

 LINUX JOURNAL | MASTHEAD

 [image: 33429.png]

 [image: ljlogo_masthd.eps]

 Editor in Chief — Doc Searls, doc@linuxjournal.com

 Executive Editor — Jill Franklin, jill@linuxjournal.com

Deputy Editor — Bryan Lunduke, bryan@lunduke.com

 Tech Editor — Kyle Rankin, lj@greenfly.net

 Associate Editor — Shawn Powers, shawn@linuxjournal.com

 Contributing Editor — Petros Koutoupis, petros@linux.com

 Contributing Editor — Zach Brown, zacharyb@gmail.com

 Senior Columnist — Reuven Lerner, reuven@lerner.co.il

 Senior Columnist — Dave Taylor, dave@linuxjournal.com

 Publisher — Carlie Fairchild, publisher@linuxjournal.com

 Associate Publisher — Mark Irgang, mark@linuxjournal.com

 Director of Digital Experience — Katherine Druckman, katherine@linuxjournal.com

Director of Sales — Danna Vedder, danna@linuxjournal.com

 Graphic Designer — Garrick Antikajian, artwork@linuxjournal.com

Cover Image — Carty Sewell, Cartyisme@gmail.com

 Accountant — Candy Beauchamp, acct@linuxjournal.com

 Community Advisory Board

 	John Abreau, Boston Linux & UNIX Group

 	John Alexander, Shropshire Linux User Group

 	Robert Belnap, Classic Hackers UGA Users Group

 	Lawrence D'Oliveiro, Waikato Linux Users Group

	Chris Ebenezer, Silicon Corridor Linux User Group

 	David Egts, Akron Linux Users Group

 	Michael Fox, Peterborough Linux User Group

 	Braddock Gaskill, San Gabriel Valley Linux Users' Group

 	Roy Lindauer, Reno Linux Users Group

	James Mason, Bellingham Linux Users Group

 	Scott Murphy, Ottawa Canada Linux Users Group

 	Andrew Pam, Linux Users of Victoria

	Bob Proulx, Northern Colorado Linux User Group

 	Ian Sacklow, Capital District Linux Users Group

 	Ron Singh, Kitchener-Waterloo Linux User Group

 	Jeff Smith, Kitchener-Waterloo Linux User Group

 	Matt Smith, North Bay Linux Users' Group

 	James Snyder, Kent Linux User Group

 	Paul Tansom, Portsmouth and South East Hampshire Linux User Group

 	Gary Turner, Dayton Linux Users Group

 	Sam Williams, Rock River Linux Users Group

 	Stephen Worley, Linux Users' Group at North Carolina State University

 	Lukas Yoder, Linux Users Group at Georgia Tech

 Linux Journal is published by, and is a registered trade name of, Linux Journal, LLC.

 4643 S. Ulster St. Ste 1120 Denver, CO 80237 USA

 LINUX is a registered trademark of Linus Torvalds.

 At Your Service

 SUBSCRIPTIONS: Linux Journal is available as a digital magazine in PDF, EPUB, and MOBI formats. Renewing your subscription, changing your e-mail address for issue delivery, paying your invoice, viewing your account details or other subscription inquiries can be done instantly on-line: http://www.linuxjournal.com/subscribe. E-mail us at subs@linuxjournal.com or reach us via postal mail at Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Please remember to include your complete name and address when contacting us.

 ACCESSING THE DIGITAL ARCHIVE: Your monthly download notifications will have links to the various formats and to the digital archive. To access the digital archive at any time, log in at http://www.linuxjournal.com/digital.

 LETTERS TO THE EDITOR: We welcome your letters and encourage you to submit them at http://www.linuxjournal.com/contact or mail them to Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Letters may be edited for space and clarity.

 SPONSORSHIP: We take digital privacy and digital responsibility seriously. We've wiped off all old advertising from Linux Journal and are starting with a clean slate. Ads we feature will no longer be of the spying kind you find on most sites, generally called "adtech". The one form of advertising we have brought back is sponsorship. That's where advertisers support Linux Journal because they like what we do and want to reach our readers in general. At their best, ads in a publication and on a site like Linux Journal provide useful information as well as financial support. There is symbiosis there. For further information, email: sponsorship@linuxjournal.com or call +1-360-890-6285.

 WRITING FOR US: We always are looking for contributed articles, tutorials and real-world stories for the magazine. An author’s guide, a list of topics and due dates can be found on-line: http://www.linuxjournal.com/author.

 FREE e-NEWSLETTERS: Linux Journal editors publish newsletters on both a weekly and monthly basis. Receive late-breaking news, technical tips and tricks, an inside look at upcoming issues and links to in-depth stories featured on http://www.linuxjournal.com. Subscribe for free today: http://www.linuxjournal.com/enewsletters.

 [image: PIA_logo]

 Private Internet Access is a proud sponsor of Linux Journal.

 LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC., 9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

 Table of Contents

 The Kernel Issue by Bryan Lunduke

 From the Editor by Doc Searls

 We Need to Save What Made Linux and FOSS Possible

 Letters

 UPFRONT

 Visualizing Science with ParaView by Joey Bernard

 Patreon and Linux Journal

 Reality 2.0: a Linux Journal Podcast

 Signing Git Commits by Kyle Rankin

 FOSS Project Spotlight: Bareos, a Cross-Network, Open-Source Backup Solution by Heike Jurzik and Maik Aussendorf

 News Briefs

 Columns

 Kyle Rankin's Hack and /

 Digital Will, Part I: Requirements

 Reuven M. Lerner's At the Forge

 Introducing Mypy, an Experimental Optional Static Type Checker for Python

 Dave Taylor's Work the Shell

 Breaking Up Apache Log Files for Analysis

 Zack Brown's diff -u

 What's New in Kernel Development

 Glyn Moody's Open Sauce

 Open Source—It's in the Genes

 Deep Dive: the Kernel

 What Does It Take to Make a Kernel? by Petros Koutoupis

 People often refer to an operating system's kernel without truly knowing what it does or how it works or what it takes to make one. What does it take to write a custom (and non-Linux) kernel?

 Memory Footrpint of Processes by Frank Edwards

 The amount of memory your system needs depends on the memory requirements of the programs you run. Do you want to know how to figure that out?

 Oops! Debugging Kernel Panics by Petros Koutoupis

 A look at what causes kernel panics and some utilities to help gain more information.

 A Conversation with Kernel Developers from Intel, Red Hat and SUSE by Bryan Lunduke

 Three kernel developers describe what it's really like to work on the kernel, how they interact with developers from other companies, some pet peeves and how to get started.

 Articles

 Using Machine Learning to Optimize Linux Networking by Damian Valles and Stan McClellan

 The Linux networking stack can benefit from "inferences" due to machine learning, which may be used in "smart" applications.

Linux TCP SO_REUSEPORT: Usage and Implementation by Krishna Kumar

Improve your server performance using a relatively new feature of the Linux networking stack: the SO_REUSEPORT socket option.

The Kernel Issue

How much do you know about your kernel?
Like really know?

Considering how critically important the Linux kernel is to the world—and,
perhaps just as important, to
our own personal computers and gadgets—it's rather amazing how little most
people actually know about
it.

There might as well be magical hamsters in there, pushing 1s and 0s around
with their enchanted
hamster gloves of computing power.
How do kernels (in a general sense) actually work, anyway? How does one sit
down and debug a
specific Linux kernel issue? How does a kernel allocate and work with the
memory in your computer?
Those are questions most of us never need to ask—because Linux works.

Me, personally? Never submitted a single patch to the kernel. Not one.

I mean, sure. I've looked at little snippets of Linux kernel source code—mostly out of idle curiosity or to
investigate a topic for a story. And I've compiled the kernel plenty of times
to get one hardware driver or
feature working.
But, even so, my knowledge of the inner-workings of the kernel is mostly
limited to "Linux power user"
level.

So, it's time for a little kernel boot camp in this issue of Linux
Journal to get a bit
more up to speed.

Let's start with the basics. What is a kernel, and how, exactly, does a person
go about making a brand-new one? Like...from scratch.

Linux Journal Editor at Large Petros Koutoupis previously has walked us
through building a complete
Linux distribution (starting from the very basics—see Part
I and Part
II). Now he does the same
thing, but this time for building a
brand-new kernel.

What tools are needed? What code must be written? Petros provides a step-by-step
rundown of kernel
building. In the end, you'll have a fully functional kernel (well, functional
enough to boot a computer, at
any rate) that you can build on further. Plus, you'll have a better
understanding of how kernels actually
work, which is pretty darn cool.

Moving back to Linux land, Frank Edwards gives a rundown on how the kernel
handles memory: how
virtual memory works and is structured, how the kernel reports memory usage and
information to
userland applications and the like. If you've ever wondered how the memory in
your system is
structured and interacted with by the applications and the kernel, give that a
read.

Now that you know the basics of how to build a kernel, and a primer on how
memory is used, let's turn to
something directly practical for Linux developers and pro users:
debugging Linux kernel panics.

Let's say, hypothetically, your machine has a kernel panic. Sure, they're
rare, but they happen! But,
but, why do they happen? How can you dig in and figure out the cause behind
such a catastrophic
event?

We bring Petros Koutoupis back in to give a detailed primer and how-to on
doing exactly that.
Hopefully, you never need to debug a kernel panic. But, just in case, best be
prepared. (In the words of
a famously pixelated old guy living in a cave, "It's dangerous to go alone!
Take this.")

All of this information is great—detailed, technical and nerdy as can be (in the
best possible way).

But, let's get a bit higher-level for a moment. What is being a kernel
developer actually like?

What gets them started down the kernel programming path? What does an average
day in the life of a kernel developer look
like? What are their pet peeves about Linux (every developer on every project
has complaints about it)?

To answer those questions, I sat down with prominent kernel developers from
three of the most active
companies in the Linux world: Red Hat, SUSE and Intel. (Since we had all three
of those companies
represented, this seemed like a good chance to talk about how they interact
with other kernel developers
working at other companies—often competitors.)

In the end, after reading all of the articles in the pages to follow, maybe
you'll be inspired to take your first
steps into the world of Linux kernel work. Or, heck, maybe you won't. But,
either way, you'll hopefully
have a deeper understanding of how Linux (and, by extension, your own computer)
works.

Which is empowering. And awesome. And the Linux-y way.

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

From the Editor: We Need to Save What Made Linux and FOSS Possible

If we take freedom and openness for granted, we'll lose both. That's
already happening, and we need to fight back. The question is how. By Doc
Searls

I am haunted by this passage in a letter we got from reader Alan E. Davis
(the full text is in our Letters section):

...the real reason for this letter comes from my realization—in
seeking online help—that the Linux Documentation Project is dead, and
that the Linuxprinting.org project—now taken over by open printing, I
think, is far from functioning well. Linux has been transformed into
containers, and embedded systems. These and other such projects were the
heart and soul of the Free Software movement, and I do not want for them to
be gone!

This is the kind of thing Bradley Kuhn (of
the Software Freedom
Conservancy) lamented in his
talk at Freenode.live last year. So
did Kyle
Rankin in his talk at the same event (video,
slides and later,
an LJ article). In an earlier
conversation on the same stage (it was a helluva show), Simon Phipps (of
the Open Source Initiative) and I had our own lamentations.

We all said it has become too easy to take Linux and FOSS for granted, and
the risks of doing that were dire. Some specifics:

	We collaborate inside proprietary environments, such as Slack and Google
Hangouts. Most of the chat and messaging systems in use today are also
proprietary and closed. So are most video-conferencing systems and the
codecs they use.

	
Many Linux and FOSS geeks today use Linux
only professionally. Most of
their personal work is on proprietary Apple and Microsoft gear. Many use
Windows or macOS boxes in presentations about FOSS topics.

	
We're not modeling our values. Bradley sourced this line
from Benjamin
Mako Hill: "The use of nonfree tools sends an unacceptable
message...'Software freedom is important for you as users', developers seem to say,
'but not for us'. Such behavior undermines the basic effectiveness of the
strong ethical commitment at the heart of the free software movement."

	
We've allowed foundational ideas to collapse. We've gone along with
complicating the web, no longer respecting the simplicities in HTTP and
HTML, which allowed the web to work in the first place. For example, we
hardly still design for what Bradley calls "progressive enhancement and
graceful degradation". We see this failure in the web development world,
which now depends almost utterly on JavaScript, most of which is proprietary
and downloaded constantly on the fly to run in browsers.

	
We are also forgetting (or perhaps never learned) how a reciprocal
license, such as the GPL, can keep a project alive and a community
together. Simon blames SourceForge's failures on a decision to
replace its original free (GPL-licensed) software base with a proprietary
one. And now, even though we have Git, he says too many of us don't know
the difference between Git and GitHub, or that GitHub runs proprietary
JavaScript executed in our browsers.

There were signs this was coming in 2002, when I wrote "A Tale of Three
Cultures". I'll unpack those a bit:

	
Geeks at the time were busy inventing the world's basic software
building materials. They operated in a culture that valued freedom,
openness and maximized usefulness to everybody and everything. They also
had a strong sense that they were winning the fight for freedom and
openness in software development and product design. In geek slang, they
said they were at "GandhiCon 3". (The context is a Mohandas Gandhi
one-liner: "First they ignore you. Then they laugh at you. Then they fight
you. Then you win.")

	
Hollywood as a label stood for all that is proprietary about business.
I chose that label because the biggest public fight at the time was over
copyright, and Hollywood was (and remains) the embodiment of copyright
maximalism. Larry
Lessig, who with Aaron Swartz and others had recently
minted Creative
Commons, characterized the fight as Silicon Valley vs.
Hollywood, and Northern vs. Southern California.

	
Embedded developers were what I called "purely technical...pre-Net,
pre-UNIX and maybe even pre-cultural", with concerns that were "utterly
practical". In other words, not about free software, open source or
Linux—beyond its utilitarian value. I wrote that after attending the
Embedded Systems Conference that Rich Lehrbaum wrote about for Linux
Journal, here. (That may be the only surviving record of the conference on
the web.)

What I didn't see back then was that Hollywood and embedded would become
pretty much the same thing: business as usual. That happened because it was
too easy for too many developers to build proprietary and closed stuff,
heads down, in utterly practical ways, usually for what amounted to
embedded purposes, on top of Linux and FOSS foundations, with little
respect for the virtues embodied in those foundations. And by now, we've
built a lot of it. One might even argue that most of the Linux deployed in
the world today is embedded inside proprietary and closed devices.

