib/kdump/
↪initrd.img-4.9.0-8-amd64
current state: ready to kdump

kexec command:
 /sbin/kexec -p --command-line="BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet irqpoll nr_cpus=1 nousb
 ↪systemd.unit=kdump-tools.service
 ↪ata_piix.prefer_ms_hyperv=0"
 ↪--initrd=/var/lib/kdump/initrd.img /var/lib/kdump/vmlinuz

Let’s also test it without actually running it:

$ sudo kdump-config test
USE_KDUMP: 1
KDUMP_SYSCTL: kernel.panic_on_oops=1
KDUMP_COREDIR: /var/crash
crashkernel addr: 0x2d000000
kdump kernel addr:
kdump kernel:
 /var/lib/kdump/vmlinuz: symbolic link to /boot/
↪vmlinuz-4.9.0-8-amd64
kdump initrd:
 /var/lib/kdump/initrd.img: symbolic link to
 ↪/var/lib/kdump/initrd.img-4.9.0-8-amd64
kexec command to be used:

https://www.linuxjournal.com

105 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 /sbin/kexec -p --command-line="BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet irqpoll nr_cpus=1 nousb
 ↪systemd.unit=kdump-tools.service
 ↪ata_piix.prefer_ms_hyperv=0"
 ↪--initrd=/var/lib/kdump/initrd.img /var/lib/kdump/vmlinuz

The Moment of Truth
Now that your environment is loaded to make use of kdump, you probably should test
it, and the best way to test it is by forcing a kernel crash over SysRq. Assuming your
kernel is built with SysRq support, crashing a running kernel is as simple as typing:

$ echo "c" | sudo tee -a /proc/sysrq-trigger

What should you expect? You’ll see a kernel panic/crash similar to the one shown in
Figure 1. Following this crash, the kernel loaded over kexec will collect the state of
the system, which includes everything relevant in memory, on the CPU, in dmesg, in
loaded modules and more. It then will save this valuable crash data somewhere in
/var/crash for further analysis. Once the collection of information completes, the
system will reboot automatically and will bring you back to a functional state.

What Now?
You now have your crash file, and again, it’s located in /var/crash:

$ cd /var/crash/
$ ls
201902261006 kexec_cmd
$ cd 201902261006/

Although before opening the crash file, you probably should install the kernel’s source
package:

$ sudo apt source linux-image-'uname -r'

https://www.linuxjournal.com

106 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Earlier, you installed a debug version of your Linux kernel containing the unstripped
debug symbols required for this type of debugging analysis. Now you need that kernel.
Open the kernel crash file with the crash utility:

$ sudo crash dump.201902261006 /usr/lib/debug/
↪vmlinux-4.9.0-8-amd64

Once everything loads, a summary of the panic will appear on the screen:

 KERNEL: /usr/lib/debug/vmlinux-4.9.0-8-amd64
 DUMPFILE: dump.201902261006 [PARTIAL DUMP]
 CPUS: 4
 DATE: Tue Feb 26 10:07:21 2019
 UPTIME: 00:04:09
LOAD AVERAGE: 0.00, 0.00, 0.00
 TASKS: 100
 NODENAME: deb-panic
 RELEASE: 4.9.0-8-amd64
 VERSION: #1 SMP Debian 4.9.144-3 (2019-02-02)
 MACHINE: x86_64 (2592 Mhz)
 MEMORY: 4 GB
 PANIC: "sysrq: SysRq : Trigger a crash"
 PID: 563
 COMMAND: "tee"
 TASK: ffff88e69628c080 [THREAD_INFO: ffff88e69628c080]
 CPU: 2
 STATE: TASK_RUNNING (SYSRQ)

Notice the reason for the panic: sysrq: SysRq : Trigger a crash. Also, notice
the command that led to it: tee. None of this should be a surprise since you triggered
it.

If you run a backtrace of what the kernel functions were that led to the panic, you

https://www.linuxjournal.com

107 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

should see the following (processed by CPU core no. 2):

crash> bt
PID: 563 TASK: ffff88e69628c080 CPU: 2 COMMAND: "tee"
 #0 [ffffa67440b23ba0] machine_kexec at ffffffffa0c53f68
 #1 [ffffa67440b23bf8] __crash_kexec at ffffffffa0d086d1
 #2 [ffffa67440b23cb8] crash_kexec at ffffffffa0d08738
 #3 [ffffa67440b23cd0] oops_end at ffffffffa0c298b3
 #4 [ffffa67440b23cf0] no_context at ffffffffa0c619b1
 #5 [ffffa67440b23d50] __do_page_fault at ffffffffa0c62476
 #6 [ffffa67440b23dc0] page_fault at ffffffffa121a618
 [exception RIP: sysrq_handle_crash+18]
 RIP: ffffffffa102be62 RSP: ffffa67440b23e78 RFLAGS: 00010282
 RAX: ffffffffa102be50 RBX: 0000000000000063 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffff88e69fd10648 RDI: 0000000000000063
 RBP: ffffffffa18bf320 R8: 0000000000000001 R9: 0000000000007eb8
 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000004
 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
 #7 [ffffa67440b23e78] __handle_sysrq at ffffffffa102c597
 #8 [ffffa67440b23ea0] write_sysrq_trigger at ffffffffa102c9db
 #9 [ffffa67440b23eb0] proc_reg_write at ffffffffa0e7ac00
#10 [ffffa67440b23ec8] vfs_write at ffffffffa0e0b3b0
#11 [ffffa67440b23ef8] sys_write at ffffffffa0e0c7f2
#12 [ffffa67440b23f38] do_syscall_64 at ffffffffa0c03b7d
#13 [ffffa67440b23f50] entry_SYSCALL_64_after_swapgs at ffffffffa121924e
 RIP: 00007f3952463970 RSP: 00007ffc7f3a4e58 RFLAGS: 00000246
 RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f3952463970
 RDX: 0000000000000002 RSI: 00007ffc7f3a4f60 RDI: 0000000000000003
 RBP: 00007ffc7f3a4f60 R8: 00005648f508b610 R9: 00007f3952944480
 R10: 0000000000000839 R11: 0000000000000246 R12: 0000000000000002
 R13: 0000000000000001 R14: 00005648f508b530 R15: 0000000000000002
 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b

https://www.linuxjournal.com

108 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

In your backtrace, you should notice the symbol address of what is stored in your
Return Instruction Pointer (RIP): ffffffffa102be62. Let’s take a look at this symbol
address:

crash> sym ffffffffa102be62
ffffffffa102be62 (t) sysrq_handle_crash+18 ./debian/build/
↪build_amd64_none_amd64/./drivers/tty/sysrq.c: 144

Wait a minute! The exception seems to have been triggered in line 144 of the drivers/
tty/sysrq.c file and inside the sysrq_handle_crash function. Hmm...I wonder what’s
happening in this kernel source file. (This is why I had you installed your kernel source
package moments ago.) Let’s navigate to the /usr/src directory and untar the source
package:

$ cd /usr/src
$ ls
linux_4.9.144-3.debian.tar.xz linux_4.9.144.orig.tar.xz
 ↪linux-headers-4.9.0-8-common
linux_4.9.144-3.dsc linux-headers-4.9.0-8-amd64
 ↪linux-kbuild-4.9
$ sudo tar xJf linux_4.9.144.orig.tar.xz
$ vim linux-4.9.144/drivers/tty/sysrq.c

Locate the sysrq_handle_crash function:

static void sysrq_handle_crash(int key)
{
 char *killer = NULL;

 /* we need to release the RCU read lock here,
 * otherwise we get an annoying
 * 'BUG: sleeping function called from invalid context'
 * complaint from the kernel before the panic.

https://www.linuxjournal.com

109 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 */
 rcu_read_unlock();
 panic_on_oops = 1; /* force panic */
 wmb();
 *killer = 1;
}

And more specifically, look at line 144:

*killer = 1;

It was this line that led to the page fault logged in line #6 of the backtrace:

#6 [ffffa67440b23dc0] page_fault at ffffffffa121a618

Okay. So, now you should have a basic understanding of how to debug bad kernel
code, but what happens if you want to debug your very own custom kernel modules
(for example, drivers)? I wrote a simple Linux kernel module that essentially invokes
a similar style of a kernel crash when loaded. Call it test-module.c and save it
somewhere in your home directory:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/version.h>

static int test_module_init(void)
{
 int *p = 1;
printk("%d\n", *p);
 return 0;
}
static void test_module_exit(void)
{

https://www.linuxjournal.com

110 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 return;
}

module_init(test_module_init);
module_exit(test_module_exit);

You’ll need a Makefile to compile this kernel module (save it in the same directory):

obj-m += test-module.o

all:
 $(MAKE) -C/lib/modules/$(shell uname -r)/build M=$(PWD)

Run the make command to compile the module and do not delete any of the
compilation artifacts; you’ll need those later:

$ make
make -C/lib/modules/4.9.0-8-amd64/build M=/home/petros
make[1]: Entering directory '/usr/src/
↪linux-headers-4.9.0-8-amd64'
 CC [M] /home/petros/test-module.o
/home/petros/test-module.c: In function "test_module_init":
/home/petros/test-module.c:7:11: warning: initialization makes
 ↪pointer from integer without a cast [-Wint-conversion]
 int *p = 1;
 ^
 Building modules, stage 2.
 MODPOST 1 modules
 LD [M] /home/petros/test-module.ko
make[1]: Leaving directory '/usr/src/
↪linux-headers-4.9.0-8-amd64'

Note: you may see a compilation warning. Ignore it for now. This warning will be what

https://www.linuxjournal.com

111 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

triggers your kernel crash.