So the question is What should we do now?

From my notes, here are some things Bradley, Kyle, Simon and others said at
Freenode.live. It's not all verbatim, but close enough:

	
"Having real-time chat is absolutely essential to the advancement of
free software."

	
"We're the resistance now." "We need to create mass movement."

	
"Volunteer to write free and open code, to participate in
communities."

	
"If you didn't live the history, learn from those who did."

	
"If you did learn from history, teach those who need to know it.
Respectfully."

	
"Be patient. Remember that the tortoise won not only because it was
patient, but because it ignored insult, ridicule and dismissal."

	
"Model your values. Use free software and hardware."

	
"Remember always how 'the rights to copy, share, modify, redistribute
and improve software' are fundamental rights that matter to people."

	
"Work to convince developers that their software freedom matters."

That's all necessary, but not sufficient. We need something more. Something
big.

I suggest we pick a fight. Because fights raise emotions and have goals.

I just ran a playoff between many different fights on many tabs in a
browser. The winner—the last tab standing—is "The Era of General
Purpose Computers Is Ending", by Michael Feldman in
The Next Platform website. It's
a sad bookend to the history of a losing fight that Cory Doctorow forecast
in 2011 with "Lockdown: the
coming war on general-purpose computing" and a
year later in "The Coming Civil
War over General Purpose Computing". Read all
three.

I chose general-purpose computing as the winning fight—the one most
worth having—because we wouldn't have Linux, free software or open
source today if there weren't general-purpose computers to develop and use
them on. General-purpose computing is the goose that laid all our golden
eggs. The fight is to keep it alive.

 About the Author

 Doc Searls is a veteran journalist, author and part-time academic who spent more than two decades elsewhere on the Linux Journal masthead before becoming Editor in Chief when the magazine was reborn in January 2018. His two books are The Cluetrain Manifesto, which he co-wrote for Basic Books in 2000 and updated in 2010, and The Intention Economy: When Customers Take Charge, which he wrote for Harvard Business Review Press in 2012. On the academic front, Doc runs ProjectVRM, hosted at Harvard's Berkman Klein Center for Internet and Society, where he served as a fellow from 2006–2010. He was also a visiting scholar at NYU's graduate school of journalism from 2012–2014, and he has been a fellow at UC Santa Barbara's Center for Information Technology and Society since 2006, studying the internet as a form of infrastructure.

[image: Doc Searls]

Letters

Thanks for the Ansible Articles

I'm Michael, a systems administrator in Waterloo, Canada.
I was interested in Ansible and tried to find some good articles or lectures
on the internet, but unfortunately, most of them just explain all
the functions and are hard for me to understand.
When I read Shawn Powers' article in Linux Journal, it was really
interesting and understandable and easy to understand.
So, thank you for that.

—Michael

Note: if you're interested in Ansible, you can read Shawn Powers' series on our
website: "Ansible:
the Automation Framework That Thinks Like a Sysadmin", "Ansible:
Making Things Happen", "Ansible,
Part III: Playbooks" and "Ansible,
Part IV: Putting It All Together".—Ed.

Rankin, Searls and Taylor

Doc Searls' editorials, Kyle Rankin's "Hack and /" and Dave Taylor's "Work the Shell"
keep me subscribing to LJ. Sure the specialty articles are great, but I am a
power user, not a sysadmin or "IT guy". Keep feeding me tips on how to get
more from the Linux command line! Catching up on the January issue, I particularly
appreciated seeing the options on sort and uniq that
had escaped my notice (see Kyle Rankin's "Back to
Basics: sort and uniq".)
Nice work...all!

—Richard

Historical Errors

According to my friend, Robert Wachtel, Dave Taylor's article from the April
2019 issue "Back in
the Day: UNIX,
Minix and Linux" contains some inaccuracies. Specifically:

Interesting but inaccurate regarding PARC and Doug Engelbart. Engelbart
and his group at SRI created the mouse and windows before PARC was
founded.

See The Mother
of All Demos and PARC (company),
on Wikipedia.

—Roger

Dave Taylor replies: Entirely possible I mis-remembered my timeline, but I
do know that Engelbart was working at SRI when we met, and I heard him talk
about his "mouse". If I suggested that he was at PARC, that was my mistake,
although the PARC systems definitely utilized that mouse device!

A Matter, Perhaps, of Philosophy

I have recently subscribed to LJ. When LJ first come into being, I was
unable to subscribe, literally; I was a teacher on an undeveloped island,
with an embarrassingly low salary. I actually began to use GNU/Linux
because I could not afford to buy Multiedit, which would have granted
access to the documentation. I needed to be able to type diacritics, and
without access to the documentation, I couldn't figure out how to do so. I
wrote a request letter to the Free Software Foundation, begging for a free
text editor. Little would I have suspected how their gift to me—13
3-1/2" diskettes of GNU software ported to Windows—would change my life.
Emacs is the self-documenting editor, and the documentation is at one's
fingertips at all times. My project was a lexicon; text tools like
grep, a
functioning sort, and ptx were extremely useful.

I started out on the wrong side of the Free Beer vs. Freedom divide. Maybe
not, though, because the availability of tools is extremely important in
the struggle for freedom, at all levels. I was a science teacher, so this
was critically important to me. I started reading the GNU's Bulletin, wearing
out each issue as they arrived when I was able to travel to a less remote
island. I learned of two free operating systems through GNU's Bulletin:
FreeBSD and "Linux". It came to pass that I was able to download a copy of
Slackware and started using it. I never looked back.

I tell this tale to accentuate the liberating nature of Free Software. The
tool-lending library in my city makes a range of useful hardware available
to anyone with a library card, without charge. I cannot explain the
passion that these developments awaken within me.

I grew up in a relatively well-to-do environment, at almost every level.
Yet, I ended up living on an island, on which cash has a minimal importance
except to buy those things that were introduced by the benevolent
other-world empire. I bring this up because I now am living back in my own
"world" where I am constantly being reminded of the preeminence of money.

Linux Journal represented to me an attempt to grow a business for profit
through association with an ecosystem that is free—not only in the "open
source" manner of thinking, but as something that could be used even by
those who were unable to afford, say, a copy of Word or Word Perfect
costing several hundred dollars—not to mention the superior quality of
the tools that Free Software has made available.

Yet I have scoured every Linux Journal I could get hold of. They were sold
in some bookshops, and I occasionally could allocate a few dollars to
purchase a copy. I did subscribe, but could not pay.

I do not and would not resent the efforts of another to feed himself and
his family through publishing. I get it that Linux Journal was not a
hugely successful capitalistic enterprise. I don't mind paying for a
subscription for a year. (Heck, even the libraries around here do not
carry it.) LJ is still the best of the Linux magazines. But something has
happened, and that something—whatever it is—is reflected in the manner
of content that is offered within its covers.

Today, I am writing because I just spent borrowed money to purchase a
printer. It is one of the new breed that promises (and to some extent
seems to deliver) a new paradigm—ink tanks. My old printer was still on
warranty, but I have been using unblessed ink, and to take it to the repair
shop for promised repair at the authorized service center will probably
require me to purchase a full set of ink cartridges. The cheapest I have
found costs about 60.00. I have been able to print for less than 20.00 a
year in ink with oversize ink cartridges made in China, with quality that
is good enough, if not absolutely matched in color. Now I have received an
error message: "Ink Absorber Pad Full". The service department had advised
me over the phone to purge the cartridges, emptying them of ink. I'll say
this, the drivers were easy to install on an Arch Linux system, or Manjaro.

Cutting to the chase, this new printer is a different beast. The drivers
are more difficult to install, and the scanner does not work as it should.
The settings in CUPS are few, compared with the many I have seen in the
pictures of Windows' settings windows. It does interesting things. It is
a new model, and the manufacturer has provided it with an email address:
all I need is to send a document to that email address, and it will be
printed. We'll see. I have access to it from my Android phone, and
presumably a tablet, including nozzle cleaning and etc.

It's on me for not shopping more specifically for a Linux-friendly printer.
Are there any? Really? But the real reason for this letter comes from my
realization—in seeking online help—that the Linux Documentation Project
is dead, and that the Linuxprinting.org project—now taken over by open
printing, I think—is far from functioning well. Linux has been
transformed into containers and embedded systems. These and other such
projects were the heart and soul of the Free Software movement, and I do
not want for them to be gone!

The spirit of free software is under threat in this perilous time.
Microsoft is now embracing Linux like a giant anaconda, seeking to squeeze
more profit.

I don't know what to suggest, but I would like to see more sensitivity to
those people who are still floundering, confused about installing printers,
or unable—like my good friend who has for years struggled to install and
use Linux has recently experienced—to get Secure Boot turned off on a
Windows 10 laptop, several years old, to install some distro of Linux.

Is there some contribution that Linux Journal can make to the community of
users who are being worn down by the corporate flim flam? I have tried
for years to advocate for GNU/Linux (with an affectionate, gentle touch on
"GNU/"). GNU/Linux has changed my life. I have failed to convince those
teachers around me—in schools where Windows and Apple software are
provided for by federal grants. A few students picked it up. There is
some really important work still to be done.

This all being said, I look forward to scouring every issue of LJ over the
coming year. I appreciate the new and enthusiastic leadership of Doc
Searls and also Bryan Lunduke's wild bits. There are still some of us
who actually are down here on Earth, storing our bits on our own hardware,
and struggling with the efforts of the corporate world not only to ruin our
political lives and steal our eyeballs, but also to force us to buy the
bill of goods they are wont to sell.

—Alan Davis

Doc Searls replies: Thanks, Alan. Your letter hit home for me in a big way,
and I've answered with my From the Editor column this month.

Great Article

Regarding Doc Searls' article "The Kids Take
Over" in the April 2019 issue, I wish I was eight again and in school with that KidOYO program. That educational
program is stunning. And the part I like the most is no one is left behind.
Thank you for finding and sharing it. We need more people to think the way
those folks in New York are thinking.

—Bob Getsla

Send LJ a Letter

We'd love to hear your feedback on the magazine and specific articles.
Please write us here or
send email to ljeditor@linuxjournal.com.

Photos

Send your Linux-related photos to ljeditor@linuxjournal.com, and we'll
publish the best ones here.

Visualizing Science with ParaView

I'd like to introduce one of the more popular
tools used for visualizing data within several scientific disciplines:
ParaView. ParaView started as a joint
project between Kitware, Inc., and
Los Alamos National Laboratory back in 2000. The first public release
was version 0.6, which came out in 2002. Since then, ParaView has become
one of the most popular visualization packages for visualizing
large data sets.

Because it's open source, it should be available in most,
if not all, package repository systems. For example, in Debian-based
distributions, you should be able to install it with the command:

sudo apt-get install paraview

Starting it the first time should give you an empty workspace, ready
for you to get to work.

[image: ParaView]

Figure 1. When you first start ParaView, you'll see a new, empty
layout to start your visualization.

Two major parts populate the bulk of the window.
The right-hand
side is the main display pane where the visualization will appear. The
left-hand pane shows the list of objects being visualized, along with
their properties. At the top, there is a toolbar of the common
functions in ParaView.

To play with ParaView, you'll
need some data. If you don't have any data of your own to
use, you can grab some data provided as part of the ParaView
Tutorial.
More
documentation and sample scripts are also available there.

Let's assume
you're going to use the sample data as you learn how to use ParaView. To load
the data, click File→Open, and navigate to where you
unpacked the sample data.

While you're here, take a quick look
at the list of all of the file types ParaView supports. For example, you
can load the data stored in the file can.ex2. You won't see anything
displayed right away. In the bottom part of the left-hand side pane,
you should see the properties for the newly loaded data file. For now,
you can just accept the defaults and click the apply button. You
then should see the data visualized in the main pane.

[image: can.ex2 data]

Figure 2. The data in the sample file can.ex2 renders as a
half cylinder attached to a rectangle on the end.

Clicking and dragging on the image allows you to rotate the view, so you can
see the entire object from various angles.

Along with visualizing data,
ParaView includes a number of basic shapes you can use to build
up structures within your visualization. Clicking the
Sources menu item provides a fairly lengthy drop-down list of structures. And, you
even can
add more complicated structures (like the Mandelbrot set) to your
visualization.

[image: Mandelbrot]

Figure 3. You can add lots of different objects to your
visualization, even a Mandelbrot set.

This could be handy if you have some basic
geometric structure or an image that you want to use as a backdrop to
your data visualization.

If the data you're visualizing is more traditional (for example, if the data
comes from measurements), ParaView provides actual data analysis tools
to complement the visualization tools. For example, clicking
the Filters→Statistics menu item provides a drop-down list of statistical
functions. Clicking the "Descriptive Statistics" option adds
a new entry in the "Pipeline Browser" where you can set the options
for the statistical analysis.

[image: statistical analysis]

Figure 4. You can add statistical analysis to your pipeline of
visualization steps in your analysis.

This opens a new pane
where you can play with the data a bit more directly. This particular
data set is not very interesting, so descriptive statistics aren't
very useful in this specific case.

You also can do more detailed data
analysis by clicking the Filters→Data Analysis menu item. For
example, clicking the histogram entry gives you a new pane displaying a
histogram plot.

[image: histograms]

Figure 5. You even can do histograms of the data being visualized.

You also can do things
like calculate quartiles or replot interpolated and analyzed data.

For repeated visualization, you probably won't want to go through all of
the required steps every time. ParaView includes
a Python engine, so you can write a Python script that
can run repeated processing steps easily. This also means you can
script behavior that can be processed when the GUI is not active. This
comes in handy when you're running larger data analysis jobs on high-performance clusters remotely.

You can work on your Python scripting
by clicking Tools→Python Shell. This pops up a new
window where you can write and evaluate your Python code directly within
ParaView.

[image: ParaView analysis tools]

Figure 6. Within ParaView, you have access to a Python shell where you can
interact with the ParaView analysis tools directly.

Along with writing Python scripts, ParaView
has been designed with a plugin architecture. Clicking
Tools→Manage Plugins pops up a new window where you can select
which plugins are loaded and active.

[image: ParaView plugin]

Figure 7. ParaView supports plugins, but it's up to you to
select which ones are active and loaded for use in a current session.