Be careful now. Once you load the .ko file, the system will crash, so make sure
everything is saved and synchronized to disk:

$ sync && sudo insmod test-module.ko

Similar to before, the system will crash, the kexec kernel/environment will help gather
everything and save it somewhere in /var/crash, followed by an automatic reboot.
After you have rebooted and are back into a functional state, locate the new crash
directory and change into it:

$ cd /var/crash/201902261035/

Also, copy the unstripped kernel object file for your test-module from your home
directory and into the current working directory:

$ sudo cp ~/test.o /var/crash/201902261035/

Load the crash file with your debug kernel:

$ sudo crash dump.201902261035 /usr/lib/debug/
↪vmlinux-4.9.0-8-amd64

Your summary should look something like this:

 KERNEL: /usr/lib/debug/vmlinux-4.9.0-8-amd64
 DUMPFILE: dump.201902261035 [PARTIAL DUMP]
 CPUS: 4
 DATE: Tue Feb 26 10:37:47 2019
 UPTIME: 00:11:16
LOAD AVERAGE: 0.24, 0.06, 0.02
 TASKS: 102

https://www.linuxjournal.com

112 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 NODENAME: deb-panic
 RELEASE: 4.9.0-8-amd64
 VERSION: #1 SMP Debian 4.9.144-3 (2019-02-02)
 MACHINE: x86_64 (2592 Mhz)
 MEMORY: 4 GB
 PANIC: "BUG: unable to handle kernel NULL pointer
 ↪dereference at 0000000000000001"
 PID: 1493
 COMMAND: "insmod"
 TASK: ffff893c5a5a5080 [THREAD_INFO: ffff893c5a5a5080]
 CPU: 3
 STATE: TASK_RUNNING (PANIC)

The reason for the kernel crash is summarized as follows: BUG: unable to handle
kernel NULL pointer dereference at 0000000000000001. The userspace
command that led to the panic was your insmod.

A backtrace will reveal a page fault exception at address ffffffffc05ed005:

crash> bt
PID: 1493 TASK: ffff893c5a5a5080 CPU: 3 COMMAND: "insmod"
 #0 [ffff9dcd013b79f0] machine_kexec at ffffffffa3a53f68
 #1 [ffff9dcd013b7a48] __crash_kexec at ffffffffa3b086d1
 #2 [ffff9dcd013b7b08] crash_kexec at ffffffffa3b08738
 #3 [ffff9dcd013b7b20] oops_end at ffffffffa3a298b3
 #4 [ffff9dcd013b7b40] no_context at ffffffffa3a619b1
 #5 [ffff9dcd013b7ba0] __do_page_fault at ffffffffa3a62476
 #6 [ffff9dcd013b7c10] page_fault at ffffffffa401a618
 [exception RIP: init_module+5]
 RIP: ffffffffc05ed005 RSP: ffff9dcd013b7cc8 RFLAGS: 00010246
 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
 RDX: 0000000080000000 RSI: ffff893c5a5a5ac0 RDI: ffffffffc05ed000
 RBP: ffffffffc05ed000 R8: 0000000000020098 R9: 0000000000000006

https://www.linuxjournal.com

113 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 R10: 0000000000000000 R11: ffff893c5a4d8100 R12: ffff893c5880d460
 R13: ffff893c56500e80 R14: ffffffffc05ef000 R15: ffffffffc05ef050
 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
 #7 [ffff9dcd013b7cc8] do_one_initcall at ffffffffa3a0218e
 #8 [ffff9dcd013b7d38] do_init_module at ffffffffa3b81531
 #9 [ffff9dcd013b7d58] load_module at ffffffffa3b04aaa
#10 [ffff9dcd013b7e90] SYSC_finit_module at ffffffffa3b051f6
#11 [ffff9dcd013b7f38] do_syscall_64 at ffffffffa3a03b7d
#12 [ffff9dcd013b7f50] entry_SYSCALL_64_after_swapgs at ffffffffa401924e
 RIP: 00007f124662c469 RSP: 00007fffc4ca04a8 RFLAGS: 00000246
 RAX: ffffffffffffffda RBX: 0000564213d111f0 RCX: 00007f124662c469
 RDX: 0000000000000000 RSI: 00005642129d3638 RDI: 0000000000000003
 RBP: 00005642129d3638 R8: 0000000000000000 R9: 00007f12468e3ea0
 R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000000
 R13: 0000564213d10130 R14: 0000000000000000 R15: 0000000000000000
 ORIG_RAX: 0000000000000139 CS: 0033 SS: 002b

Let’s attempt to look at the symbol at the address ffffffffc05ed005:

crash> sym ffffffffc05ed005
ffffffffc05ed005 (t) init_module+5 [test-module]

Hmm. The issue occurred somewhere in the module initialization code of the
test-module kernel driver. But what happened to all of the details shown in the
earlier analysis? Well, because this code is not part of the debug kernel image,
you’ll need to find a way to load it into your crash analysis. This is why I instructed
you to copy over the unstripped object file into your current working directory.
Now it’s time to load the module’s object file:

crash> mod -s test ./test.o
 MODULE NAME SIZE OBJECT FILE
ffffffffc05ef000 test 16384 ./test.o

https://www.linuxjournal.com

114 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Now you can go back and look at the same symbol address:

crash> sym ffffffffc05ed005
ffffffffc05ed005 (T) init_module+5 [test-module]
 ↪/home/petros/test-module.c: 8

And, now it’s time to revisit to your code and look at line 8:

$ sed -n 8p test.c
 printk("%d\n", *p);

There you have it. The page fault occurred when you attempted to print the poorly
defined pointer. Remember the compilation warning from earlier? Well, it was warning
you for a reason, and in this current case, it’s the reason that triggered the kernel
panic. You may not be as fortunate in future coding cases.

What Else Can You Do Here?
The kernel crash file will preserve many artifacts from your system at the
event of your crash. You can list a short summary of available commands
with the help command:

crash> help

* files mach repeat timer
alias foreach mod runq tree
ascii fuser mount search union
bt gdb net set vm
btop help p sig vtop
dev ipcs ps struct waitq
dis irq pte swap whatis
eval kmem ptob sym wr
exit list ptov sys q
extend log rd task

https://www.linuxjournal.com

115 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

For instance, if you want to see a general summary of memory utilization:

crash> kmem -i
 PAGES TOTAL PERCENTAGE
 TOTAL MEM 979869 3.7 GB ----
 FREE 835519 3.2 GB 85% of TOTAL MEM
 USED 144350 563.9 MB 14% of TOTAL MEM
 SHARED 8374 32.7 MB 0% of TOTAL MEM
 BUFFERS 3849 15 MB 0% of TOTAL MEM
 CACHED 0 0 0% of TOTAL MEM
 SLAB 5911 23.1 MB 0% of TOTAL MEM

 TOTAL SWAP 1047807 4 GB ----
 SWAP USED 0 0 0% of TOTAL SWAP
 SWAP FREE 1047807 4 GB 100% of TOTAL SWAP

 COMMIT LIMIT 1537741 5.9 GB ----
 COMMITTED 16370 63.9 MB 1% of TOTAL LIMIT

If you want to see what dmesg logged up to the point of the failure:

crash> log

[0.000000] Linux version 4.9.0-8-amd64
 ↪(debian-kernel@lists.debian.org) (gcc version 6.3.0
 ↪20170516 (Debian 6.3.0-18+deb9u1)) #1 SMP Debian
 ↪4.9.144-3 (2019-02-02)
[0.000000] Command line: BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet crashkernel=128M
[0.000000] x86/fpu: Supporting XSAVE feature 0x001:
 ↪'x87 floating point registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002:

https://www.linuxjournal.com

116 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

 ↪'SSE registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004:
 ↪'AVX registers'
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]:
 ↪256

[....]

Using the same crash utility, you can drill even deeper into memory locations and
their contents, what is being handled by every CPU core at the time of the crash and
so much more. If you want to learn more about these functions, simply type help
followed by the function name:

crash> help mount

Something similar to a man page will load onto your screen.

Summary
So, there you have it: an introduction into kernel crash debugging. This article barely
scrapes the surface, but hopefully, it will provide you with a proper starting point to
help diagnose kernel crashes in production, development and test environments. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its
Lustre High Performance File System division. He is also the creator and maintainer of the RapidDisk Project.
Petros has worked in the data storage industry for well over a decade and has helped pioneer the many
technologies unleashed in the wild today.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.pulseway.com
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors

118 | May 2019 | https://www.linuxjournal.com

A Conversation with
Kernel Developers
from Intel, Red Hat
and SUSE
Three kernel developers describe what it’s really like to work on the
kernel, how they interact with developers from other companies,
some pet peeves and how to get started.

By Bryan Lunduke

DEEP
DIVE

https://www.linuxjournal.com

119 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Like most Linux users, I rarely touch the actual code for the Linux kernel. Sure,
I’ve looked at it. I’ve even compiled the kernel myself on a handful of occasions—
sometimes to try out something new or simply to say I could do it (“Linux From
Scratch” is a bit of a right of passage).

But, unless you’re one of the Linux kernel developers, odds are you just don’t get
many opportunities to truly look “under the hood”.

Likewise, I think for many Linux users (even the pro users, sysadmins and
developers), the wild world of kernel development is a bit of a mystery.
Sure, we have the publicly available Linux Kernel Mailing List (LKML.org)
that anyone is free to peruse for the latest features, discussions and
(sometimes) shenanigans, but that gives only a glimpse at one aspect of
being a kernel developer.

And, let’s be honest, most of us simply don’t have time to sift through the
countless pull requests (and resulting discussions of said pull requests) that
flood the LKML on a daily basis.

With that in mind, I reached out to three kernel developers—each working at
some of the most prominent Linux contributing companies today—to ask them
some basic questions that might provide a better idea of what being a Linux kernel
developer is truly like: what their days look like and how they work with kernel
developers at other companies.

Those three developers (in no particular order):

• Dave Hansen, Principal Engineer, System Software Products at Intel.

• Josh Poimboeuf, Principal Software Engineer on Red Hat Enterprise Linux.

• Jeff Mahoney, Team Lead of Kernel Engineering at SUSE Labs.

https://lkml.org/
https://www.linuxjournal.com

120 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

Intel, Red Hat and SUSE—three of the top contributors of code to the Linux kernel. If
anyone knows what it’s like being a kernel developer, it’s them.

I asked all three the exact same questions. Their answers are here, completely unmodified.

Bryan Lunduke: How long have you been working with the Linux kernel? What got
you into it?

Dave Hansen (Intel): My first experience for the Linux kernel was a tiny little
device driver to drive the eight-character display on an IBM PS/2, probably around
20 years ago. I mentioned the project on my college resume, which eventually led to
a job with IBM’s Linux Technology Center in 2001. IBM is where I started doing the
Linux kernel professionally.

Josh Poimboeuf (Red Hat): My first introduction to Linux happened around 2001,
when I was a software engineer at IBM working on server firmware. IBM had recently
embraced Linux, and I was placed on a team that was responsible for replacing legacy
proprietary firmware with a new embedded PowerPC platform based on Linux.

Once I discovered Linux, I was hooked. I installed it on my laptop immediately. It was
mind-boggling that all the source code was freely available, and that you could control
every single bit of code that ran on your laptop. And, unbelievably, it was free.

At IBM, I started out by doing hardware bringup and Linux application development.
But I was always especially fascinated by the kernel. So my curiosity gradually led me
to work my way down the stack. My first real kernel experience came when I started
writing device drivers in 2004.

By 2008 I was the “kernel guy” on the team, responsible for porting the kernel to our
proprietary HW, and for resolving all kernel issues found in the field. That was a bit of
a trial by fire, but it was a great way to learn about the entire kernel tree.

The kernel is so big that my learning process still continues to this day. That’s always

https://www.linuxjournal.com

121 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

been one of my favorite things about the kernel. There’s always more to learn.

These days I work at Red Hat, where I do a lot more upstream work. I work on a wide
variety of things: live patching, the objtool static analysis tool, the x86 unwinder,
speculative CPU vulnerability mitigations and more.

Jeff Mahoney (SUSE): I’ve been working with the Linux kernel for 20 years. I got into
it initially in college because I was interested in systems software. I happened to buy
some hardware for which there was no driver, and I wrote a small one. Before working
on the kernel, I was a systems admin for UNIX systems, and a coworker and I then
decided to try writing a clustered filesystem ourselves. It turned out that the hardware
to do that was much too expensive for us, so we ended up contributing to ReiserFS
instead. That led both of us into careers working on Linux.

Bryan: What does a regular day as a Linux kernel developer look like?

Dave (Intel): My days can vary a lot. The one constant is probably email—lots and
lots of email. It might be internal or external code reviews, or answering a question
from another Intel team or an external customer. The best, most satisfying days are
the ones where you start with a problem or a kernel crash, and have a patch posted
by the end of the day.

Josh (Red Hat): It might actually be surprising to learn the variety of things a kernel
developer does on a daily basis. Each day—and week and month—is different. It’s
often “choose your own adventure”.

Obviously, one of the main things a kernel developer does is write code. Sometimes
I can (mostly) disappear for a week or month (or two!) to hack away on a new
feature. Those days/weeks/months are my favorite part.

But writing code is only part of it. There’s also debugging, reading code, collaborating,
testing, code review, code-related discussions, reading papers, research and meetings.
It’s good to mix things up. And you get to interact with some really smart people from

https://www.linuxjournal.com

122 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

all over the world, which is really interesting.

Most communication happens through email, but many kernel developers also
attend conferences, like Linux Plumbers Conference or Kernel Recipes. A lot of good
discussion happens at conferences. They’re also useful for putting faces to names,
which makes a big difference when you’re mostly interacting with people over email.

Jeff (SUSE): It’s a mix of communication, coding, building and testing. Lots of
email—bug reports, code review, design discussions either internally, on public
mailing lists or IRC.

Bryan: With the kernel work your team does, how much of it is working with others
within your own company, and how much is working with developers working on Linux
at other companies? Possibly companies that compete with each other in some ways?

Dave (Intel): Because of the incredible variety in the way that our customers use
Linux, work with the upstream kernel is an absolute imperative. Virtually all of that
work results in work with folks in the community from other companies. There is
also a lot of work that goes on behind the scenes to support the work with the
community. A great comment from someone in the community might result in us
going off for a week or a month to revise our work. Although we might not be sending
mail on LKML on a given day, we are actively working with the community.

Josh (Red Hat): It really varies by person. Some people spend 100% of their time
working upstream with the Linux community. Others spend 100% of their time
internally, backporting and resolving issues in RHEL. Many of us are somewhere in the
middle, dividing our time in both worlds.

Red Hat’s policy is “upstream first”. So any features or fixes in Red Hat’s kernel have to
be accepted by the upstream community first. That gives us plenty of opportunities to
work with the Linux community.

Jeff (SUSE): It depends on what we’re doing—bug reports tend to be handled within

https://www.linuxjournal.com

123 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

SUSE, by our developers and support teams. Part of that is contractual, while part of
it is practical. When we release a product, we’ve chosen a particular kernel version
and build on top of that. Any fixes must also be against that version, and the upstream
community isn’t usually interested in those. Once we’ve created a fix, if the bug still
exists in the latest release, we’ll do that work in public.

Feature development happens on public mailing lists, where the participants may
work at SUSE, may work for other companies, or may be doing it out of personal
interest. One of the most enjoyable parts of working on Linux is that even though
there are developers from hundreds of different companies who may be competing
with one another, we get to collaborate as if we were on a single team. In addition to
the mailing lists used to do code review and discussions, many subsystems have IRC
channels where developers (and users) chat about projects and socialize.

Bryan: When you need to work with other companies (be it Intel, SUSE, Red Hat,
Canonical, IBM and so on) on kernel issues—such as security vulnerabilities—how
does that work? Is there an established process?

Dave (Intel): There are really two complementary processes that happen. Intel
has formal company-to-company communication channels that are really great for
synchronizing the business side of things. A challenge on the security front has been
creating communication channels that support the coordinated disclosure process
and simultaneously support normal community processes, like mailing lists. Both
avenues have matured quickly and continue to evolve to help us meet the evolving
security landscape.

Josh (Red Hat): When there’s an embargoed security vulnerability, we do have strict
processes in place for secure collaboration with other companies.

Luckily, such embargoes are rare, and they’re the exception to the rule for how we
normally operate. We typically work closely with developers from other companies all
the time on the Linux kernel mailing list, with no special processes needed.

https://www.linuxjournal.com

124 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

One good example is live kernel patching. My team at Red Hat created the kpatch
technology, but at the same time, a team at SUSE created kGraft. Instead of going
forward with competing approaches, we worked closely with the SUSE team at
conferences and through mailing lists to create livepatch, which actually turned out to
be a better technology than both kpatch and kGraft.

In fact, cross-company collaborations like that happen every day on the upstream
mailing lists. It’s really just business as usual. Our interactions are always focused on
what’s best for upstream. In the end, what’s best for upstream is also what’s best for
the companies that rely on it. That independent company-agnostic attitude is strongly
reflected in the upstream Linux culture.

Jeff (SUSE): For security vulnerabilities that aren’t yet public, our security team
coordinates with their counterparts with other companies. Otherwise, unless there’s a
compelling reason not to, the collaboration all happens on public mailing lists. There,
the process is to post your code, listen and respond to review and feedback, perform
the required changes, re-post, and repeat.

When the feedback is positive, the process is complete, the maintainer for the
subsystem will pick it up (according to their timeline) and pull it into the git
repository for their subsystem. Then the maintainer asks Linus to pull those changes
into the mainline repository.

Bryan: Every software developer has a pet peeve with the projects they work on.
What’s your pet peeve—the thing that you really wish you could change—with Linux?

Dave (Intel): I really wish developers would focus on making reviewers’ lives easier.
First, communicating what you are doing, why you are doing it and why it matters is
critical. Then, making sure that the code and its supporting comments are as self-
explanatory as possible. Too often, we focus on making sure the code functions, then
call it a day. To me, that’s only half of the job.

Josh (Red Hat): If I had a magic Linux wand, I would:

https://www.linuxjournal.com

125 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

1. Eliminate CPU speculation—no more Spectre/Meltdown-type bugs!

2. Get rid of the need for security embargoes—but to be clear, I believe that such
embargoes are necessary in the real world.

3. More broadly diversify the Linux kernel development population. More
differing perspectives can produce better ideas. I think we’re already slowly
moving in that direction.

Of those, #1 and #2 aren’t realistic, but maybe we can achieve #3.

Jeff (SUSE): The lack of diversity in the community, especially the gender gap.
Women are underrepresented in computer science fields generally, but especially
so in the Linux kernel community. There has been some outreach efforts, but
more needs to be done.

Bryan: The Linux kernel is, at this point, more than a quarter of a century old. In
software terms, it’s certainly been around a while! Do you see the need for it to
be replaced any time soon? If so, with what? If not, why?

Dave (Intel): I don’t really see Linux as a 25-year-old project. The Linux of 25
years ago was not the de facto OS on servers, routers or phones. There’s no
need to replace something that’s continually changing, growing and improving as
fast as Linux.

Josh (Red Hat): These days, tech trends are fickle, and most technologies have
a very short lifetime. But I don’t see Linux going anywhere. Its true strength is
in its development model. It’s not perfect, but it’s still the best way to produce
software at scale that I’ve ever seen. I wouldn’t be surprised to see Linux thrive
well into the next quarter century.

Jeff (SUSE): While the project is more than 25 years old, it hasn’t stood still.
The kernel itself is constantly evolving to meet new needs. New kinds of users

https://www.linuxjournal.com

126 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

are coming to the Linux community every year. The kernel has had between
10,000 and 15,000 commits in each release for at least the past ten years. The
community is still growing. I don’t think it will be replaced any time soon, but it
will continue to evolve.