If you're in the middle of some visualization work, you can save the
current state of ParaView so that you can pick it up again later. Clicking
File→Save State lets you save the current state
as a .pvsm (ParaView state) file. You can reload it later by clicking
File→Load State.

Once you've finished a visualization,
there are a couple options that allow you to generate files that you can
use in other software packages. Clicking File→Save
Screenshot pops up a new window where you can set options like the
image size. Then a second window will open where you can set the image
filename.

The File→Export Scene menu item gives you a
second option for saving your results. In this case, you can save your
results in other file formats, such as PostScript or PDF. If your
visualization includes an animation, click
File→Save Animation to save it.

If you're working with large
or complicated data sets, I recommend making the move to ParaView as your main
visualization tool.

—Joey Bernard

Patreon and Linux Journal

[image: Patreon Logo]

Together with the help of Linux Journal supporters and subscribers,
we can offer trusted reporting for
the world of open-source today, tomorrow and in the future. To our
subscribers, old and new,
we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving
support from readers via Patreon on our website.
LJ community members
who pledge $20 per month or more will be featured each month in the
magazine. A
very special thank you this month goes to:

	
Appahost.com

	Chris Short

	Christel Dahlskjaer

	
David Breakey

	
Dr. Stuart Makowski

	Fred

	Henrik Halbritter (Albritter)

	James Mayes

	James Weatherell

	Joe

	
Josh Simmons

	LinuxMagic Inc.

	Lorin Ricker

	
Taz Brown

 [image: Patreon Logo]

Now also find @linuxjournal on Liberapay. Thank you to our very first
Liberapay supporter and the person who gave us this great suggestion:
Mostly_Linux.

 [image: Librepay Logo]

Reality 2.0: a Linux Journal Podcast

Join us each week as Doc Searls and Katherine Druckman navigate the realities
of the new digital world: https://www.linuxjournal.com/podcast.

[image: Alt Tag Name]

Signing Git Commits

Protect your code commits from malicious changes by GPG signing
them.

Often when people talk about GPG, they focus on encryption—GPG's ability to
protect a file or message so that only someone who has the appropriate
private key can read it. Yet, one of the most important functions GPG offers
is signing. Where encryption protects a file or message so that only the
intended recipient can decrypt and read it, GPG signing proves that the
message was sent by the sender (whomever has control over the private key used
to sign) and has not been altered in any way from what the sender wrote.

Without GPG signing, you could receive encrypted email that only you could
open, but you wouldn't be able to prove that it was from the sender. But,
GPG signing has applications far beyond email. If you use a modern Linux
distribution, it uses GPG signatures on all of its packages, so you can be
sure that any software you install from the distribution hasn't been altered
to add malicious code after it was packaged. Some distributions even GPG-sign
their ISO install files as a stronger form of MD5sum or SHA256sum to verify
not only that the large ISO downloaded correctly (MD5 or SHA256 can do that),
but also that the particular ISO you are downloading from some random mirror
is the same ISO that the distribution created. A mirror could change the
file and generate new MD5sums, and you may not notice, but it couldn't
generate valid GPG signatures, as that would require access to the
distribution's signing key.

Why Sign Git Commits

As useful as signing packages and ISOs is, an even more important use of GPG
signing is in signing Git commits. When you sign a Git commit, you can prove
that the code you submitted came from you and wasn't altered while you were
transferring it. You also can prove that you submitted the code and not
someone else.

Being able to prove who wrote a snippet of code isn't so you know who to
blame for bugs so the person can't squirm out of it. Signing Git commits is
important because in this age of malicious code and back doors, it helps
protect you from an attacker who might otherwise inject malicious code into
your codebase. It also helps discourage untrustworthy developers from
adding their own back doors to the code, because once it's discovered, the bad
code will be traced to them.

How to Sign Git Commits

The simplest way to sign Git commits is by adding the -S option
to the git
commit command. First, figure out your GPG key ID with:

gpg --list-secret-keys --keyid-format LONG
sec# rsa4096/B9EF770D6EFE360F 2019-02-06 [SC]
 ↪[expires: 2021-02-05]
. . .

In this case, B9EF770D6EFE360F is my long key ID. Why use this and not just
my email address associated with my key? In the event you have multiple keys
with the same ID, you might end up signing with the wrong key. By specifying
the long key ID, you can ensure that you use the right key every time.

Once you know the key ID, add it to the -S option when you
git commit:

git commit -S B9EF770D6EFE360F

Now when you submit the commit, it will prompt you to unlock your GPG key so
it can sign the commit.

Of course, the goal is to sign every commit, and if you had to add this
argument every time you committed code, it would be pretty annoying. So
instead, add it to your ~/.gitconfig so it signs every time:

[user]
 name = Kyle Rankin
 email = kyle.rankin@puri.sm
 signingkey = B9EF770D6EFE360F
[commit]
 gpgsign = true

In the [user] section of your .gitconfig, after your name and email, add a
signingkey option, and set it to the same key ID you used for
the -S argument
in git commit. Then add a new [commit] section, if
it doesn't already exist,
and add the gpgsign option set to true. This way, all of your GPG commits will
be signed.

The final step once this is all set up, if you use a web-based Git repository
like GitLab or GitHub, is for you to go to your shared Git repository, log in
to your account, and find the section that lets you upload GPG public keys, so
you can add your corresponding GPG public key to your account. This way, when
you do sign your commits, the Git repository will be able to verify the
signature against your public key and add a handy "Verified" tag that denotes
that the commit came from you.

—Kyle Rankin

FOSS Project Spotlight: Bareos, a Cross-Network, Open-Source Backup
Solution

Bareos (Backup Archiving Recovery Open
Sourced) is a cross-network, open-source
backup solution that preserves, archives and recovers data from all major
operating systems. The Bareos project started 2010 as a Bacula fork and is now
being developed under the AGPLv3 license.

The client/server-based backup solution is actually a set of computer programs
(Figure 1) that communicate over the network: the Bareos Director (BD), one or
more Storage Dæmons (SD) and the File Dæmons (FD). Due to this modular
design, Bareos is scalable—from single computer systems (where all
components run on one machine) to large infrastructures with hundreds of
computers (even in different geographies).

[image: Bareos Setup]

Figure 1. A Typical Bareos Setup: Director (with Database), File Dæmon(s),
Storage Dæmon(s) and Backup Media

The director is the central control unit for all other dæmons. It manages the
database (catalog), the connected clients, the file sets (they define which
data Bareos should back up), the configuration of optional plugins, before and
after jobs (programs to be executed before or after a backup job), the storage
and media pool, schedules and the backup jobs. Bareos Director runs as a
dæmon.

The catalog maintains a record of all backup jobs, saved files and volumes
used. Current Bareos versions support PostgreSQL, MySQL and SQLite, with
PostgreSQL being the preferred database back end.

The File Dæmon (FD) must be installed on every client machine. It is
responsible for the backup as well as the restore process. The FD receives the
director's instructions, executes them and transmits the data to the Bareos
Storage Dæmon. Bareos offers pre-packed file dæmons for many popular
operating systems, such as Linux, FreeBSD, AIX, HP-UX, Solaris, Windows and macOS.
Like the director, the FD runs as a dæmon in the background.

The Storage Dæmon (SD) receives data from one or more File Dæmons (at the
director's request). It stores the data (together with the file attributes) on
the configured backup medium. Bareos supports various types of backup media, as
shown in Figure 1, including disks, tape drives and even cloud storage
solutions. During the restore process, the SD is responsible for sending the
correct data back to the FD(s). The Storage Dæmon runs as a dæmon on the
machine handling the backup device(s).

Backup Jobs

A backup job defines what to back up (FileSet directive for the client), when
to back up (schedule) and where to back up (for example, on a disk, tape, etc.).
Bareos is quite flexible, and you can mix different directives. So you can have
different job definitions (resources), backing up different machines, but using
the same schedule, the same FileSet and even the same backup medium.

The schedule describes what kind of backup (full, incremental or differential)
runs on different days of the week or month. If more than one backup job relies
on the same schedule, it's possible to set the job priority and tell
Bareos which job is supposed to run first. Additionally, there are restore,
verify and admin jobs.

bconsole and WebUI

The Bareos configuration is stored in text files. In order to communicate with
the director, administrators (and other authorized users) can use the
command-line tool Bareos Console (bconsole). The shell interface allows you to
query Bareos' state, determine the status of a particular job, examine the
contents of the database and run jobs manually.

You can run bconsole basically anywhere on your network—it doesn't have to
be the BD machine. Since Bareos Console is a shell interface, it also works via
SSH.

The Bareos WebUI (Figure 2) has been part of the backup solution since version
15.2.0. The multilingual web interface can access multiple directors and
catalogs. Its main purpose is to monitor the backup software, but it's also
possible to start, cancel or rerun jobs. You can use the WebUI to restore
files (even to a different client) and browse through a file tree of backup
jobs.

[image: Bareos WebUI]

Figure 2. The Bareos WebUI allows users to monitor the backup solution as well
as restore their data.

Special Features

Bareos values security and safety and supports transport encryption as well as
data encryption. The software uses TLS (Transport Layer Security) for all
network connections. On top of that, it's possible to encrypt and sign the data
on the File Dæmon before the backup is sent to the Storage Dæmon.
Encryption and signing are implemented using RSA private keys coupled with
self-signed X.509 certificates (PKI, Public Key Infrastructure).

You can extend Bareos' functionality by adding plugins to the director, FD and
SD. For example, there are LDAP plugins, plugins to back up and restore various
database back ends (PGSQL, MySQL, MSSQL), extensions for GlusterFS and Ceph
filesystem, and a VMware plugin for agentless backups of virtual machines
running on VMware vSphere. The bpipe plugin is a generic pipe program that
simply transmits the data from a specified program to Bareos and back.

Documentation and Support

For more information on Bareos, please have a look at the official
documentation. There are also two
mailing lists: bareos-users
(for users, for help
from the community) and bareos-devel
(for developers, for discussions on how to modify
the Bareos code). The source code is available in the Bareos GitHub repository.

The Bareos download
servers offer packages for all major operating systems
(stable Bareos version only). Subscription customers can get access to
repositories with maintenance and bug-fix releases. The company Bareos GmbH
&
Co. KG (located in Cologne, Germany) also offers professional support.

—Heike Jurzik and Maik Aussendorf

News Briefs

	
Microsoft has published the code for Windows Calculator and released it
on GitHub under the permissive MIT license. Ars Technica reports
that "The repository shows Calculator's surprisingly long
history. Although it is in some regards one of the most modern Windows
applications—it's an early adopter of Fluent Design and has been used
to showcase a number of design elements—core parts of the codebase date
all the way back to 1995."

	
Audacity
recently released version 2.3.1. This new version restores Linux
support, which was missing in the previous version, and also fixes more
than 20 bugs and improves Audacity for macOS. For details on all the new
features, go here,
and see also the release
notes.

	
Flickr
has announced that all CC-licensed images will be protected. According
to the Creative
Commons article, "all CC-licensed and public domain images on the
platform will be protected and exempted from upload limits. This includes
images uploaded in the past, as well as those yet to be shared. In effect,
this means that CC-licensed images and public domain works will always be
free on Flickr for any users to upload and share."

	
Purism
announces that along with three kill switches, Librem 5 smartphone
also will have a new feature called "Lockdown Mode".
As far as the kill switches, one is for cameras and microphone, one for WiFi
and Bluetooth, and one for
cellular baseband. Lockdown Mode goes further and
"extends our normal kill switches to provide
even more security and privacy". Purism's Chief Security Officer Kyle
Rankin writes, "When in Lockdown Mode, in addition to powering off the cameras,
microphone, WiFi, Bluetooth
and cellular baseband we also cut power to GNSS, IMU, and ambient light and
proximity sensors. Lockdown Mode leaves you with a perfectly usable
portable computer, just with all tracking sensors and other hardware
disabled. If you switch any of the hardware kill switches back on, the
hardware that corresponds to that switch powers on along with GNSS, IMU,
and ambient light and proximity sensors."

	
Firefox announced its new Firefox Send feature. According to the
Mozilla
Blog post, "Send is a free encrypted file transfer service that
allows users to safely and simply share files from any browser.
Additionally, Send will also be available as an Android app in beta later
this week." You also can decide when the link expires, select the number of
downloads and optionally add a password for more security.

	
The FSF
awarded seven devices from ThinkPenguin with its Respects Your
Freedom (RYF) certification. The devices include "The Penguin Wireless G
USB Adapter (TPE-G54USB2), the Penguin USB Desktop Microphone for GNU/Linux
(TPE-USBMIC), the Penguin Wireless N Dual-Band PCIe Card (TPE-N300PCIED2),
the PCIe Gigabit Ethernet Card Dual Port (TPE-1000MPCIE), the PCI Gigabit
Ethernet Card (TPE-1000MPCI), the Penguin 10/100 USB Ethernet Network Adapter
v1 (TPE-100NET1), and the Penguin 10/100 USB Ethernet Network Adapter v2
(TPE-100NET2)". This certification means that "products meet the FSF's
standards in regard to users' freedom, control over the product, and
privacy."

	
The new PocketBeagle Linux computer is now available for $29.95 from
Adafruit. According
to Geeky
Gadgets, the PocketBeagle "offers a powerful 1GHz AM3358 powered Linux
single board computer with a tiny form factor and open source architecture".
The article quotes Adafruit on the new SBC: "what differentiates the BeagleBone
is that it
has multiple I2C, SPI and UART peripherals (many boards only have one of
each), built in hardware PWMs, analog inputs, and two separate 200MHz
microcontroller systems called the PRU that can handle real-time tasks like
displaying to RGB matrix displays or NeoPixels.
It's not too much larger than our Feathers, but comes with 72 expansion
pin headers, high-speed USB, 8 analog pins, 44 digital I/Os, and plenty of
digital interface peripherals. You can also add a USB host connection by
wiring a USB A socket to the broken out USB host connections labeled VI, D+,
D-, ID and GND. Then plug in any USB Ethernet, Bluetooth, and Wi-Fi device
with available Linux drivers."

	
The official
Raspberry Pi keyboard and mouse are now available. You can
purchase them now from approved
Raspberry Pi resellers. The keyboard is available in six
layouts—English (UK), English (US), Spanish, French, German and
Italian—with
more in the works. The mouse is a " three-button, scroll-wheel optical
device with Raspberry Pi logos on the base and cable, coloured to match the
Pi case". View a video of
the products for more details.

	
SUSE is on track to become the largest independent Linux company. ZDNet reports that this
is due to IBM acquiring Red Hat and SUSE's growth for
the past seven straight years. The ZDNet post quotes SUSE CEO Nils Braukmann,
"We believe that makes our status as
a truly independent open source company more important than ever. Our
genuinely open-source solutions, flexible business practices, lack of
enforced vendor lock-in, and exceptional service are more critical to
customer and partner organizations, and our independence coincides with our
single-minded focus on delivering what is best for them."

	
Chef has announced it is releasing all of its software as open source.
According to DevOps.com,
"Chef has decided to open source its entire portfolio of IT automation
software as part of an effort to make it easier for organizations to
construct a DevOps pipeline using the company's software. A part of that
effort, Chef also launched the Chef Enterprise Automation Stack—which
combines Chef Infra for managing infrastructure, Chef InSpec for
maintaining compliance, Chef Habitat for managing applications, Chef
Automate for managing hybrid clouds and Chef Workstation, a starter kit for
launching Chef—within a single distribution of Chef software. Chef
Infra is the original Chef project around which the company was launched."

	Purism is
partnering with Private Internet Access (PIA), "as its very
first OEM partner to bring an unprecedented combination of tracking-free
and encrypted tools and services to the people." From the Purism blog post:
"By combining its signature VPN capabilities with Purism's leading
secure hardware and software products, the two will create a
first-of-its-kind bundle for users to set up a privacy protecting and
secure environment out of the box. The addition of PIA as a VPN partner
strengthens Purism's growing roster of partners and services that make
its Librem line the most comprehensive privacy and security focused
offering on the market."

	
RaspberryPi.org
reports that you can now build a digital Etch-A-Sketch. The post
notes that Martin
Fitzpatrick built something called an "Etch-A-Snap", which is a Raspberry
Pi Zero and camera module-connected Etch-A-Sketch: "Etch-A-Snap is
(probably) the world's first Etch-A-Sketch Camera. Powered by a
Raspberry Pi Zero (or Zero W), it snaps photos just like any other camera,
but outputs them by drawing to an Pocket Etch-A-Sketch screen. Quite
slowly." See Martin's Reddit
post for more details.

Hack and /: Digital Will, Part I: Requirements

Digital assets are becoming as important as physical assets, so how
you do manage them after you die? By Kyle Rankin

When you lose a member of your family, you may find yourself at some point
thinking about your own mortality, which then may lead you to think through
preparations for your own death. I lost my father recently, but years
before his death, he set up a will that described how to manage his
estate, but he also made sure to share with me login details for his important
financial accounts so I would have access when the time came. When the time
did come to put his plans into practice, those details were
invaluable.

All of this made me realize just how complicated it would be for someone to
manage my own accounts in the event of my death, especially considering how
much effort I've gone through to secure my computers and accounts. After
all, unlike my dad, I don't use the same password for everything. What I
realized I needed was the equivalent of a digital will: instructions and
credentials so my next of kin had everything they needed to access my
accounts and manage my affairs. In this first article of what will be a two-part
series, I describe the requirements and plans to create a digital
will in a way that would be manageable for my next of kin while also not
negatively affecting the security of my accounts. The second part of the
article will describe how I implemented these plans.

Defining Terms

This digital will is based on many of the ideas behind a traditional will,
and I intend on borrowing a lot of the framework and terms instead of
"re-inventing the will". To get started, let me define a few terms, but I
should make it clear that I'm not an attorney, so these are just loose
definitions to describe how some common terms used in a will might be
applied to this digital will:

	
Decedent/Testator: the decedent is the person who has died, and the testator
is the person who signs the will and whose will it is. For our purposes,
this will be the same person—the person who currently controls these
digital assets that will be transferred upon his or her death.

	
Beneficiary/Inheritor: the person or persons who are receiving a gift of
personal property from the decedent. For our purposes, this is the person or
persons who will get control of digital accounts or other assets.

	
Administrator/Executor: the person who is to oversee the administration of
the estate and make sure the will is followed according to the testator's
wishes. Often a testator will name a preferred executor in the will itself;
other times, they are appointed by the court. In the case of a traditional
will, the executor also may happen to be a beneficiary, but for some larger
or more complicated estates it's often a third party selected for their
financial or business know-how. For our purposes here, the executor will need
technical know-how and will be the person who assists the beneficiary with
getting access to accounts and managing any digital assets up to the point
that the beneficiary can take over and will no longer need technical
assistance.

Goals and Requirements

Unlike a traditional will, this digital will does not have a goal of
defining who gets digital assets like online financial
accounts—a
traditional will already can define that sort of thing in an appropriate
and legal way. Instead, the main goal of this digital will is to enable the
executor to grant the beneficiary access to digital assets left behind.
This main goal then helps with defining some related requirements.

Requirement 1: Simplicity

Dealing with a loved one's death and regular estate is difficult enough as
it is. The extra complexity behind digital assets makes this even more
difficult, and since you'll want to add security requirements on top, this
very easily could result in a complicated and hard-to-follow process.
Simplicity has to be a primary requirement, since you won't be around to
help with the administration. This means however tempting it might be to
use sophisticated cryptography algorithms or technologies, you need to make
the digital will as foolproof and simple as possible.

Requirement 2: Documentation

Since I work in technology, I set up and maintain a number of systems at
home. These include common household systems like wireless access points, a
local file server and media center computers. Those systems are pretty
common for people who are into computers, but as I have a sysadmin
background, I also maintain email, web and DNS servers for domains that
we own and that I and my family use for our main email and various blogs and
other websites. All of these systems are largely undocumented, since I
am
the one who set them up and no one else maintains them, but obviously, that
presents a problem if I die.

So one requirement for this project is to provide some kind of
documentation for all of those systems. This documentation is not just
about which systems exist (which is an important start), but also some level of
detail on how to maintain those systems. The executor is the
technical help here, but they can't be expected to perform their duties
indefinitely. So the documentation also might need to cover how to migrate
to a replacement system in the future, since some systems need more
technical know-how to maintain long-term than the beneficiary may have. The
person writing the digital will is in the best place to make those
determinations, as they know the skill levels and time commitment necessary
to maintain the systems as well as the skill levels and free time
available to both the executor and the beneficiary.

Requirement 3: Secure Transfer of Account Authentication

Whether you maintain local IT systems in your house or not, you still
likely have a number of online accounts that you don't share with anyone
else. Each of those accounts has its own set of credentials, and although some
online services have support in place so that a beneficiary or next of kin
can take over the decedent's account with a valid death certificate, many
don't.

The digital will needs to provide a way to transfer access to those
accounts over to the beneficiary, possibly with the help of the executor,
without putting those accounts at risk from outside attackers. Ideally, the
accounts would sit in a kind of digital trust so that the executor can't
independently get access to those accounts prematurely—no matter how much
you trust your executor, you probably don't want that person to have access to all
your accounts and systems while you are alive. In some circumstances, you
also might choose to prevent the beneficiary from getting premature access
as well (for instance, if the beneficiary is your child). Even if you
do
trust your executor and beneficiary fully, you may not trust your full set
of secrets on their systems since they could get hacked.

Requirement 4: Maintenance

If you ever have been responsible for technical documentation, you know how
quickly that sort of thing can become out of date. This digital will process is
no different, but it's even more important that it be kept up to date. This
means you need to add an additional requirement that you build in some
process to keep the documentation, credentials and everything else related
to this digital will up to date via some periodic process.

Requirement 5: Fault Tolerance

Technology and people can fail, so this digital will needs to account for
and be resilient to failure both in any technology it picks and mistakes or
memory lapses for any people involved. Systems should be redundant and
account for failures and mistakes. You should be careful when choosing any
solutions that rely on third parties that could go out of business or shut
down a particular service they provide.

Requirement 6: FOSS

The technologies for this digital will should rely on free and open-source
software (FOSS) not just because that matches my own ideals (and the ideals
of Linux Journal), but also because a FOSS solution helps with the
fault-tolerance requirement. FOSS software, even if it becomes unmaintained,
still should be available for use in the future, whereas proprietary
software or services may not.

Conclusion

Thinking through these requirements was hard, but not nearly as hard as
figuring out an implementation that satisfies these requirements! In the
next part of this article series, I will describe the solution I came up
with for my own digital will.

 About the Author

 Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference, Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O'Reilly books. Rankin speaks frequently on security and open-source software including at BsidesLV, O'Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and Penguicon. You can follow him at @kylerankin.

[image: Kyle Rankin]

At the Forge: Introducing Mypy, an Experimental Optional Static Type
Checker for Python

Tighten up your code and identify errors before they occur with
mypy. By
Reuven M. Lerner

I've been using dynamic languages—Perl, Ruby and Python—for
many years. I love the flexibility and expressiveness that such
languages provide. For example, I can define a function that sums
numbers:

def mysum(numbers):
 total = 0
 for one_number in numbers:
 total += one_number
 return total

The above function will work on any iterable that returns numbers. So
I can run the above on a list, tuple or set of numbers. I can even
run it on a dictionary whose keys are all numbers. Pretty great,
right?

Yes, but for my students who are used to static, compiled languages,
this is a very hard thing to get used to. After all, how can you make
sure that no one passes you a string, or a number of strings? What if
you get a list in which some, but not all, of the elements are numeric?

For a number of years, I used to dismiss such worries. After all,
dynamic languages have been around for a long time, and they have done a good
job. And really, if people are having these sorts of type mismatch
errors, then maybe they should be paying closer attention. Plus, if you
have enough testing, you'll probably be fine.

But as Python (and other dynamic languages) have been making inroads
into large companies, I've become increasingly convinced that there's
something to be said for type checking. In particular, the fact that
many newcomers to Python are working on large projects, in which many
parts need to interoperate, has made it clear to me that some sort of
type checking can be useful.

How can you balance these needs? That is, how can you enjoy Python as a
dynamically typed language, while simultaneously getting some added
sense of static-typing stability?

One of the most popular answers is a system known as mypy, which
takes advantage of Python 3's type annotations for its own purposes.
Using mypy means that you can write and run Python in the normal way,
gradually adding static type checking over time and checking it
outside your program's execution.

In this article, I start exploring mypy and how you can use it to
check for problems in your programs. I've been impressed by
mypy,
and I believe you're likely to see it deployed in a growing number
of places, in no small part because it's optional, and thus allows
developers to use it to whatever degree they deem necessary,
tightening things up over time, as well.

Dynamic and Strong Typing

In Python, users enjoy not only dynamic typing, but also strong typing.
"Dynamic" means that variables don't have types, but that values do.
So you can say:

>>> x = 100
>>> print(type(x))
int

>>> x = 'abcd'
>>> print(type(x))
str

>>> x = [10, 20, 30]
>>> print(type(x))
list

As you can see, I can run the above code, and it'll work just fine.
It's not particularly useful, per se, but it never would pass even a
first-pass compilation in a statically compiled language. That's
because in such languages, variables have types—meaning that if you
try to assign an integer to a string variable, you'll get an error.

In a dynamic language, by contrast, variables don't have types at
all. Running the type function, as I did above, doesn't actually
return the variable's type, but rather the type of data to which the
variable currently points.

Just because a language is dynamically typed doesn't mean that it's
totally loosey-goosey, letting you do whatever you want. (And yes, that
is the technical term.) For example, I can try this:

>>> x = 1
>>> y = '1'
>>> print(x+y)

That code will result in an error, because Python doesn't know
how to add integers and strings together. It can add two integers
(and get an integer result) or two strings (and get a string result),
but not a combination of the two.

The mysum function that you saw earlier assigns 0 to the local
"total" variable, and then adds each of the elements of
numbers to
it. This means that if numbers contains any non-numbers, you're
going to be in trouble. Fortunately, mypy will be able to solve
this problem for you.

Type Annotations

Python 3 introduced the idea of "type annotations," and as of Python
3.6, you can annotate variables, not just function parameters and
return values. The idea is that you can put a colon (:) and then a
type following parameter names. For example:

def hello(name:str):
 return f'Hello, {name}'

Here, I've given the name parameter a type annotation of
str. If
you've used a statically typed language, you might believe that
this will add an element of type safety. That is, you might think
that if I try to execute:

hello(5)

I will get an error. But in actuality, Python will ignore these
type annotations completely. Moreover, you can use any object you want
in an annotation; although it's typical to use a type, you actually
can use anything.

This might strike you as completely ridiculous. Why introduce such
annotations, if you're never going to use them? The basic idea is that
coding tools and extensions will be able to use the annotations for
their own purposes, including (as you'll see in just a bit) for the
purposes of type checking.

This is important, so I'll repeat and stress it: type annotations are
ignored by the Python language, although it does store them in an
attribute called __annotations__. For example, after defining the
above hello function, you can look at its annotations, which are
stored as a dictionary:

>>> hello.__annotations__
{'name': <class 'str'>}

Using Mypy

The mypy type checker can be downloaded and installed with the
standard Python pip package installer. On my system, in a terminal
window, I ran:

$ pip3 install -U mypy

The pip3 reflects that I'm using Python 3, rather than Python 2.
And the -U option indicates that I'd like to upgrade my installation
of mypy, if the package has been updated since I last installed it
on my computer. If you're installing this package globally and for
all users, you might well need to run this as root, using sudo.

Once mypy is installed, you can run it, naming your file. For
example, let's assume that hello.py looks like this:

def hello(name:str):
 return f"Hello, {name}"

print(hello('world'))
print(hello(5))
print(hello([10, 20, 30]))

If I run this program, it'll actually work fine. But I'd like to
use that type annotation to ensure that I'm only invoking the function
with a string argument. I can thus run, on the command line:

$ mypy ./hello.py

And I get the following output:

hello.py:7: error: Argument 1 to "hello" has incompatible type
 ↪"int"; expected "str"
hello.py:8: error: Argument 1 to "hello" has incompatible type
 ↪"List[int]"; expected "str"

Sure enough, mypy has identified two places in which the
expectation that I've expressed with the type annotation—namely,
that only strings will be passed as arguments to "hello"—has been
violated. This doesn't bother Python, but it should bother you, either
because the type annotation needs to be loosened up, or because (as in
this case), it's calling the function with the wrong type of argument.