Bryan: What would you tell folks thinking of getting into Linux kernel
development?

Dave (Intel): Please do! Linux is only becoming more important to companies
like Intel. It’s a challenge to find folks with the technical skills to work on the
kernel and the skills necessary to navigate the community. The most successful
folks who join the community are the ones that have a problem to work on.
Maybe it’s some device that Linux doesn’t support, or a bug that’s driving you
crazy on your laptop. The folks that come with patches that don’t solve a clear
problem generally have a tough time getting those patches accepted.

Josh (Red Hat): First, I’d say to just find a way to dive in and see if you like it.

One good way to get started is to pick a small area of the kernel you’re interested
in and dedicate yourself to becoming an expert on that little piece of code. Read
the code until you understand it. Tweak it and see how it affects your system.
Start reviewing patches related to it on the mailing list. After a while, you’ll start
seeing opportunities for patches, like bug fixes or code improvements.

When you do eventually post a patch, don’t get overly attached to your code. Try
not to take feedback personally. Our common goal is to produce the best code.
It’s ok to make mistakes. Put your ego aside, be humble, be respectful, and listen
to feedback with an open mind and try to learn from it. That’s how the code gets
better. It also helps you earn respect from others in the community.

Kernel development can take a lot of patience, humility and persistence. It’s not
uncommon for code to be thrown away or rewritten several times. The process

https://www.linuxjournal.com

127 | May 2019 | https://www.linuxjournal.com

DEEP
DIVE

can seem inefficient at times. But in my experience, the end result is always
better than anything proprietary development can produce.

The kernel codebase is huge, so diving into code you’ve never seen will be a
common occurrence. Whenever you have a question about how something
works, the answer is always in the code somewhere. Get familiar with cscope.
For vim users, I’d recommend the vim cscope plugin.

Also, work on your written communication skills, as most of your non-coding
time will be spent in email. And, of course, learning to make your code easily
readable by others is also very important.

Finally, finding a mentor (or mentors) can be valuable. I never had an official
mentor per se, but I’ve been lucky enough to have had many more experienced
people guide me through the years.

Jeff (SUSE): It can be a lot of fun, but it takes some effort to get started. Start
with something you’re interested in, find something small to fix, and post your
work. Read about and understand the process. Listen and respond to feedback.
Experienced developers are usually willing to spend some time helping new
developers if they’re willing to listen. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal as well as host of the popular
Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

128 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

Using Machine
Learning to Optimize
Linux Networking
The Linux networking stack can benefit from “inferences” due to
machine learning, which may be used in “smart” applications.

By Damian Valles and Stan McClellan

Machine Learning (ML) is driving the exploration of vast volumes of data. With
the right training data, ML can outperform many traditional forms of automation
and analysis in diverse industries and applications. A critical advantage of this
approach is that ML can cut through human biases and protocols established
over decades in some cases. ML even can be used on Linux kernel-level
data streams to optimize networked activities—and to enable the system to
“understand” its environment. Here, we use ML on data that is constantly
generated by the Linux networking stack to provide an additional, rudimentary
form of “intelligence” about networked systems that are nearby. We approach
this problem by allowing ML algorithms to work on the byproducts of the Stream
Control Transmission Protocol (SCTP).

SCTP is a relatively new transport protocol for IP networks. Defined originally
in RFC 4960, it provides many reliability benefits, such as multi-homing, multi-
streaming and path selection, which are useful in control-plane or signaling
applications. SCTP is used in place of conventional transport protocols (such
as TCP and UDP) in telecommunications, Smart Grid, Internet-of-Things (IoT)
and Smart Cities applications, among others. We chose to use SCTP for this ML
experiment because it has many useful applications and characteristics. However,

https://www.linuxjournal.com

129 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

the use of ML approaches in different types of kernel-level data streams also may
be useful for classifying congestion patterns, forecasting data movement and
providing new application-specific “intelligence”.

But, before going further in the use of ML techniques inside the Linux kernel, we
should discuss some background concepts. The most popular form of ML is Deep
Learning (DL) Neural Network (NN) algorithms. An NN model consists of an input
neural layer, hidden layers and output layer. Figure 1 shows these layers as orange,
blue and black nodes, respectively. The number of inputs depends on the number
of parameters that are considered to develop the model. The hidden neural layers
can be configured in many forms to perform different statistical analysis using
weight factors and activation functions. The number of outputs in the last neural
layer provides the weighted outcomes of the model.

NN models are trained using approaches known as supervised, unsupervised and
reinforcement learning, which are described briefly in the following sections.

Supervised training uses data with labels that tell the network which
outputs should be produced by specific input parameters. The training process
reconfigures weighting values within the hidden and output layers to ensure
these outcomes. The more data presented to the network during training, the
more accurate outcomes appear when inputs are not in the training data.

Figure 1. Deep learning neural network: orange nodes are the input layer, blue nodes are
hidden layers, and black nodes are the output layer. The red circles on the far right are
outputs that have been “clustered” by the network.

https://www.linuxjournal.com

130 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

The trained NN model is then validated using input data that is similar to the
training data but without labels or desired outputs. Validation outputs should
be similar to training outputs. The training-validation cycle helps a designer
understand the percentage of accuracy the network has reached after being
trained. If the accuracy is too low for the design, further training is required, and
different NN design parameters are tuned. The training and validation phases
must be tuned iteratively until the desired or required accuracy appears.

The final step is the test phase of the NN model. At this point, the model is fed
input data not presented during training or validation phases. The data set used
in the test phase is often a small subset of the overall data set used for the NN
model design. The test phase results are known as the real values of accuracy.

Unsupervised training uses training data that is not labeled. The network
“learns” autonomously by adjusting its weights based on patterns detected in
the input data. Unsupervised designs typically analyze input data that is
unknown or unstructured from the designer’s perspective. As a result, this
approach takes longer for the NN model to be trained and requires more data
if high accuracy is required.

Reinforcement learning is becoming the most robust ML training approach to
manage complex problems in many industries and research fields. This approach
trains the model through a reward system. Random scenarios circulate to the
input, and a reward is fed to the model when reaching the desired outcome. This
approach requires much computational time to train the NN model due to the
learning curve. However, reinforced models have reached a high competency for
solving problems and out-performing human experts in many applications. One
of the most effective reinforcement learning examples was mastered by Google’s
AlphaGo team to win the ancient game Go. The NN model was able to beat the
best Go players in the world.

To incorporate ML techniques into Linux networking processes, we use Round-
Trip Times (RTT) and Retransmission Timeouts (RTO) values as input values

https://www.linuxjournal.com

131 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

for a layered NN model trained via unsupervised and supervised learning. In
this approach, RTT/RTO values from a network interaction based on SCTP
are collected, then used to train the NN model. Using this data, the trained
model produces outcomes that create new insights (or “inferences”) into the
networking context of the system. The objective is to see if the ML system can
differentiate between various known network scenarios, or if the ML system can
produce new information about network activities. In our results, the RTT and
RTO values already exist inside the Linux kernel, and the insights/outcomes that
result from the ML process are unique and useful.

The approach developed to integrate an NN model to devices is known as an
inference model. An inference model is an optimized NN model code engine that
can run on a computer device. A useful inference model generator comes from
NVIDIA’s TensorRT Programmable Inference Accelerator application. This way,
inference models through TensorRT then can be imported to the Linux kernel
for networking modules, scheduling of processes, priority calculations or other
kernel functionalities that can provide a smarter execution flow for application-
specific implementations.

The goal here is to obtain a smarter network flow using the SCTP protocol and an

Figure 2. Inference model implementation: RTT/RTO values from SCTP are fed to an
inference model to produce smarter congestion handling.

https://www.linuxjournal.com

132 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

ML-based evaluation of related kernel-level data. The results of our experiments
clearly show that it’s possible to optimize network activities by using an inference
model to digest the current state and select the right processing or subsequent
state. Figure 2 shows the inference model implementation situated between
reading metrics from the SCTP module in the Linux kernel and the selection of
outcomes. The inference model reads input parameters from the current state of
network activities, then processes the data to determine an outcome that better
“understands” the state of the network. Given that the implementation may be
application-specific, the inference model also may be trained to have different
outcomes biased to the application.

We created four different scenarios to test several ML implementations in the
Linux kernel. These scenarios are detailed below, and they represent a wireless
device moving away from or toward a wireless access point with a few variations,
including the access point being in signal over-saturation. In our experiments,
2,500 samples were recorded for each scenario and left unlabeled. Each data set
collected was normalized against its maximum value. By normalizing the data,
patterns become more pronounced, which improves the ML analysis. Here are
the scenarios:

1. A device moving away/toward, 1 meter to 25 meters away.

2. A device moving 15 meters away/toward, rounding a corner and continuing
10 meters further.

3. A device moving 25 meters away/toward with a wall between it and the
wireless source.

4. A device moving 25 meters away/toward with two walls between it and
the wireless source.

Congestion due to other devices is a common phenomenon in a wireless
network. To model this issue, we included a collection of cross traffic in the

https://www.linuxjournal.com

133 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

network to evoke congestion. Figure 3 shows the system designations, where A/B
systems provided cross traffic and are connected via wired Ethernet, and Host/
Client systems provided test data and are connected via wireless. In this scenario,
5,000 15-second samples were collected from the Client node as it sent SCTP-
Test packets to the Host node, while A-to-B traffic consisted of 1MB, 512KB,
256KB, 128KB and 1KB chunk size FTP traffic.

To create additional cross-traffic variation, we also used the VLC media player
to stream a file over UDP from A-to-B. In this scenario, we collected 5,000
15-second samples from the Client device as it sent SCTP-Test packets to the

Figure 3. Congestion
Experiment Setup

https://www.linuxjournal.com

134 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

Host device. Since the bitrate of the UDP stream changed continuously due to
compression algorithms, further adjustments in chunk sizes were unnecessary.