In other words, mypy won't tell you what to do or stop you from
running your program. But it will try to give you warnings, and if you
hook this together with a Git hook and/or with an integration and
testing system, you'll have a better sense of where your program
might be having problems.

Of course, mypy will check only where there are annotations. If you
fail to annotate something, mypy won't be able to check it.

For example, I didn't annotate the function's return value. I can
fix that, indicating that it returns a string, with:

def hello(name:str) -> str:
 return f"Hello, {name}"

Notice that Python introduced a new syntax (the -> arrow), and
allowed me to stick an annotation before the end-of-line colon, in
order for annotations to work. The annotation dictionary has now
expanded too:

>>> hello.__annotations__
{'name': <class 'str'>, 'return': <class 'str'>}

And in case you're wondering what Python will do if you have a local
variable named return that conflicts with the return value's
annotation...well, "return" is a reserved word and cannot be used as
a parameter name.

More Sophisticated Checking

Let's go back to the mysum function. What will (and won't)
mypy
be able to check? For example, assume the following file:

def mysum(numbers:list) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

print(mysum([10, 20, 30, 40, 50]))
print(mysum((10, 20, 30, 40, 50)))
print(mysum([10, 20, 'abc', 'def', 50]))
print(mysum('abcd'))

As you can see, I've annotated the numbers parameter to take only
lists and to indicate that the function will always return integers.
And sure enough, mypy catches the problems:

mysum.py:10: error:
 Argument 1 to "mysum" has incompatible type
 "Tuple[int, int, int, int, int]"; expected
 ↪"List[Any]"

mysum.py:12: error:
 Argument 1 to "mysum" has incompatible type
 "str"; expected "List[Any]"

The good news is that I've identified some problems. But in one case,
I'm calling mysum with a tuple of numbers, which should be fine, but
is flagged as a problem. And in another case, I'm calling it with a
list of both integers and strings, but that's seen as just fine.

I'm going to need to tell mypy that I'm willing to accept not just a
list, but any sequence, such as a tuple. Fortunately, Python now has
a typing module that provides you with objects designed for use in
such circumstances. For example, I can say:

from typing import Sequence

def mysum(numbers:Sequence) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

I've grabbed Sequence from the typing module, which includes all
three Python sequence types—strings, lists and tuples. Once I do
that, all of the mypy problems disappear, because all of the
arguments are sequences.

That went a bit overboard, admittedly. What I really want to say is
that I'll accept any sequence whose elements are integers. I can
state that by changing my function's annotations to be:

from typing import Sequence

def mysum(numbers:Sequence[int]) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

Notice that I've modified the annotation to be Sequence[int]. In
the wake of that change, mypy has now found lots of problems:

mysum.py:13: error: List item 2 has incompatible type "str";
 ↪expected "int"
mysum.py:13: error: List item 3 has incompatible type "str";
 ↪expected "int"
mysum.py:14: error: Argument 1 to "mysum" has incompatible type
 ↪"str"; expected "Sequence[int]"

I'd call this a big success. If someone now tries to use my function
with the wrong type of value, it'll call them out on it.

But wait: do I really only want to allow for lists and tuples? What
about sets, which also are iterable and can contain integers? And
besides, what's this obsession with integers—shouldn't I
also allow for floats?

I can solve the first problem by saying that I'll take not a
Sequence[int], but Iterable[int]—meaning, anything that is
iterable and returns integers. In other words, I can say:

from typing import Iterable

def mysum(numbers:Iterable[int]) -> int:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

Finally, how can I allow for either integers or strings? I use the
special Union type, which lets you combine types together in square
brackets:

from typing import Iterable, Union

def mysum(numbers:Iterable[Union[int, float]]) ->
 ↪Union[int,float]:
 output = 0
 for one_number in numbers:
 output += one_number
 return output

But if I run mypy against this code, and try to call
mysum with
an iterable containing at least one float, I'll get an error:

mysum.py:9: error: Incompatible types in assignment
 ↪(expression has type "float", variable has type "int")

What's the problem? Simply put, when I create output as a
variable, I'm giving it an integer value. And then, when I try to
add a floating-point value to it, I get a warning from mypy.
So, I can silence that by annotating the variable:

def mysum(numbers:Iterable[Union[int, float]])
 ↪-> Union[int,float]:
 output : Union[int,float] = 0
 for one_number in numbers:
 output += one_number
 return output

Sure enough, the function is now pretty well annotated. I'm too
experienced to know that this will catch and solve all problems, but
if others on my team, who want to use my function, use mypy to
check the types, they'll get warnings. And that's the whole point
here, to catch problems before they're even close to production.

Resources

You can read more about mypy here. That site
has documentation, tutorials and even information for people using
Python 2 who want to introduce mypy via comments (rather than
annotations).

About the Author

Reuven Lerner teaches Python, data science and Git to companies
around the world. You can subscribe to his free, weekly "better
developers" e-mail list, and learn from his books and courses at
http://lerner.co.il. Reuven lives with his wife and children in
Modi'in, Israel.

[image: Reuven M. Lerner]

Work the Shell: Breaking Up Apache Log Files for Analysis

Dave tackles analysis of the ugly Apache web server log. By Dave
Taylor

I know, in my last article I promised I'd jump back into the mail merge
program I started building a while back. Since I'm having some hiccups
with my AskDaveTaylor.com web server, however, I'm going to claim
editorial privilege and bump that yet again.

What I need to do is be able to process Apache log files and isolate
specific problems and glitches that are being encountered—a perfect use
for a shell script. In fact, I have a script of this nature that offers
basic analytics in my book Wicked Cool Shell Scripts from
O'Reilly, but this is a bit more specific.

Oh Those Ugly Log Files

To start, let's take a glance at a few lines out of the latest
log file for the site:

$ head sslaccesslog_askdavetaylor.com_3_8_2019
18.144.59.52 - - [08/Mar/2019:06:10:09 -0600] "GET /wp-content/
↪themes/jumpstart/framework/assets/js/nivo.min.js?ver=3.2
 ↪HTTP/1.1" 200 3074
"https://www.askdavetaylor.com/how-to-play-dvd-free-windows-
↪10-win10/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
 ↪64.0.3282.140 Safari/537.36 Edge/18.17763 X-Middleton/1"
 ↪52.53.151.37 - - [08/Mar/2019:06:10:09 -0600] "GET
 ↪/wp-includes/js/jquery/jquery.js?ver=1.12.4 HTTP/1.1"
 ↪200 33766 "https://www.askdavetaylor.com/how-to-play
↪-dvd-free-windows-10-win10/" "Mozilla/5.0 (Windows NT
 ↪10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1" 18.144.59.52 - - [08/Mar/2019:06:10:09
 ↪-0600] "GET /wp-content/plugins/google-analytics-for-
↪wordpress/assets/js/frontend.min.js?ver=7.4.2 HTTP/1.1"
 ↪200 2544 "https://www.askdavetaylor.com/how-to-play
↪-dvd-free-windows-10-win10/"
 ↪"Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1"

It's big and ugly, right? Okay, then let's just isolate a single entry to
see how it's structured:

18.144.59.52 - - [08/Mar/2019:06:10:09 -0600] "GET
 ↪/wp-content/themes/jumpstart/framework/assets/js/
↪nivo.min.js?ver=3.2 HTTP/1.1" 200 3074
"https://www.askdavetaylor.com/how-to-play-dvd-free-windows-
↪10-win10/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140
 ↪Safari/537.36 Edge/18.17763 X-Middleton/1"

That's still obfuscated enough to kick off a migraine!

Fortunately, the Apache website
has a somewhat clearer
explanation of what's known as the custom log file format that's in
use on my server. Of course, it's described in a way that only a
programmer could love:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
 ↪'\"%{User-agent}i\""

That's enough info to help decode the log entry. I'll define each
of the percent-format sequences as I go, so you can get a sense of how
it's all tied together too:

%h = IP Address = 18.144.59.52
%l = ID of client = -
%u = UserID of client = -
%t = Time of request = [08/Mar/2019:06:10:09 -0600]
%r = Request = "GET /wp-content/themes/jumpstart/framework/
↪assets/js/nivo.min.js?ver=3.2 HTTP/1.1"
%>s = Status code = 200
%b = Size of request = 3074
Referrer = "https://www.askdavetaylor.com/how-to-play-dvd-
↪free-windows-10-win10/"
User Agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
 ↪AppleWebKit/537.36 (KHTML, like Gecko)
 ↪Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763
 ↪X-Middleton/1"

Or, to make it a bit clearer yet:

IP - - TIMESTAMP REQUEST STATUS SIZE REFERRER USERAGENT

This becomes complicated to parse because there are two different types of
field separator: a space for each of the major fields, but since some of
the values can contain spaces, quotes to delimit the start/end of fields
Request, Referrer and User Agent.

As a general rule, shell utilities aren't so good at these sort of
mixed field separators, so it's time for a bit of out-of-the-box thinking!

Breaking Down Fields with Dissimilar Delimiters

It's true that the fields are divided up with dissimilar delimiters
(say that ten times fast), but you can process the information in stages.
You
can examine the line by just processing the quote delimiter with this
clumsy code block:

while read logentry
do
 echo "f1 = $(echo "$logentry" | cut -d\" -f1)"
 echo "f2 = $(echo "$logentry" | cut -d\" -f2)"
 echo "f3 = $(echo "$logentry" | cut -d\" -f3)"
 echo "f4 = $(echo "$logentry" | cut -d\" -f4)"
 echo "f5 = $(echo "$logentry" | cut -d\" -f5)"
 echo "f6 = $(echo "$logentry" | cut -d\" -f6)"
done < $accesslog

Since it's just an interim step on the development of the final shell
script, I'm not going to bother cleaning it up or making it more
efficient.

Running this against the first line of the accesslog, here's what's
revealed:

f1 = 18.144.59.52 - - [08/Mar/2019:06:10:09 -0600]
f2 = GET /wp-content/themes/jumpstart/framework/assets/
↪js/nivo.min.js?ver=3.2 HTTP/1.1
f3 = 200 3074
f4 = https://www.askdavetaylor.com/how-to-play-dvd-free-
↪windows-10-win10/
f5 =
f6 = Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140
Safari/537.36 Edge/18.17763 X-Middleton/1

What's important to notice here is field 3. Field 3 (f3) has both the
return code—200, in this case—and the total number of bytes in this
transaction, 3074.

This means that if f3 is then divided by the space delimiter,
you can
identify both return code and bytes easily enough:

f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

Using a space as a delimiter makes for a weird-looking command line, as you
can see, but the \ forces the very next character to be
interpreted as the specified value, first a double quote, then a space
character.

Extracting Just the Errors

Now, can you spin through the entire log file and just pull out error codes?
Sure you can, with just a simplification and tweak of the while loop:

while read logentry
do
 f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

 echo "$entry: returncode = $returncode, bytes = $bytes"
 entry=$(($entry + 1))
done < $accesslog

Since a return code of 200 is a success, it's easy to
grep -v and see
what other return codes show up in the log file:

$ sh breakdown.sh | grep -v 200
113: returncode = 405, bytes = 42
138: returncode = 405, bytes = 42
177: returncode = 301, bytes = -
183: returncode = 301, bytes = -
186: returncode = 405, bytes = 42
187: returncode = 404, bytes = 11787
220: returncode = 404, bytes = 11795
279: returncode = 405, bytes = 42
397: returncode = 301, bytes = -

Error 405 is (according to the W3 Web standards
site)
"Method Not Allowed", while 301 is "Moved Permanently", and
404 is a standard "Not Found" error when someone requests a
resource that the server cannot find.

Useful, but let's take the next step. For every query where the return
code is not a 200 "OK" status, let's show the original log file
line in question. This time, let's modify the script to do the
200
filtering too:

while read logentry
do
 f3=$(echo "$logentry" | cut -d\" -f3)
 returncode="$(echo $f3 | cut -f1 -d\)"
 bytes="$(echo $f3 | cut -f2 -d\)"

 if [$returncode != "200"] ; then
 echo "$returncode ($entry): $logentry"
 fi

 entry=$(($entry + 1))
done < $accesslog

The results then look like this:

$ sh breakdown.sh
405 (113): 3.122.179.106 - - [08/Mar/2019:06:10:11 -0600]
"GET /xmlrpc.php HTTP/1.1" 405 42 "-" "Mozilla/5.0 (X11;
Linux i686; rv:2.0.1) Gecko/20100101 Firefox/4.0.1
 ↪X-Middleton/1"
405 (138): 35.180.37.73 - - [08/Mar/2019:06:10:21 -0600]
"GET /xmlrpc.php HTTP/1.1" 405 42 "-" "Mozilla/5.0 (X11;
Linux i686; rv:2.0.1) Gecko/20100101 Firefox/4.0.1
 ↪X-Middleton/1"
301 (177): 34.239.180.102 - - [08/Mar/2019:06:10:30 -0600]
"GET /how_do_i_restructure_my_wordpress_blog_without_losing_seo
 ↪HTTP/1.1" 301 - "-" "Mozilla/5.0 (Windows NT 6.1;
 ↪WOW64; rv:29.0) Gecko/20120101 Firefox/29.0
 ↪X-Middleton/1"

It's useful to be able to see the log file entry line, the return error code and
the full log file entry line. Is there a pattern? Do they all have the same
user agent (for example, a bot)? Are they from the same IP address? A pattern
based on time of day?

With a judicious use of wc, I also can ascertain that this particular log
file encompasses 99,309 total hits, of which 4,393 (4.4%) are non-200
results.

Another useful feature for this script would be to create
multiple output files automatically, one per error code. I shall leave that, however, as
an exercise for you, dear reader!

And, for my next article, I'll jump back into that mail merge script!

Dave Taylor has been hacking shell scripts on UNIX and Linux systems for a
really long time. He's the author of Learning Unix for Mac OS
X and Wicked Cool Shell Scripts. You can find him on Twitter
as @DaveTaylor, and you can reach him through his tech Q&A site: Ask Dave Taylor.

[image: Dave Taylor]

diff -u

What's New in Kernel Development. By Zack Brown

KUnit and Assertions

KUnit has been seeing a lot of use and development recently. It's the kernel's new unit
test system, introduced late last year by Brendan Higgins. Its goal is to
enable maintainers and other developers to test discrete portions of kernel
code in a reliable and reproducible way. This is distinct from various forms of
testing that rely on the behavior of the system as a whole and, thus, do not
necessarily always produce identical results.