To classify the data obtained from our network scenarios, we used four ML
classification algorithms that were trained using unsupervised or supervised
learning techniques. These ML techniques are briefly described below.

K-Means Clustering:

• K-Means is an algorithm for clustering data. Though computationally expensive,
K-Means is good at creating clusters with very high learning rates.

• Since K-Means is an unsupervised algorithm, it allows for independent
interpretation of the results.

Support Vector Machine (SVM):

• SVMs are a kind of supervised learning method that can be used for clustering.
SVMs use a subset of the training data in the decision function, making it
memory-efficient.

• Using an SVM with the Radial Basis Function (RBF) kernel with a moderate, its
C-parameter proved computationally expensive but had the best training rates.

Decision Trees (DT):

• DTs are a supervised learning method for classification. In creating simple rules
from labeled data features, it attempts to predict the values of the target variable.

• DTs have prediction costs logarithmic to the number of training sets. In fact,
DTs are exceptional at using incomplete data sets and training models with
low numbers of sets and still yielding high similarity quotients with statistical
methods like K-means.

https://www.linuxjournal.com

135 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

Nearest Neighbor Classifier (NCC):

• NCC is a supervised NN model that uses centroids to define boundaries when
classifying data sets. NCCs also are good at classifying sets where probability
distributions are unknown and can respond to changes quickly.

• Since network delay patterns are likely to change as devices and users are
introduced or removed from the network, an NCC may be better at adapting to
those changes.

As an example of the outcomes of our testing, Figure 4 shows the results
of classifying the normalized network data using K-Means clustering. Note
from Figure 4 that four differentiated outcomes are clearly present: 1) systems

Figure 4.
ML classification
outcomes of Linux
kernel network
data using the
K-Means algorithm.
The classified data
clearly indicates
four different
outcomes for
external networked
systems.

https://www.linuxjournal.com

136 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

“moving toward” or 2) “moving away” from each other, as well as systems
experiencing 3) “signal saturation” and (4) “network congestion”. Note
that regardless of the test scenario, the ML algorithm can discern valuable
information about the networked systems. Although additional analysis
can produce more information, these outcomes may be quite useful in
certain applications.

The ideal outcome or classification for the different network testing scenarios
is a clear separation between the four groups, as shown in Figure 4. Two of the
cases are clearly and individually separated from the group. However, in the cases
of congestion and signal over-saturation, the classification overlaps without
a clear separation. This lowers the accuracy of the ML model. To improve the
classification, we would need to include another parameter in the analysis that
helps to discriminate between congestion and saturation.

In all cases, the ML techniques analyzed data that is consistently produced
internal to the Linux kernel to gain new insights about the external network
context. However, since these algorithms are operating on kernel-level data, the
issue of efficiency is also important.

Figure 5 summarizes the accuracy and efficiency of classifying the network data
using ML algorithms. From Figure 5, it’s clear that the SVM approach is most
efficient: it achieves the highest accuracy using the least number of training
samples. This means that the SVM classifier can quickly distinguish differences
in the kernel data and can produce useful outcomes efficiently. It is also an
excellent practice to realize a large number of examples to see the convergence
of accuracy for each classifier. However, NN models that reach 100% accuracy
may produce large failure rates due to overfitting.

Accurate and fast classification of network data using ML techniques may
result in Linux systems that can autonomously react based on external network
conditions. These reactions may include modifying kernel data, selecting
alternate retransmission or transport protocols, or adjusting other internal

https://www.linuxjournal.com

137 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

parameters based on external context. This form of “inference” is a fundamental
problem in systems communicating via a network. In our experiments, network
data was collected directly from the existing kernel processes and used to train
the four ML classifiers to produce interesting and useful inferences.

Our results suggest that the SVM approach may be a promising ML technique
for inferring results from kernel networking data. The SVM approach reduces
the number of nodes per layer, adjusts precision of the data without losing
accuracy and reduces the latency of computation. The output of the inference
layer provides the networking stack with additional information to handle
different scenarios. The inference development represents a form of customizing
network communication between endpoints for a variety of applications. Other
network conditions may benefit from inference models that utilize different data
produced by the networking stack.

As ML techniques are included in new designs and applications, they have become
a valuable tool and part of the implementation process for smarter networks.
Concepts related to “machine learning” and “artificial intelligence” even may be
implemented inside the Linux kernel to improve networking performance. ◾

Figure 5. Accuracy
and speed of
classification
algorithms when
using normalized
data from different
networking
scenarios.

https://www.linuxjournal.com

138 | May 2019 | https://www.linuxjournal.com

USING MACHINE LEARNING TO OPTIMIZE LINUX NETWORKING

Damian Valles is a second-year Assistant Professor in the Ingram School of Engineering at Texas State University. His goal is not to
partially tear another Achilles Heel anytime soon while staying active. Damian welcomes your comments at dvalles@txstate.edu or
Twitter: @VallesDamian.

Stan McClellan has been an avid Linux user and network experimenter for many years. One of his interests is using Linux to help
Damian avoid another athletic injury. He can be reached at s.mcclellan@ieee.org.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• “Introduction to Stream Control Transmission Protocol” by Jan

Newmarch, LJ, September 2007

• Silver, D., Schrittwieser, J., et al., “Mastering the game of Go without human
knowledge”, Nature 550: 354–359, Macmillan Publishers Limited, DOI:
10.1038/nature24270

• NVIDIA TensorRT Programmable Interface Accelerator

• “Introduction to K-means Clustering” by Andrea Trevino on December 6, 2016

• Towards Data Science: Support Vector Machine—Introduction to
Machine Learning Algorithms by Rohith Gandhi on June 7, 2018

• Decision Trees (DTs): A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble,
“Overview of the use of decision tree algorithms in machine learning”, 2011
IEEE Control and System Graduate Research Colloquium, Shah Alam, 2011,
pp. 37–42

• Nearest Centroid Classifier (NCC): V. Praveen, K. Kousalya and K. R.
Prasanna Kumar, “A nearest centroid classifier-based clustering algorithm
for solving vehicle routing problem,” 2016 2nd International Conference
on Advances in Electrical, Electronics, Information, Communication, and
Bioinformatics (AEEICB), Chennai, 2016, pp. 414–419.

mailto:dvalles@txstate.edu
mailto:s.mcclellan@ieee.org
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com/article/9748
https://www.linuxjournal.com/article/9748
https://developer.nvidia.com/tensorrt
https://www.datascience.com/blog/k-means-clustering
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://www.linuxjournal.com

139 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Linux TCP
SO_REUSEPORT:
Usage and
Implementation
Improve your server performance using a relatively new feature of
the Linux networking stack: the SO_REUSEPORT socket option.

By Krishna Kumar

https://www.linuxjournal.com

140 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

HAProxy and NGINX are some of the few applications that use the TCP SO_REUSEPORT
socket option of the Linux networking stack. This option, initially introduced in
4.4 BSD, is used to implement high-performance servers that help better utilize
today’s large multicore systems. The first few sections of this article explain some
essential concepts of TCP/IP sockets, and the remaining sections use that knowledge
to describe the rationale, usage and implementation of the SO_REUSEPORT socket
option.

TCP Connection Basics
A TCP connection is defined by a unique 5-tuple:

[Protocol, Source IP Address, Source Port, Destination IP Address, Destination
Port]

Individual tuple elements are specified in different ways by clients and servers. Let’s
take a look at how each tuple element is initialized.

Client Application
Protocol: this field is initialized when the socket is created based on parameters
provided by the application. The protocol is always TCP for the purposes of this
article. For example:

socket(AF_INET, SOCK_STREAM, 0); /* create a TCP socket */

Source IP address and port: these are usually set by the kernel when the application
calls connect() without a prior invocation to bind(). The kernel picks a suitable IP
address for communicating with the destination server and a source port from the
ephemeral port range (sysctl net.ipv4.ip_local_port_range).

Destination IP address and port: these are set by the application by invoking
connect(). For example:

server.sin_family = AF_INET;

https://lwn.net/Articles/542629
https://en.wikipedia.org/wiki/Network_socket
https://www.linuxjournal.com

141 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

server.sin_port = htons(SERVER_PORT);
bcopy(server_ent->h_addr, &server.sin_addr.s_addr,
 server_ent->h_length);
/* Connect to server, and set the socket's destination IP
 * address and port# based on above parameters. Also, request
 * the kernel to automatically set the Source IP and port# if
 * the application did not call bind() prior to connect().
 */
connect(fd, (struct sockaddr *)&server, sizeof server);

Server Application
Protocol: initialized in the same way as described for a client application.

Source IP address and port: set by the application when it invokes bind(), for example:

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = INADDR_ANY;
srv_addr.sin_port = htons(SERVER_PORT);
bind(fd, &srv_addr, sizeof srv_addr);

Destination IP address and port: a client connects to a server by completing
the TCP three-way handshake. The server’s TCP/IP stack creates a new socket to
track the client connection and sets its Source IP:Port and Destination IP:Port from
the incoming client connection parameters. The new socket is transitioned to the
ESTABLISHED state, while the server’s LISTEN socket is left unmodified. At this
time, the server application’s call to accept() on the LISTEN socket returns with a
reference to the newly ESTABLISHED socket. See the listing at the end of this article
for an example implementation of client and server applications.