Lately, Brendan has submitted patches to make KUnit work conveniently with
"assertions". Assertions are like conditionals, but they're used in situations
where only one possible condition should be true. It shouldn't be possible for
an assertion to be false. And so if it is, the assertion triggers some kind of
handler that the developer then uses to help debug the reasons behind the
failure.

Unit tests and assertions are to some extent in opposition to each other—a
unit test could trigger an assertion when the intention was to exercise the
code being tested. Likewise, if a unit test does trigger an assertion, it could
mean that the underlying assumptions made by the unit test can't be relied on,
and so the test itself may not be valid.

In light of this, Brendan submitted code for KUnit to be able to break out of a
given test, if it triggered an assertion. The idea behind this was that the
assertion rendered the test invalid, and KUnit should waste no time, but
proceed to the next test in the queue.

There was nothing particularly controversial in this plan. The controversial
part came when Frank Rowand noticed that Brendan had included
a call to BUG(),
in the event that the unit test failed to abort when instructed to do so. That
particular situation never should happen, so Brendan figured it didn't make
much difference whether there was a call to BUG() in there or not.

But Frank said, "You will just annoy Linus if you submit this." He pointed out
that the BUG() was a means to produce a kernel panic and hang the entire
system. In Linux, this was virtually never an acceptable solution to any
problem.

At first, Brendan just shrugged, since as he saw it, KUnit was part of the
kernel's testing infrastructure and, thus, never would be used on a production
system. It was strictly for developers only. And in that case, he reasoned,
what difference would it make to have a BUG() here and there between friends?
Not to mention the fact that, as he put it, the condition producing the call to
BUG() never should arise.

But, Frank said this wasn't good enough. He said that whether you felt that KUnit
belonged or didn't belong in production systems, it almost certainly would find
its way into production systems in the real world. That's just how these things
go. People do what isn't recommended. But even if that were not the case, said
Frank, non-production systems likewise should avoid calling BUG(), unless
crashing the system were the only way to avoid actual data corruption.

Brendan had no serious objection to ditching the call to BUG(), he was just
posing questions, because it seemed odd that there would be any problem. But, he
was fine with ditching it.

So the feature remains, while the error handling will change. An interesting
thing about this particular debate is that it underscores the variety of
conflicts that can emerge with so many debugging and error-handling aspects of
the kernel. All sorts of conflicts and race conditions might emerge.

For example, a developer might write a new driver and want to test how it
behaves under heavy load. So they'll run a memory-intensive process while using
their driver, only to discover that the kernel's out-of-memory (OOM) killer
kills the process generating the load, before the key test situation can be
triggered within the driver.

It's amazing to consider the sheer quantity of testing and debugging features that have
encrusted themselves on every aspect of the Linux kernel development process.
Even git itself, the revision control system created by
Linus Torvalds
specifically to host kernel development, is itself a debugging tool that
ensures it is possible to identify and possibly revert changes that turn out to
cause a problem. In addition to everything else, there also are a wide array of
automated systems running within a variety of private enterprises. Some of
those load up running systems with particular workloads; some read the source
code directly, looking for patterns. It's impossible to know the full variety
and extent of testing that the Linux kernel receives on a daily basis.

Crazy Compiler Optimizations

Kernel development is always strange. Andrea Parri recently posted a patch to
change the order of memory reads during multithreaded operation, such that if
one read depended upon the next, the second could not actually occur before the
first.

The problem with this was that the bug never could actually occur, and the fix
made the kernel's behavior less intuitive for developers. Peter
Zijlstra, in
particular, voted nay to this patch, saying it was impossible to construct a
physical system capable of triggering the bug in question.

And although Andrea agreed with this, he still felt the bug was worth fixing, if
only for its theoretical value. Andrea figured, a bug is a bug is a bug, and they
should be fixed. But Peter objected to having the kernel do extra work to
handle conditions that could never arise. He said, "what I do object to is a
model that's weaker than any possible sane hardware."

Will Deacon sided with Peter on this point, saying that the underlying hardware
behaved a certain way, and the kernel's current behavior mirrored that way. He
remarked, "the majority of developers are writing code with the underlying
hardware in mind and so allowing behaviours in the memory model which are
counter to how a real machine operates is likely to make things more confusing,
rather than simplifying them!"

Still, there were some developers who supported Andrea's patch. Alan
Stern, in
particular, felt that it made sense to fix bugs when they were found, but that
it also made sense to include a comment in the code, explaining the default
behavior and the rationale behind the fix, even while acknowledging the bug
never could be triggered.

But, Andrea wasn't interested in forcing his patch through the outstretched
hands of objecting developers. He was happy enough to back down, having made
his point.

It was actually Paul McKenney, who had initially favored Andrea's patch and had
considered sending it up to Linus Torvalds for inclusion in the kernel, who
identified some of the deeper and more disturbing issues surrounding this whole
debate. Apparently, it cuts to the core of the way kernel code is actually
compiled into machine language. Paul said:

We had some debates about this sort of thing at the C++ Standards Committee
meeting last week.

Pointer provenance and concurrent algorithms, though for once not affecting
RCU! We might actually be on the road to a fix that preserves the relevant
optimizations while still allowing most (if not all) existing concurrent C/C++
code to continue working correctly. (The current thought is that loads and
stores involving inline assembly, C/C++ atomics, or volatile get their
provenance stripped. There may need to be some other mechanisms for plain
C-language loads and stores in some cases as well.)

But if you know of any code in the Linux kernel that needs to compare pointers,
one of which might be in the process of being freed, please do point me at it.
I thought that the smp_call_function() code fit, but it avoids the problem
because only the sending CPU is allowed to push onto the stack of pending
smp_call_function() invocations.

That same concurrent linked stack pattern using cmpxchg() to atomically push
and xchg() to atomically pop the full list -would- have this problem. The old
pointer passed to cmpxchg() might reference an object that was freed between
the time that the old pointer was loaded and the time that the cmpxchg()
executed. One way to avoid this is to do the push operation in an RCU
read-side critical section and use kfree_rcu() instead of kfree(). Of course,
code in the idle loop or that might run on offline CPUs cannot use RCU, plus
some data structures are not happy with kfree_rcu() delays, so...

In other words, the issue of how the C compiler should treat pointers depends
to some extent on whether they are pointers at all. There's nothing about a
pointer that distinguishes it from any other number, except that the compiler
knows it's a pointer and can therefore do certain things with it that wouldn't
make sense in other contexts. It's this issue of the origins of a
number—that is,
their provenance—that the standards committee was trying to resolve. The
reason any of this is useful and relevant is that the compiler can only
optimize code to be faster and more efficient if it can understand what's
happening and what's going to happen.

Peter poked around online until he found a paper
describing the situation in
detail.

It horrified him. His conclusion was, "that's all massive bong-hits. That's
utterly insane. Even the proposed semantics are crazy."

Paul did not dissent from that view, though obviously more efficient code is
better than less efficient code, and the compiler should go to whatever
extremes it can manage to achieve it.

Paul said that none of this was new. In fact, it all dated back 20 years and
more to the relatively early days of multithreaded operation. There were, Paul
said, a variety of approaches, and he said he hoped to be able to show the
kernel folks some of what the GCC folks were thinking on the matter to get
feedback and suggestions.

Peter still was a bit freaked out by the situation. In particular, he was
concerned about whether the compiler could produce reliable code at all. He
remarked, "at the very least we should get this fixed and compile a kernel with
the fixed compiler to see what (if anything) changes in the generated code and
analyze the changes (if any) to make sure we were ok (or not)."

The GNU C compiler is definitely filled with insanity. The whole question of
how to convert C code into the best possible machine code is one that can never
fully be answered—and in fact, the question continually changes as new CPUs
come out on the market. Not to mention that the compiler also has to work
around processor-specific security flaws like the ones plaguing
Intel chips in
recent years.

Add to this the fact that GCC needs to produce good code not just for the Linux
kernel, but for any coding project that someone might dream up. So GCC has to
remain both highly specialized and highly generalized at the same time. It
makes perfect sense that its dark innards would be dark and innardly.

CGroup Interactions

CGroups are under constant development, partly because they form the core of
many commercial services these days. An amazing thing about this is that they
remain an unfinished project. Isolating and apportioning system elements is an
ongoing effort, with many pieces still to do. And because of security concerns,
it never may be possible to present a virtual system as a fully
independent system. There always may be compromises that have to be made.

Recently, Andrey Ryabinin tried to fix what he felt was a problem with how
CGroups dealt with low-memory situations. In the current kernel, low-memory
situations would cause Linux to recuperate memory from all CGroups equally. But
instead of being fair, this would penalize any CGroup that used memory
efficiently and reward those CGroups that allocated more memory than they
needed.

Andrey's solution to this was to have Linux recuperate unused memory from
CGroups that had it, before recuperating any from those that were in heavy use.
This would seem to be even less fair than the original behavior, because only
certain CGroups would be targeted and not others.

Andrey's idea garnered support from folks like Rik van Riel. But not everyone
was so enthralled. Roman Gushchin, for example, pointed out that the
distinction between active and unused memory was not as clear as Andrey made it
out to be. The two of them debated this issue quite a bit, because the whole
issue of fair treatment hangs in the balance. If Andrey's whole point is to
prevent CGroups from "gaming the system" to ensure more memory for themselves,
then the proper approach to low-memory conditions depends on being able to
clearly identify which CGroups should be targeted for reclamation and which
should be left alone.

At the same time, the situation could be seen as a security concern, with an
absolute need to protect independent CGroups from each other. If so, something
like Andrey's patch would be necessary, and many more security-minded
developers would start to take an interest in getting the precise details
exactly right.

Note: if you're mentioned in this article and want to send a
response,
please send a message with your response text to ljeditor@linuxjournal.com
and we'll run it in the next Letters section and post it on the website as
an addendum to the original article.

 About the Author

Zack Brown is a tech journalist at Linux Journal and Linux
Magazine, and is a former author of the "Kernel Traffic" weekly
newsletter and the "Learn Plover" stenographic typing tutorials. He
first installed Slackware Linux in 1993 on his 386 with 8 megs of RAM
and had his mind permanently blown by the Open Source community. He
is the inventor of the Crumble pure strategy board game,
which you can make yourself with a few pieces of cardboard. He also
enjoys writing fiction, attempting animation, reforming Labanotation,
designing and sewing his own clothes, learning French and spending time
with friends'n'family.

[image: Zack Brown]

[image: LJ298-May2019-DeepDive]What Does It Take to Make a Kernel?

The kernel this. The kernel that. People
often refer to one operating system's kernel or another without
truly knowing what it does or how it works or what it takes to make
one. What does it take to write a custom (and non-Linux) kernel? By Petros Koutoupis

So, what am I going to do here? In June 2018, I wrote a guide
to build a complete Linux distribution from source packages, and in
January 2019, I expanded
on that guide by adding more packages to
the original guide. Now it's time to dive deeper into the custom
operating system topic. This article describes how to write your very own kernel from scratch
and then boot up into it. Sounds pretty straightforward, right? Now,
don't get too excited here. This kernel won't do much of anything.
It'll
print a few messages onto the screen and then halt the CPU. Sure,
you can build on top of it and create something more, but that is not
the purpose of this article. My main goal is to provide you, the reader,
with a deep understanding of how a kernel is written.

Once upon a time, in an era long ago, embedded Linux was not really a
thing. I know that sounds a bit crazy, but it's true! If you worked with
a microcontroller, you were given (from the vendor) a specification, a
design sheet, a manual of all its registers and nothing more. Translation:
you had to write your own operating system (kernel included)
from scratch. Although this guide assumes the standard generic
32-bit x86 architecture, a lot of it reflects what had to be done
back in the day.

The exercises below require that you install a few packages in
your preferred Linux distribution. For instance, on an Ubuntu machine,
you will need the following:

	binutils

	
gcc

	
grub-common

	
make

	
nasm

	
xorriso

An Extreme Crash Course into the Assembly Language

Note: I'm going to simplify things by pretending to work with
a not-so-complex 8-bit microprocessor. This doesn't
reflect the modern (and possibly past) designs of any commercial
processor.

When the designers of a microprocessor create a new chip, they will
write some very specialized microcode for it. That microcode will
contain defined operations that are accessed via operation codes or
opcodes. These defined opcodes contain instructions
(for the microprocessor) to add, subtract, move values and addresses
and more. The processor will read those opcodes as part of a larger
command format. This format will consist of fields that hold a series of
binary numbers—that is, 0s and 1s. Remember, this processor
understands only high (the 1s) and low (the 0s) signals, and when those
signals (as part of an instruction) are fed to it in the proper sequence,
the processor will parse/interpret the instruction and then execute it.

[image: Command Structure]

Figure 1. A Command Structure
for the Made-Up Processor

Now, what exactly is assembly language? It's as close to machine code as
you can
get when programming a microprocessor. It is human-readable code based
on the machine's supported instruction set and not just a series of
binary numbers. I guess you could memorize all the
binary numbers (in their proper sequence) for every instruction, but it
wouldn't make much sense, especially if you can simplify code writing
with more human-readable commands.

This make-believe and completely unrealistic processor supports only four
instructions of which the ADD instruction maps to an opcode of 00
in binary code, and SUB (or subtract) maps to an opcode of 01 in
binary. You'll be accessing four total CPU memory registers: A or 00,
B or 01, C or 10 and D or 11.

Using the above command structure, your compiled code will send the
following instruction:

ADD A, B, C

Or, "add the contents of A and B and store them into register C" in
the following binary machine language format:

00000110

Let's say you want to subtract A from C and store it in the B
register. The human-readable code would look like the following:

SUB C, A, D

And, it will translate to the following machine code for the processor's
microcode to process:

01100011

As you would expect, the more advanced the chip (16-bit, 32-bit,
64-bit), the more instructions and larger address spaces are supported.

The Boot Code

The assembler I'm using in this tutorial is called NASM. The open-source
NASM, or the Net-Wide Assembler, will assemble
the assembly code into a file format called object code. The object file
generated is an intermediate step to produce the executable binary or
program. The reason for this intermediate step is that a single large
source code file may end up being cut up into smaller source code files
to make them more manageable in both size and complexity. For instance,
when you compile the C code, you'll instruct the C compiler to produce
only an object file. All object code (created from your ASM and C files)
will form bits and pieces of your kernel. To finalize the compilation,
you'll use a linker to take all necessary object
files, combine them, and then produce the program.