TIME-WAIT Sockets
A TIME-WAIT socket is created when an application closes its end of a TCP
connection first. This results in the initiation of a TCP four-way handshake, during
which the socket state changes from ESTABLISHED to FIN-WAIT1 to FIN-WAIT2

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.linuxjournal.com
https://en.wikipedia.org/wiki/File:Tcp_state_diagram.png

142 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

to TIME-WAIT, before the socket is closed. The TIME-WAIT state is a lingering state
for protocol reasons. An application can instruct the TCP/IP stack not to linger a
connection by sending a TCP RST packet. In doing so, the connection is terminated
instantly without going through the TCP four-way handshake. The following code
fragment implements the reset of a connection by specifying a socket linger time of
zero seconds:

const struct linger opt = { .l_onoff = 1, .l_linger = 0 };

setsockopt(fd, SOL_SOCKET, SO_LINGER, &opt, sizeof opt);
close(fd);

Understanding the Different States of a Server Socket
A server typically executes the following system calls at start up:

1) Create a socket:

server_fd = socket(...);

2) Bind to a well known IP address and port number:

ret = bind(server_fd, ...);

3) Mark the socket as passive by changing its state to LISTEN:

ret = listen(server_fd, ...);

4) Wait for a client to connect and get a reference file descriptor:

client_fd = accept(server_fd, ...);

Any new socket, created via socket() or accept() system calls, is tracked in
the kernel using a “struct sock” structure. In the code fragment above, a socket

https://elixir.bootlin.com/linux/v4.17.13/source
https://www.linuxjournal.com

143 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

is created in step #1 and given a well known address in step #2. This socket is
transitioned to the LISTEN state in step #3. Step #4 calls accept(), which blocks
until a client connects to this IP:port. After the client completes the TCP three-way
handshake, the kernel creates a second socket and returns a reference to this socket.
The state of the new socket is set to ESTABLISHED, while the server_fd socket
remains in a LISTEN state.

The SO_REUSEADDR Socket Option
Let’s look at two use cases to better understand the SO_REUSEADDR option for
TCP sockets.

Use case #1: a server application restarts in two steps, an exit followed by a start up.
During the exit, the server’s LISTEN socket is closed immediately. Two situations can
arise due to the presence of existing connections to the server:

1. All established connections that were being handled by this dying server process
are closed, and those sockets transition to the TIME-WAIT state.

2. All established connections that were handed off to a child process continue to
remain in the ESTABLISHED state.

When the server is subsequently started up, its attempt to bind to its LISTEN port
fails with EADDRINUSE, because some sockets on the system are already bound to this
IP:port combination (for example, a socket in either the TIME-WAIT or ESTABLISHED
state). Here’s a demonstration of this problem:

Server is listening on port #45000.
$ ss -tan | grep :45000
LISTEN 0 1 10.20.1.1:45000 *:*

A client connects to the server using its source
port 54762. A new socket is created and is seen
in the ESTABLISHED state, along with the

https://www.linuxjournal.com

144 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

earlier LISTEN socket.
$ ss -tan | grep :45000
LISTEN 0 1 10.20.1.1:45000 *:*
ESTAB 0 0 10.20.1.1:45000 10.20.1.100:54762

Kill the server application.
$ pkill -9 my_server

Restart the server application.
$./my_server 45000
bind: Address already in use

Find out why
$ ss -tan | grep :45000
TIME-WAIT 0 0 10.20.1.1:45000 10.20.1.100:54762

This listing shows that the earlier ESTABLISHED socket is the same one that is
now seen in the TIME-WAIT state. The presence of this socket bound to the local
address—10.20.1.1:45000—prevented the server from being able to subsequently
bind() to the same IP:port combination for its LISTEN socket.

Use case #2: if two processes attempt to bind() to the same IP:port
combination, the process that executes bind() first succeeds, while the latter
fails with EADDRINUSE. Another instance of this use case involves an application
binding to a specific IP:port (for example, 192.168.100.1:80) and another
application attempting to bind to the wildcard IP address with the same port
number (for example, 0.0.0.0:80), or vice versa. The latter bind() invocation
fails, as it attempts to bind to all addresses with the same port number that was
used by the first process. If both processes set the SO_REUSEADDR option on
their sockets, both sockets can be bound successfully. However, note this caveat:
if the first process calls bind() and listen(), the second process still would
be unable to bind() successfully, since the first socket is in the LISTEN state.

https://www.linuxjournal.com

145 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Hence, this use case is usually meant for clients that want to bind to a specific
IP:port before connecting to different services.

How does SO_REUSEADDR help solve this problem? When the server is restarted
and invokes bind() on a socket with SO_REUSEADDR set, the kernel ignores all
non-LISTEN sockets bound to the same IP:port combination. The UNIX Network
Programming book describes this feature as: “SO_REUSEADDR allows a listening
server to start and bind its well-known port, even if previously established
connections exist that use this port as their local port”.

However, we need the SO_REUSEPORT option to allow two or more processes to
invoke listen() on the same port successfully. I describe this option in more detail
in the remaining sections.

The SO_REUSEPORT Socket Option
While SO_REUSEADDR allows sockets to bind() to the same IP:port
combination when existing ESTABLISHED or TIME-WAIT sockets may be
present, SO_REUSEPORT allows binding to the same IP:port when existing
LISTEN sockets also may be present. The kernel ignores all sockets, including
sockets in the LISTEN state, when an application invokes bind() or listen()
on a socket with SO_REUSEPORT enabled. This permits a server process to be
invoked multiple times, allowing many processes to listen for connections. The
next section examines the kernel implementation SO_REUSEPORT.

How Are Connections Distributed among
Multiple Listeners?
When multiple sockets are in the LISTEN state, how does the kernel decide which
socket—and, thus, which application process—receives an incoming connection?
Is this determined using a round-robin, least-connection, random or some other
method? Let’s take a deeper look into the TCP/IP code to understand how socket
selection is performed.

https://www.amazon.com/Unix-Network-Programming-Sockets-Networking/dp/0131411551
https://www.linuxjournal.com

146 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Notes:

• Data structures and code snippets in this section are heavily simplified for the sake
of clarity—removing some structure elements, function arguments, variables and
unnecessary code—but without losing correctness. Some parts of the listing are
also in pseudo-code for better ease of understanding.

• sk represents a kernel socket data structure of type “struct sock”.

• skb, or the socket buffer, represents a network packet of type “struct sk_buff”.

• src_addr, src_port and dst_addr, dst_port refers to source IP:port and
destination IP:port, respectively.

• Readers can correlate the code snippets with the actual source code, if desired.

As an incoming packet (skb) moves up the TCP/IP stack, the IP subsystem calls
into the TCP packet receive handler, tcp_v4_rcv(), providing the skb as argument.
tcp_v4_rcv() attempts to locate a socket associated with this skb:

sk = __inet_lookup_skb(&tcp_hashinfo, skb, src_port, dst_port);

tcp_hashinfo is a global variable of type struct inet_hashinfo, containing,
among others, two hash tables of ESTABLISHED and LISTEN sockets, respectively.
The LISTEN hash table is sized to 32 buckets, as shown below:

#define LHTABLE_SIZE 32 /* Yes, this really is all you need */
struct inet_hashinfo {
 /* Hash table for fully established sockets */
 struct inet_ehash_bucket *ehash;
 /* Hash table for LISTEN sockets */
 struct inet_listen_hashbucket listening_hash[LHTABLE_SIZE];
};

https://elixir.bootlin.com/linux/v4.17.13/source
https://www.linuxjournal.com

147 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

struct inet_hashinfo tcp_hashinfo;

__inet_lookup_skb() extracts the source and destination IP addresses from
the incoming skb and passes these along with the source and destination ports
to __inet_lookup() to find the associated ESTABLISHED or LISTEN socket, as
shown here:

struct sock *__inet_lookup_skb(tcp_hashinfo, skb,
 ↪src_port, dst_port)
{
 /* Get the IPv4 header to know
 * the source and destination IPs */
 const struct iphdr *iph = ip_hdr(skb);

 /*
 * Look up the incoming skb in tcp_hashinfo using the
 * [Source-IP:Port, Destination-IP:Port] tuple.
 */
 return __inet_lookup(tcp_hashinfo, skb, iph->saddr,
 ↪src_port, iph->daddr, dst_port);
}

__inet_lookup() looks in tcp_hashinfo->ehash for an already established socket
matching the client four-tuple parameters. In the absence of an established socket, it
looks in tcp_hashinfo->listening_hash for a LISTEN socket:

struct sock *__inet_lookup(tcp_hashinfo, skb, src_addr,
 ↪src_port, dst_addr, dst_port)
{
 /* Convert dest_port# from network to host byte order */
 u16 hnum = ntohs(dst_port);

https://www.linuxjournal.com

148 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 /* First look for an established socket ... */
 sk = __inet_lookup_established(tcp_hashinfo, src_addr,
 ↪src_port, dst_addr, hnum);
 if (sk)
 return sk;

 /* failing which, look for a LISTEN socket */
 return __inet_lookup_listener(tcp_hashinfo, skb, src_addr,
 src_port, dst_addr, hnum);
}

The __inet_lookup_listener() function implements the selection of a LISTEN
socket:

struct sock *__inet_lookup_listener(tcp_hashinfo, skb,
 ↪src_addr, src_port, dst_addr, dst_port)
{
 /*
 * Use the destination port# to calculate a hash table
 * slot# of the listen socket. inet_lhashfn() returns
 * a number between 0
 * and LHTABLE_SIZE-1 (both inclusive).
 */
 unsigned int hash = inet_lhashfn(dst_port);

 /* Use this slot# to index the global LISTEN hash table */
 struct inet_listen_hashbucket *ilb =
 ↪tcp_hashinfo->listening_hash[hash];
 /* Track best matching LISTEN socket
 * so far and its "score" */
 struct sock *result = NULL, *sk;
 int hi_score = 0;

https://www.linuxjournal.com

149 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 for each socket, 'sk', in the selected hash bucket, 'ilb' {
 /*
 * Calculate the "score" of this LISTEN socket (sk)
 * against the incoming skb. Score is computed on
 * some parameters, such as exact destination port#,
 * destination IP address exact match (as against
 * matching INADDR_ANY, for example),
 * with each criteria getting a different weight.
 */
 score = compute_score(sk, dst_port, dst_addr);
 if (score > hi_score) {
 /* Highest score - best matched socket till now */
 if (sk->sk_reuseport) {
 /*
 * sk has SO_REUSEPORT feature enabled. Call
 * inet_ehashfn() with dest_addr, dest_port,
 * src_addr and src_port to compute a
 * 2nd hash, phash.
 */
 phash = inet_ehashfn(dst_addr, dst_port,
 src_addr, src_port);

 /* Select a socket from sk's SO_REUSEPORT group
 * using 'phash'.
 */
 result = reuseport_select_sock(sk, phash);
 if (result)
 return result;
 }

 /* Update new best socket and its score */
 result = sk;
 hi_score = score;

https://www.linuxjournal.com

150 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 }
 }

 return result;
}

Selecting a socket from the SO_REUSEPORT group is done with reuseport_select_
sock():

struct sock *reuseport_select_sock(struct sock *sk,
 unsigned int phash)
{
 /* Get control block of sockets
 * in this SO_REUSEPORT group */
 struct sock_reuseport *reuse = sk->sk_reuseport_cb;

 /* Get count of sockets in the group */
 int num_socks = reuse->num_socks;

 /* Calculate value between 0 and 'num_socks-1'
 * (both inclusive) */
 unsigned int index = reciprocal_scale(phash, num_socks);

 /* Index into the SO_REUSEPORT group using this index */
 return reuse->socks[index];
}

Let’s step back a little to understand how this works. When the first process invoked
listen() on a socket with SO_REUSEPORT enabled, a pointer in its “struct sock”
structure, sk_reuseport_cb, is allocated. This structure is defined as:

struct sock_reuseport {
 u16 max_socks; /* Allocated size of socks[] array */

https://www.linuxjournal.com

151 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 u16 num_socks; /* #Elements in socks[] */
 struct sock *socks[0]; /* All sockets added to this group */
};

The last element of this structure is a “flexible array member”. The entire structure
is allocated such that the socks[] array has 128 elements of type struct sock *.
Note that as the number of listeners increases beyond 128, this structure is reallocated
such that the socks[] array size is doubled.

The first socket, sk1, that invoked listen(), is saved in the first slot of its own
socks[] array, for example:

sk1->sk_reuseport_cb->socks[0] = sk1;

When listen() is subsequently invoked on other sockets (sk2, ...) bound to the

Figure 1. Representation of the SO_REUSEPORT Group of LISTEN Sockets

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://www.linuxjournal.com

152 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

same IP:port, two operations are performed:

1. The address of the new socket (sk2, ...) is appended to the
sk_reuseport_cb->socks[] of the first socket (sk1).

2. The new socket’s sk_reuseport_cb pointer is made to point to the first socket’s
sk_reuseport_cb pointer. This ensures that all LISTEN sockets of the same group
reference the same sk_reuseport_cb pointer.

Figure 1 shows the result of these two steps.

In Figure 1, sk1 is the first LISTEN socket, and sk2 and sk3 are sockets that invoked
listen() subsequently. The two steps described above are performed in the
following code snippet and executed via the listen() call chain:

static int inet_reuseport_add_sock(struct sock *new_sk)
{
 /*
 * First check if another identical LISTEN socket, prev_sk,
 * exists. ... Then do the following:
 */
 if (prev_sk) {
 /*
 * Not the first listener - do the following:
 * - Grow prev_sk->sk_reuseport_cb structure if required.
 * - Save new_sk socket pointer in prev_sk's socks[].
 * prev_sk->sk_reuseport_cb->socks[num_socks] = new_sk;
 * - prev_sk->sk_reuseport_cb->num_socks++;
 * - Pointer assignment of the control block:
 * new_sk->sk_reuseport_cb = prev_sk->sk_reuseport_cb;
 */
 return reuseport_add_sock(new_sk, prev_sk);
 }

https://www.linuxjournal.com

153 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 /*
 * First listener - do the following:
 * - allocate new_sk->sk_reuseport_cb to contain 128 socks[]
 * - new_sk->sk_reuseport_cb->max_socks = 128;
 * - new_sk->sk_reuseport_cb->socks[0] = new_sk;
 * - new_sk->sk_reuseport_cb->numsocks = 1;
 */
 return reuseport_alloc(new_sk);
}

Now let’s go back to reuseport_select_sock() to see how a LISTEN socket is
selected. The socks[] array is indexed via a call to reciprocal_scale() as follows:

unsigned int index = reciprocal_scale(phash, num_socks);
return reuse->socks[index];

reciprocal_scale() is an optimized function that implements a pseudo-modulo
operation using multiply and shift operations.

As shown earlier, phash was calculated in __inet_lookup_listener():

phash = inet_ehashfn(dst_addr, dst_port, src_addr, src_port);

And, num_socks is the number of sockets in the socks[] array. The function
reciprocal_scale(phash, num_socks) calculates an index, 0 <= index <
num_socks. This index is used to retrieve a socket from the SO_REUSEPORT socket group.

Hence, you can see that the kernel selects a socket by hashing the client IP:port and
server IP:port values. This method provides a good distribution of connections among
different LISTEN sockets.

http://homepage.cs.uiowa.edu/~jones/bcd/divide.html
https://www.linuxjournal.com

154 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

SO_REUSEPORT in Action
Let’s look at the effect of SO_REUSEPORT on the command line through two tests.

1) An application opens a socket for listen and creates two processes.

Application code path: socket(); bind(); listen(); fork();

$ ss -tlnpe | grep :45000
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=3020,fd=3),("my_server",pid=3019,fd=3))
 ↪ino:3854904087 sk:37d5a0

The string ino:3854904087 sk:37d5a0 describes a single kernel socket.

2) An application creates two processes, and each creates a LISTEN socket after
setting SO_REUSEPORT.

Application code path: fork(); socket(); setsockopt(SO_REUSEPORT);
bind(); listen();

$ ss -tlnpe | grep :45000
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=1975,fd=3)) ino:3854935788 sk:37d59c
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=1974,fd=3)) ino:3854935786 sk:37d59d

Now you see two different kernel sockets—notice the different inode numbers.

Applications using multiple processes to accept connections on a single LISTEN socket
may experience significant performance issues, since each process contends for the
same socket lock in accept(), as shown in the following simplified pseudo-code:

struct sock *inet_csk_accept(struct sock *sk)

https://www.linuxjournal.com

155 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

{
 struct sock *newsk = NULL; /* client socket */

 /* We need to make sure that this socket is listening, and
 * that it has something pending.
 */
 lock_sock(sk);
 if (sk->sk_state == TCP_LISTEN)
 if ("there are completed connections waiting
 ↪to be accepted")
 newsk = get_first_connection(sk);
 release_sock(sk);

 return newsk;
}

Both lock_sock() and release_sock() internally acquires and releases a spinlock
embedded in sk. (See Figure 3 later in this article to observe the overhead due to the
spinlock contention.)

Benchmarking SO_REUSEPORT
The following setup is used to measure SO_REUSEPORT performance:

1. Kernel version: 4.17.13.

2. Client and server systems both have 48 hyper-threaded cores and are connected to
each other using a 40g NIC over a switch.

3. Server is started in one of two ways: create a single LISTEN socket and fork 48
times, or fork 48 times, and each child process creates a LISTEN socket after
enabling SO_REUSEPORT.

4. Client creates 48 processes. Each process connects and disconnects to the server a

https://www.linuxjournal.com

156 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Figure 2. Performance Counter Statistics without SO_REUSEPORT

Figure 3.
Performance Profile
of the Top 25
Functions without
SO_REUSEPORT

https://www.linuxjournal.com

157 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Figure 4. Performance Counter Statistics with SO_REUSEPORT

Figure 5.
Performance
Profile of the Top
25 Functions with
SO_REUSEPORT

https://www.linuxjournal.com

158 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

million times sequentially.

With the fork of the LISTEN socket:

server-system-$./my_server 45000 48 0 (0 indicates fork)
client-system-$ time ./my_client <server-ip> 45000 48 1000000
real 4m45.471s

With SO_REUSEPORT:

server-system-$./my_server 45000 48 1 (1 indicates
 ↪SO_REUSEPORT)
client-system-$ time ./my_client <server-ip> 45000 48 1000000
real 1m36.766s

Performance Analysis of SO_REUSEPORT
Figures 2–5 provide a look at the performance profile for the above two tests using
the perf tool.

Source Code for Client and Server Applications
The listing below implements a server and client application that were used for
SO_REUSEPORT performance testing:

$ cat my_server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <netdb.h>

void create_children(int nprocs, int parent_pid)
{
 while (nprocs-- > 0) {

https://www.linuxjournal.com

159 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 if (getpid() == parent_pid && fork() < 0)
 exit(1);
 }
}

int main(int argc, char *argv[])
{
 int reuse_port, fd, cfd, nprocs, opt = 1, parent_pid =
 ↪getpid();
 struct sockaddr_in server;

 if (argc != 4) {
 fprintf(stderr, "Port# #Procs {0->fork, or
 ↪1->SO_REUSEPORT}\n");
 return 1;
 }

 nprocs = atoi(argv[2]);
 reuse_port = atoi(argv[3]);
 if (reuse_port) /* proper SO_REUSEPORT */
 create_children(nprocs, parent_pid);