The following code should be written to and saved in a file named
boot.asm. You should store the file in the dedicated working
directory for the project.

boot.asm

bits 32

section .multiboot ;according to multiboot spec
 dd 0x1BADB002 ;set magic number for
 ;bootloader
 dd 0x0 ;set flags
 dd - (0x1BADB002 + 0x0) ;set checksum

section .text
global start
extern main ;defined in the C file

start:
 cli ;block interrupts
 mov esp, stack_space ;set stack pointer
 call main
 hlt ;halt the CPU

section .bss
resb 8192 ;8KB for stack
stack_space:

So, this looks like a bunch of nonsensical gibberish, right? It
isn't. Again, this is supposed to be human-readable code. For instance,
under the multiboot section, and in the proper order of the
multiboot specification (refer to the section labeled "References"
below), you're defining three double words variables. Wait,
what? What is a double word? Well, let's take a step back. The
assembly DD pseudo-instruction translates to Define Double (word),
which on an x86 32-bit system is 4 bytes (32-bits). A DW or Define
Word is 2 bytes (or 16 bits), and moving even further backward, a DB or
Define Byte is 8-bits. Think of it as your integers,
short and long in your high-level
coding languages.

Note: pseudo-instructions are not real x86 machine instruction. They
are special instructions supported by the assembler and for the assembler
to help facilitate memory initialization and space reservation.

Below the multiboot section, you have a section labeled
text, which is shortly followed by a function labeled
start. This start function will set up the
environment for your main kernel code and then execute that kernel
code. It starts with a cli. The CLI command, or Clear
Interrupts Flag, clears the IF flag in the EFLAGS register. The following
line moves the empty stack_space function into the Stack
Pointer. The Stack Pointer is small register on the microprocessor
that contains the address of your program's last request from a
Last-In-First-Out (LIFO) data buffer referred to as a Stack. The example assembly
program will call the main function defined in your C file
(see below) and then halt the CPU. If you look above, this is telling
the assembler via the extern main line that the code for
this function exists outside this file.

The Kernel's Main Function

So, you wrote your boot code, and your boot code knows that there is an external
main function it needs to load into, but you don't have an
external main function—at least, not yet. Create a file
in the same working directory, and name it kernel.c. The
file's contents should be the following:

kernel.c

#define VGA_ADDRESS 0xB8000 /* video memory begins here. */

/* VGA provides support for 16 colors */
#define BLACK 0
#define GREEN 2
#define RED 4
#define YELLOW 14
#define WHITE_COLOR 15

unsigned short *terminal_buffer;
unsigned int vga_index;

void clear_screen(void)
{
 int index = 0;
 /* there are 25 lines each of 80 columns;
 each element takes 2 bytes */
 while (index < 80 * 25 * 2) {
 terminal_buffer[index] = ' ';
 index += 2;
 }
}

void print_string(char *str, unsigned char color)
{
 int index = 0;
 while (str[index]) {
 terminal_buffer[vga_index] = (unsigned
 ↪lsshort)str[index]|(unsigned short)color << 8;
 index++;
 vga_index++;
 }
}

void main(void)
{
 /* TODO: Add random f-word here */
 terminal_buffer = (unsigned short *)VGA_ADDRESS;
 vga_index = 0;

 clear_screen();
 print_string("Hello from Linux Journal!", YELLOW);
 vga_index = 80; /* next line */
 print_string("Goodbye from Linux Journal!", RED);
 return;
}

If you scroll all the way to the bottom of the C file and look inside the
main function, you'll notice it does the following:

	
Assigns the start address of your video memory to the string buffer.

	
Resets your internal location marker for where you are in that string
buffer.

	
Clears the terminal screen.

	
Prints a message (in one color).

	
Sets your internal location marker for the next line.

	
Prints another message (in another color).

	
And, returns back to the boot code (where, if you recall, it halts the
CPU).

In the current x86 architecture, your video memory is running in protected
mode and starts at memory address 0xB8000. So, everything
video-related will start from this address space and will support up
to 25 lines with 80 ASCII characters per line. Also, the video mode in
which this is running supports up to 16 colors (of which I added a
few to play with at the top of the C file).

Following these video definitions, a global array is defined to
map to the video memory and an index to know where you are in that video
memory. For instance, the index starts at 0, and if you want to move to
the first character space of the next line on the screen, you'll need
to increase that index to 80, and so on.

As the names of the following two functions imply, the first clears
the entire screen with an ASCII empty character, and the second
writes whatever string you pass into it. Note that the expected
input for the video memory buffer is 2 bytes per character. The first
of the two is the character you want to output, while the second is
the color. This is made more obvious in the print_string() function,
where the color code is actually passed into the function.

Anyway, following those two functions is the main routine
with its actions already mentioned above. Remember, this is a learning
exercise, and this kernel will not do anything special other than print
a few things to the screen. And aside from adding real functions, this
kernel code is definitely missing some profanity. (You can add
that later.)

In the real world...

Every kernel will have a main() routine (spawned by
a bootloader), and within that main routine, all the proper system
initialization will take place. In a real and functional kernel, the
main routine eventually will drop into an infinite while()
loop where all future kernel functions take place or spawn a thread
accomplishing pretty much the same thing. Linux does this as well. The
bootloader will call the start_kernel() routine found in
init/main.c, and in turn, that routine will spawn an init
thread.

Linking It All Together

As mentioned previously, the linker serves a very important purpose. It
is what will take all of the random object files, put them together and
provide a bootable single binary file (your kernel).

linker.ld

OUTPUT_FORMAT(elf32-i386)
ENTRY(start)
SECTIONS
 {
 . = 1M;
 .text BLOCK(4K) : ALIGN(4K)
 {
 *(.multiboot)
 *(.text)
 }
 .data : { *(.data) }
 .bss : { *(.bss) }
 }

Let's set the output format to be a 32-bit x86 executable. The entry
point into this binary is the start function from your
assembly file, which eventually loads the main program
from the C file. Further down, this essentially is telling the linker
how to merge your object code and at what offset. In the linker file,
you explicitly specify the address in which to load your kernel binary. In
this
case, it is at 1M or a 1 megabyte offset. This is where the main kernel
code is expected to be, and the bootloader will find it here when it is
time to load it.

Booting the Kernel

The most exciting part of the effort is that you can piggyback off the
very popular GRand Unified Bootloader (GRUB) to load your kernel. In order
to do this, you need to create a grub.cfg file. For the
moment, write the following contents into a file of that name, and save
it into your current working directory. When the time comes to build your ISO
image, you'll install this file into its appropriate directory path.

grub.cfg

set timeout=3

menuentry "The Linux Journal Kernel" {
 multiboot /boot/kernel
}

Compilation Time

Build the boot.asm into an object file:

$ nasm -f elf32 boot.asm -o boot.o

Build the kernel.c into an object file:

$ gcc -m32 -c kernel.c -o kernel.o

Link both object files and create the final executable program (that is, your
kernel):

$ ld -m elf_i386 -T linker.ld -o kernel boot.o kernel.o

Now, you should have a compiled file in the same working directory labeled
kernel:

$ ls
boot.asm boot.o grub.cfg kernel kernel.c kernel.o
 ↪linker.ld

This file is your kernel. You'll be booting into that kernel shortly.

Building a Bootable ISO Image

Create a staging environment with the following directory path (from
your current working directory path):

$ mkdir -p iso/boot/grub

Let's double-check that the kernel is a multiboot file type (no output
is expected with a return code of 0):

$ grub-file --is-x86-multiboot kernel

Now, copy the kernel into your iso/boot directory:

$ cp kernel iso/boot/

And, copy your grub.cfg into the iso/boot/grub
directory:

$ cp grub.cfg iso/boot/grub/

Make the final ISO image pointing to your iso subdirectory
in your current working directory path:

$ grub-mkrescue -o my-kernel.iso iso/
xorriso 1.4.8 : RockRidge filesystem manipulator,
 ↪libburnia project.

Drive current: -outdev 'stdio:my-kernel.iso'
Media current: stdio file, overwriteable
Media status : is blank
Media summary: 0 sessions, 0 data blocks, 0 data, 10.3g free
Added to ISO image: directory '/'='/tmp/grub.fqt0G4'
xorriso : UPDATE : 284 files added in 1 seconds
Added to ISO image: directory
 ↪'/'='/home/petros/devel/misc/kernel/iso'
xorriso : UPDATE : 288 files added in 1 seconds
xorriso : NOTE : Copying to System Area: 512 bytes from file
 ↪'/usr/lib/grub/i386-pc/boot_hybrid.img'
ISO image produced: 2453 sectors
Written to medium : 2453 sectors at LBA 0
Writing to 'stdio:my-kernel.iso' completed successfully.

Additional Notes

Say you want to expand on this tutorial by
automating the entire process of building the final image. The best way
to accomplish this is by throwing a Makefile into the project's root
directory. Here's an example of what that Makefile would look like:

Makefile

CP := cp
RM := rm -rf
MKDIR := mkdir -pv

BIN = kernel
CFG = grub.cfg
ISO_PATH := iso
BOOT_PATH := $(ISO_PATH)/boot
GRUB_PATH := $(BOOT_PATH)/grub

.PHONY: all
all: bootloader kernel linker iso
 @echo Make has completed.

bootloader: boot.asm
 nasm -f elf32 boot.asm -o boot.o

kernel: kernel.c
 gcc -m32 -c kernel.c -o kernel.o

linker: linker.ld boot.o kernel.o
 ld -m elf_i386 -T linker.ld -o kernel boot.o kernel.o

iso: kernel
 $(MKDIR) $(GRUB_PATH)
 $(CP) $(BIN) $(BOOT_PATH)
 $(CP) $(CFG) $(GRUB_PATH)
 grub-file --is-x86-multiboot $(BOOT_PATH)/$(BIN)
 grub-mkrescue -o my-kernel.iso $(ISO_PATH)

.PHONY: clean
clean:
 $(RM) *.o $(BIN) *iso

To build (including the final ISO image), type:

$ make

To clean all of the build objects, type:

$ make clean

The Moment of Truth

You now have an ISO image, and if you did everything correctly, you should
be able to boot into it from a CD on a physical machine or in a virtual
machine (such as VirtualBox or QEMU). Start the virtual machine after
configuring its profile to boot from the ISO. You'll immediately be
greeted by GRUB (Figure 2).

[image: GRUB Bootloader]

Figure 2. The GRUB Bootloader
Counting Down to Load the Kernel

After the timeout elapses, the kernel will boot.

[image: kernel booted]

Figure 3.
The Linux Journal kernel
booted. Yes, it does only this.

Summary

You did it! You wrote your very own kernel from scratch. Again, it doesn't
do much of anything, but you definitely can expand upon this. Now,
if you will excuse me, I need to post a message to the USENET newsgroup,
comp.os.minix, about how I developed a new kernel, and that it
won't be big and professional like GNU.

Resources

	"DIY:
Build a Custom Minimal Linux Distribution from Source" by Petros
Koutoupis, LJ, June 2018

	"Build
a Custom Minimal Linux Distribution from Source, Part II" by Petros
Koutoupis, LJ, January 2019

	
The
Required Fields for the Multiboot Header

	
The
Computer Display Common Text Modes

	
The Official NASM Project Page

Petros Koutoupis, LJ Editor at Large, is currently a senior
performance software engineer at Cray for its Lustre High Performance File
System division.
He is also the creator and maintainer of the RapidDisk Project. Petros has
worked in the data storage industry for well over a decade and has helped
pioneer the many technologies unleashed in the wild today.

[image: Petros Koutoupis]

Memory Footprint of Processes

The amount of memory your system needs depends on the memory requirements
of the programs you run. Do you want to know how to figure that out?
It's not as simple as adding up the amount of memory used by each
process individually, because some of that memory can be shared. Read on
to learn the details. By Frank Edwards

System administrators want to understand the applications that run on their
systems. You can't tune a machine unless you know what the machine is
doing! It's fairly easy to monitor a machine's physical resources:
CPU (mpstat, top), memory
(vmstat), disk IO (iotop, blktrace,
blkiomon) and network bandwidth (ip,
nettop).

Logical resources are just as important—if not more important—yet
the tools to monitor them either don't exist or aren't
exactly "user-friendly". For example, the ps command can report the RSS
(resident set size) for a process. But how much of that is shared library
and how much is application? Or executable code vs. data space? Those are
questions that must be answered if a system administrator wants to
calculate an application's memory footprint.

To answer these questions, and others, I describe extracting information
from the /proc filesystem. First, let's look at terminology relevant
to Linux memory management. If you want an exhaustive look at memory
management on Linux, consider Mel
Gorman's seminal work Understanding the Linux
Virtual Memory Manager. His book is an oldie but goodie; the hardware he
describes hasn't
changed much over the intervening years, and the changes that have occurred
have been minor. This means the concepts he describes and much of the code
used to implement those concepts is still spot-on.

Before going into the nuts and bolts of the answers to those questions, you first
need to understand the context in which those questions are answered. So
let's start with a high-level overview.

Linux Memory Usage

Your computer system has some amount of physical RAM installed. RAM is
needed to run all software, because the CPU will fetch instructions and
data from RAM and nowhere else. When a system doesn't have enough RAM
to satisfy all processes, some of the process memory is written to an
external storage device and that RAM then can be freed for use by other
processes. This is called either swapping, when the RAM being freed is
anonymous memory (meaning that it isn't associated with file data, such
as shared memory or a process's heap space), or paging (which applies to
things like memory-mapped files).

(By the way, a process is simply an application that's currently
running. While the application is executing, it has a current directory,
user and group credentials, a list of open files and network connections,
and so on.)

Some types of memory don't need to be written out before they can be
freed and reused. For example, the executable code of an application is
stored in memory and protected as read-only. Since it can never be
changed, when Linux wants to use that memory for something else, it just
takes it! If the application ever needs that memory back again, Linux can
reload it from the original application executable on disk. Also, since
this memory is read-only, it can be used by multiple processes at the same
time. And, this is where the confusion comes in regarding calculating how
much memory a process is using—what if some of that memory is being
shared with other processes? How do you account for it?