 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 if (reuse_port)
 setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, (char *)&opt,
 sizeof opt);

 server.sin_family = AF_INET;
 server.sin_addr.s_addr = INADDR_ANY;

https://www.linuxjournal.com

160 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 server.sin_port = htons(atoi(argv[1]));

 if (bind(fd, (struct sockaddr *)&server, sizeof server)
 ↪< 0) {
 perror("bind");
 return 1;
 }

 if (!reuse_port) /* simple fork instead of SO_REUSEPORT */
 create_children(nprocs, parent_pid);

 if (parent_pid == getpid()) {
 while (wait(NULL) != -1); /* wait for all children */
 } else {
 listen(fd, SOMAXCONN);
 while (1) {
 if ((cfd = accept(fd, NULL, NULL)) < 0) {
 perror("accept");
 return 1;
 }
 close(cfd);
 }
 }

 return 0;
}

$ cat my_client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <strings.h>
#include <sys/wait.h>

https://www.linuxjournal.com

161 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

#include <netdb.h>

void create_children(int nprocs, int parent_pid)
{
 while (nprocs-- > 0) {
 if (getpid() == parent_pid && fork() < 0)
 exit(1);
 }
}

int main(int argc, char *argv[])
{
 int fd, count, nprocs, parent_pid = getpid();
 struct sockaddr_in server;
 struct hostent *server_ent;
 const struct linger nolinger = { .l_onoff = 1,
 ↪.l_linger = 0 };

 if (argc != 5) {
 fprintf(stderr, "Server-IP Port# #Processes
 ↪#Conns_per_Proc\n");
 return 1;
 }

 nprocs = atoi(argv[3]);
 count = atoi(argv[4]);

 if ((server_ent = gethostbyname(argv[1])) == NULL) {
 perror("gethostbyname");
 return 1;
 }

 bzero((char *)&server, sizeof server);

https://www.linuxjournal.com

162 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

 server.sin_family = AF_INET;
 server.sin_port = htons(atoi(argv[2]));
 bcopy((char *)server_ent->h_addr, (char *)
↪&server.sin_addr.s_addr,
 server_ent->h_length);

 create_children(nprocs, parent_pid);

 if (getpid() == parent_pid) {
 while (wait(NULL) != -1); /* wait for all children */
 } else {
 while (count-- > 0) {
 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 if (connect(fd, (struct sockaddr *)&server,
 sizeof server) < 0) {
 perror("connect");
 return 1;
 }

 /* Reset connection to avoid TIME-WAIT state */
 setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger,
 sizeof nolinger);
 close(fd);
 }
 }

 return 0;
}
◾

https://www.linuxjournal.com

163 | May 2019 | https://www.linuxjournal.com

LINUX TCP SO_REUSEPORT: USAGE AND IMPLEMENTATION

Krishna Kumar works at Flipkart Internet Pvt Ltd, India’s largest e-commerce company. He is especially interested in today’s topic,
as Flipkart uses this technology to host millions of connections from visitors all over the world. His other interests are playing chess,
struggling to learn to use apps, and occasionally bringing stray puppies home much to his wife’s consternation. Please send your
comments and feedback to krishna.ku@flipkart.com.

Resources
• “The SO_REUSEPORT socket option” by Michael Kerrisk on LWN.net

• Network Socket (Wikipedia)

• Transmission Control Protocol (Wikipedia)

• TCP State Transition Diagram

• Kernel Source Code

• UNIX Network Programming by W. Richard Stevens, Bill Fenner and
Andrew M. Rudoff

• Arrays of Length Zero

• Reciprocal Multiplication

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

mailto:krishna.ku@flipkart.com
https://lwn.net/Articles/542629
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/File:Tcp_state_diagram.png
https://elixir.bootlin.com/linux/v4.17.13/source
https://www.amazon.com/Unix-Network-Programming-Sockets-Networking/dp/0131411551
https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
http://homepage.cs.uiowa.edu/~jones/bcd/divide.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Open Source—
It’s in the Genes
What happens when you release 500,000 human
genomes as open source? This.

By Glyn Moody

DNA is digital. The three billion chemical bases that make
up the human genome encode data not in binary, but in a
quaternary system, using four compounds—adenine, cytosine,
guanine, thymine—to represent four genetic “digits”: A, C, G
and T. Although this came as something of a surprise in 1953,
when Watson and Crick proposed an A–T and C–G pairing as
a “copying mechanism for genetic material” in their famous
double helix paper, it’s hard to see how hereditary information
could have been transmitted efficiently from generation
to generation in any other way. As anyone who has made
photocopies of photocopies is aware, analog systems are bad
at loss-free transmission, unlike digital encodings. Evolution of
progressively more complex structures over millions of years
would have been much harder, perhaps impossible, had our
genetic material been stored in a purely analog form.

Although the digital nature of DNA was known more than half
a century ago, it was only after many years of further work
that quaternary data could be extracted at scale. The Human
Genome Project, where laboratories around the world pieced
together the three billion bases found in a single human
genome, was completed in 2003, after 13 years of work,

164 | May 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://books.google.nl/books/about/Digital_Code_of_Life.html?id=Q960CIDzRuIC&redir_esc=y
http://www.sns.ias.edu/~tlusty/courses/landmark/WatsonCrick1953.pdf
http://www.sns.ias.edu/~tlusty/courses/landmark/WatsonCrick1953.pdf
https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/
https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/
https://www.linuxjournal.com

165 | May 2019 | https://www.linuxjournal.com

OPEN SAUCE

for a cost of around $750 million. However, since then, the cost of sequencing
genomes has fallen—in fact, it has plummeted even faster than Moore’s Law
for semiconductors. A complete human genome now can be sequenced for a few
hundred dollars, with sub-$100 services expected soon.

As costs have fallen, new services have sprung up offering to sequence—at least
partially—anyone’s genome. Millions have sent samples of their saliva to companies
like 23andMe in order to learn things about their “ancestry, health, wellness and
more”. It’s exciting stuff, but there are big downsides to using these companies. You
may be giving a company the right to use your DNA for other purposes. That is, you
are losing control of the most personal code there is—the one that created you in the
boot-up process we call gestation. Deleting sequenced DNA can be hard.

That’s bad enough, but it gets worse. Because the DNA of all your relatives is similar
to yours to varying degrees, when you have your genome sequenced, you are
effectively giving away part of their DNA too. Whether they agree or not, they lose
their genetic anonymity, which may have serious and unforeseen consequences. In
the US, police are using genetic information that has been made public by individuals
to find partial matches of DNA from a crime scene. By building and exploring family
trees on a massive scale, the police can narrow their investigations down to a few
suspects to help them pinpoint the criminal.

Just as software code can be open source rather than proprietary, so there are
publicly funded genomic sequencing initiatives that make their results available
to all. One of the largest projects, the UK Biobank (UKB), involves 500,000
participants. Any researcher, anywhere in the world, can download complete,
anonymized data sets, provided they are approved by the UKB board. One
important restriction is that they must not try to re-identify any participant—
something that would be relatively easy to do given the extremely detailed clinical
history that was gathered from volunteers along with blood and urine samples.
Investigators asked all 500,000 participants about their habits, and examined them
for more than 2,000 different traits, including data on their social lives, cognitive
state, lifestyle and physical health.

https://www.genome.gov/sequencingcosts/
https://www.genome.gov/sequencingcostsdata
https://en.wikipedia.org/wiki/$1,000_genome
https://www.23andme.com/en-eu
https://www.23andme.com/en-eu
https://www.bloomberg.com/news/articles/2018-06-15/deleting-your-online-dna-data-is-brutally-difficult
https://www.privateinternetaccess.com/blog/2018/10/coming-soon-the-death-of-genetic-privacy/
https://www.privateinternetaccess.com/blog/2018/10/coming-soon-the-death-of-genetic-privacy/
https://www.privateinternetaccess.com/blog/2018/05/the-growing-threat-to-privacy-from-big-data-forensics-and-false-positives
https://www.ukbiobank.ac.uk/
https://www.linuxjournal.com

166 | May 2019 | https://www.linuxjournal.com

OPEN SAUCE

Given the large number of genomes that need to be sequenced, the first open DNA
data sets from UKB are only partial, although the plan is to sequence all genomes
more fully in due course. These smaller data sets allow what is called “genotyping”,
which provides a rough map of a person’s DNA and its specific properties. Even this
partial sequencing provides valuable information, especially when it is available for
large numbers of people. As an article in Science points out, it is not just the size and
richness of the open data sets that makes the UK Biobank unique, it is the thorough-
going nature of the sharing that is required from researchers:

Researchers around the world can freely delve into the UKB data and rapidly build
on one another’s work, resulting in unexpected dividends in diverse fields, such
as human evolution. In a crowdsourcing spirit rare in the hypercompetitive world
of biomedical research, groups even post tools for using the data without first
seeking credit by publishing in a journal.

The benefits from applying open-source methodology to half a million genomes are
significant and growing by the day. About 7,000 researchers have registered to use
UKB data on 1,400 projects, and more than 600 papers have been published. It is
leading to rapid advances that are simply not possible when the DNA is proprietary.
And as with open source, doing good brings benefits:

“The U.K. is getting all of the world’s best brains” to study its citizens, says Ewan
Birney, director of the EMBL European Bioinformatics Institute in Hinxton,
U.K., and a member of the UKB’s steering committee. The U.K. focus is also
the project’s chief downside, as it explores just one slice of humanity: northern
Europeans. It holds data for only about 20,000 people of African or Asian
descent, for example. Yet as new papers appear every few days, researchers say
the UKB remains a shining example of the power of curiosity unleashed. “It’s the
thing we always dreamed of,” [president and director of the Broad Institute in
Cambridge, Massachusetts] Lander says.

It’s the classic “given enough eyeballs, all bugs are shallow”. By open-sourcing the
genomic code of 500,000 of its citizens, the UK is getting the top DNA hackers in the

https://en.wikipedia.org/wiki/Genotyping
https://www.sciencemag.org/news/2019/01/huge-trove-british-biodata-unlocking-secrets-depression-sexual-orientation-and-more
https://www.sciencemag.org/news/2019/01/huge-trove-british-biodata-unlocking-secrets-depression-sexual-orientation-and-more
https://www.ukbiobank.ac.uk/published-papers
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
https://www.linuxjournal.com

167 | May 2019 | https://www.linuxjournal.com

OPEN SAUCE

world to find the “bugs”—the variants that are associated with medical conditions—
that will help our understanding of them and may well lead to the development of
new treatments for them. The advantages are so obvious, it’s a wonder people use
anything else. A bit like open source. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