Before getting to that, I need to define a few other terms.
The first is pinned memory. Most memory is pageable, meaning that it can
be swapped or paged out when the system is running low on RAM. But pinned
memory is locked in place and can't be reused. This is obviously good
for performance—the memory never can be taken away, so you never have
to wait for it to be brought back in. The problem is that such memory can
never be reused, even if the system is running critically low on RAM.
Pinned memory reduces the system's flexibility when it comes to
managing memory, and no one likes to be boxed into a corner.

Simple Example

I made reference above to read-only memory, memory that is shared, memory
used for heap space, and so on. Below is
some sample output that shows how memory is being used by my
Bash shell (I want to emphasize that this output has been trimmed to fit
into the allotted space, but all relevant fields are still represented.
You can run the two commands you see on your own system and look at real
data, if you wish. You'll see full pathnames instead of "..." as shown
below, for example):

fedwards@local:~$ cd /proc/$$
fedwards@local:/proc/3867$ cat maps
00400000-004f4000 r-xp 00000000 08:01 260108 /bin/bash
006f3000-006f4000 r--p 000f3000 08:01 260108 /bin/bash
006f4000-006fd000 rw-p 000f4000 08:01 260108 /bin/bash
006fd000-00703000 rw-p 00000000 00:00 0
00f52000-01117000 rw-p 00000000 00:00 0 [heap]
f4715000-f4720000 r-xp 00000000 08:01 267196 /.../libnss_files-2.23.so
f4720000-f491f000 ---p 0000b000 08:01 267196 /.../libnss_files-2.23.so
f491f000-f4920000 r--p 0000a000 08:01 267196 /.../libnss_files-2.23.so
f4920000-f4921000 rw-p 0000b000 08:01 267196 /.../libnss_files-2.23.so
f4921000-f4927000 rw-p 00000000 00:00 0
f4f55000-f5914000 r--p 00000000 08:01 139223 /.../locale-archive
f6329000-f6330000 r--s 00000000 08:01 396945 /.../gconv-modules.cache
f6332000-f6333000 rw-p 00000000 00:00 0
fd827000-fd848000 rw-p 00000000 00:00 0 [stack]
fd891000-fd894000 r--p 00000000 00:00 0 [vvar]
fd894000-fd896000 r-xp 00000000 00:00 0 [vdso]
ff600000-ff601000 r-xp 00000000 00:00 0 [vsyscall]
fedwards@local:/proc/3867$

Each line of output represents one vm_area. A
vm_area is a
data structure inside the Linux kernel that keeps track of how one region
of virtual memory is being used inside a process. The sample output has
/bin/bash on the first three lines, because Linux has created three ranges
of virtual memory that refer to the executable program. The first region
has permissions r-xp, because it is executable code (r = read, x = execute
and p = private; the dash means write permission is turned off). The
second region refers to read-only data within the application and has
permissions r--p (the two dashes represent write and execute permission).

The third region represents variables that have been given initial values
in the application's source code, so it must be loaded from the executable,
but it could be changed during runtime (hence the permissions
rw-p that shows
only execute is turned off). These regions can be any size, but they are
made of up pages, which are each 4K on Linux. The term
page means the
smallest allocatable unit of virtual memory. (In technical documentation,
you'll see two other terms: frame and slot. Frames and slots are the
same size as pages, but frames refer to physical memory and slots refer to
swap space.)

You know from my previous discussion that read-only regions are shared
with other processes, so why does "p" show up in the permissions for the
first region? Shouldn't it be a shared region? You have a good eye to
spot that! Yes, it should. And in fact, it is shared. The reason it
shows up as "p" here is because there are actually 14 different permissions
and room only for four letters, so some condensing had to be done. The "p"
means private, because while the memory is currently marked read-only, the
application could change that permission and make it read-write, and if it
did make that change and then modified the memory, you would not want other
processes to see those changes! That would be similar to one process
changing directory, and every other process on the system changing at the
same time! Oops! So the letter "p" that marks the region as private
really means copy-on-write. All of the memory starts out being shared
among all processes using that region, but if any part of it is modified
in the future, that one tiny piece is copied into another part of RAM so
that the change applies only to the one process that attempted the write.
In essence, it's private, even though 99% of the time, the memory in
that region will be shared with other processes. Such copying applies on a
page-by-page basis, not the entire vm_area. Now you can begin to see the
difficulty in calculating how much memory a process actually consumes.

But while I'm on this topic, there's a region in the list that
has an "s" in the permission field. That region is a memory-mapped
file,
meaning that the data blocks on disk are mapped to the virtual memory
addresses shown in the listing. Any reference the process makes to the
memory addresses are translated automatically into reads and writes to the
corresponding data blocks on disk. The memory used by this region is
actually shared by all processes that map the file into memory, meaning no
duplicated memory for file access by those processes.

Just because a region represents some given size of virtual memory does not
necessarily mean that there are physical frames of RAM for every virtual
page. In fact, this is often the case. Imagine an application that
allocates 100MB of memory. Should the operating system actually allocate
100MB right then? UNIX systems do not—they allocate a region of
virtual memory like those above, but no physical RAM. As the process tries
to access those virtual addresses, page faults will be generated, and the
operating system will allocate the memory at that time. Deferring memory
allocation until the last possible moment is one way that Linux optimizes
the use of memory, but it complicates the task in trying to determine how
much memory an application is using.

Recap So Far

A process's address space is broken up into regions called vm_areas.
These vm_areas are unique to each process, but the frames of memory
referred to by the pages within the vm_area might be shared across
processes. If the memory is read-only (like executable code), all
processes share the frame equally. Any attempt to write to virtual pages
that are read-only triggers a page fault that is converted into a SIGSEGV
and the process is killed. (You may have seen the message pop up on your
terminal screen, "Segmentation fault." That means the process was killed
by SIGSEGV.)

Memory that is read/write also can be shared, such as shared memory. If
multiple processes can write to the frames of the vm_area equally,
some form of synchronization inside the application will be necessary, or
multiple processes could write at the same time, possibly corrupting the
contents of that shared memory. (Most applications will use some kind of
mutex lock for this, but synchronization and locking is outside the scope
of this article.)

Adding Up the Memory Actually Used

So, determining how much memory a process consumes is difficult. You
could add up the space allocated to the vm_areas, but that's virtual
memory, not physical; large portions of that space could be unused or
swapped out. This number is not a true representation of the amount of
memory being used by the process.

You could add up only the frames that are used by this process and not
shared. (This information is available in /proc/pid/smaps.) You might
call this the "USS" (Unique Set Size), as it defines how much memory will be
freed when an application terminates (shared libraries typically stay in
RAM even when no processes are currently using them as a performance
optimization for when they are needed again). But this isn't the true
memory cost of a process either, as the process likely uses one or more
shared libraries. For example, if an application is executed and it uses a
shared library that isn't already in memory, that library must be
loaded—some part of that library should be allocated against the new
process, right?

The ps command reports the "RSS" (Resident Set Size), which
includes all
frames used by the process, regardless of whether they're shared.
Unfortunately, this number is going to inflate the memory size when
all processes are summed up—adding up this number for all processes
running on the system will count all shared libraries multiple times,
greatly inflating the actual memory requirement.

The /proc/pid/smaps file includes yet another memory category, PSS
(Proportional Set Size). This is the amount of unique memory just for one
process (the USS), plus a proportion of the memory that is shared by other
running processes. For example, let's assume the USS for a process is
2MB and it uses another 4MB of shared libraries, but those shared libraries
are used by three other processes. Since there are four processes using
the shared libraries, they should each only be accounted for 25% of the
overall library size. That would make the PSS of the process 2MB + (4MB /
4) = 3MB. If you now add together the PSS values of all processes on the
system, the shared library memory will be totally accounted for, meaning
the whole is equal to the sum of its parts.

It's not perfect—when one of those processes terminates, the
memory returned to the system will be USS, and because there's one less
process using the shared libraries, the PSS of all other processes will
appear to increase! A naïve system administrator might wonder why the
memory usage on the remaining processes has suddenly spiked, but in truth,
it hasn't. In this example, 4MB/4 becomes 4MB/3, so any process
using the shared libraries will see an adjusted PSS value that goes up by
.33MB.

As the last step, I'm going to demonstrate a command that performs these
calculations.

Automating the Work

The one-line command shown below will accumulate all of the
PSS values for all processes on the system:

awk '/^Pss:/ { ttl += $2 }; END { print ttl }' /proc/[0-9]*/smaps
 ↪2>/dev/null

Note that stderr is redirected to /dev/null. This is because
the shell replaces the wildcard string with a list of all filenames that
match and then executes the awk command. This means that by the time the
awk command is running, some of those processes already may have
terminated. That will cause awk to print an error message about a
non-existent file, hence redirecting stderr to avoid that error. (Astute
readers will note that this command line will never factor in the memory
consumed by the awk command itself!)

Many of the processes that the awk command is going to be reading will not
be accessible to an unprivileged account, so system administrators should
consider using sudo to run the command. (Inaccessible processes will
produce error messages that are then redirected to /dev/null, thus the
command will report a total of the memory used by all processes that
are
accessible—in other words, those owned by the current user.)

Summary

I've covered a lot of ground in this article, from terminology (pages,
frames, slots) and background information on how virtual memory is
organized (vm_areas), to details on how memory usage is reported to
userspace (the maps and smaps files under /proc). I've barely scratched the
surface of the type of information that the Linux kernel exposes to userspace, but
hopefully, this has piqued your interest enough that you'll
explore it further.

Resources

My favorite source for technical details is LWN.net
if I'm looking for
discussion and analysis, but I frequently will go straight to the Linux
source code when I'm looking for implementation details. See
"ELC: How much memory are applications
really using?" for the discussion around adding PSS to
smaps, and see "Tracking actual memory
utilization" for a discussion of memory used by a
process but that belongs to the kernel (something this article doesn't
touch upon).

 About the Author

Frank Edwards has been a programmer since the days of the Zilog Z-80 in the TRS-80
computer, circa 1978. For some people, programming is a hobby, or a job
or a career—for him, it's an obsession. He once disassembled an
operating system just to see how it worked. Most of his early life was
spent in C, but he has branched out considerably since then (Java, Python,
Perl, Swift and UNIX shell being where he spends most of his time).

Oops! Debugging Kernel Panics

A look into what causes kernel panics and some utilities to help gain
more information. By Petros Koutoupis

Working in a Linux environment, how often have you seen a kernel panic?
When it happens, your system is left in a crippled state until
you reboot it completely. And, even after you get your system back into a
functional state, you're still left with the question: why? You may have no
idea what happened or why it happened. Those questions can be answered
though,
and the following guide will help you root out the cause of some of the conditions
that led to the original crash.

[image: Kernel Panic]

Figure 1. A Typical Kernel Panic

Let's start by looking at a set of utilities known as
kexec and kdump. kexec allows you to boot into
another kernel from an existing (and running) kernel, and
kdump is a
kexec-based crash-dumping mechanism for Linux.

Installing the Required Packages

First and foremost, your kernel should have the following components statically built in to its image:

CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_DEBUG_INFO=y
CONFIG_MAGIC_SYSRQ=y
CONFIG_PROC_VMCORE=y

You can find this in /boot/config-`uname -r`.

Make sure that your operating system is up to date with the latest-and-greatest package versions:

$ sudo apt update && sudo apt upgrade

Install the following packages
(I'm currently using Debian, but the
same should and will apply to Ubuntu):

$ sudo apt install gcc make binutils linux-headers-`uname -r`
 ↪kdump-tools crash `uname -r`-dbg

Note: Package names may vary
across distributions.

During the installation, you will be prompted with questions to enable
kexec to handle reboots (answer whatever you'd like, but I answered
"no"; see Figure 2).

[image: kexex configuration menu]

Figure 2. kexec Configuration Menu

And to enable kdump to run and load at system boot, answer
"yes" (Figure 3).

[image: kdumo Configuration Menu]

Figure 3. kdump Configuration Menu

Configuring kdump

Open the /etc/default/kdump-tools file, and at the very top,
you should see the following:

USE_KDUMP=1
#KDUMP_SYSCTL="kernel.panic_on_oops=1"

Eventually, you'll write a custom module that will trigger an OOPS kernel
condition, and in order to have kdump gather and save the state of the
system for post-mortem analysis, you'll need to enable your kernel to
panic on this OOPS condition. In order to do this, uncomment the line
that starts with KDUMP_SYSCTL:

USE_KDUMP=1
KDUMP_SYSCTL="kernel.panic_on_oops=1"

The initial testing will require that SysRq be enabled. There
are a few ways to do that, but here I provide instructions
to enable support for this feature on system reboot. Open the
/etc/sysctl.d/99-sysctl.conf file, and make sure that the
following line (closer to the bottom of the file) is uncommented:

kernel.sysrq=1

Now, open this file: /etc/default/grub.d/kdump-tools.default. You
will find a single line that looks like this:

GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT
 ↪crashkernel=384M-:128M"

Modify the section that reads crashkernel=384M-:128M to
crashkernel=128M.

Now, update your GRUB boot configuration file:

$ sudo update-grub
[sudo] password for petros:
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.9.0-8-amd64
Found initrd image: /boot/initrd.img-4.9.0-8-amd64
done

And, reboot the system.

Verifying Your kdump Environment

After coming back from the reboot, dmesg will log the
following:

$ sudo dmesg |grep -i crash
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-4.9.0-8-amd64
 ↪root=UUID=bd76b0fe-9d09-40a9-a0d8-a7533620f6fa ro quiet
 ↪crashkernel=128M
[0.000000] Reserving 128MB of memory at 720MB for crashkernel
 ↪(System RAM: 4095MB)
[0.000000] Kernel command line: BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64
 ↪root=UUID=bd76b0fe-9d09-40a9-a0d8-a7533620f6fa ro
 ↪quiet crashkernel=128M

While your kernel will have the following features enabled (a "1"
means enabled):

$ sudo sysctl -a|grep kernel|grep -e panic_on_oops -e sysrq
kernel.panic_on_oops = 1
kernel.sysrq = 1

Your kdump service should be running:

$ sudo systemctl status kdump-tools.service
 kdump-tools.service - Kernel crash dump capture service
 Loaded: loaded (/lib/systemd/system/kdump-tools.service;
 ↪enabled; vendor preset: enabled)
 Active: active (exited) since Tue 2019-02-26 08:13:34 CST;
 ↪1h 33min ago
 Process: 371 ExecStart=/etc/init.d/kdump-tools start
 ↪(code=exited, status=0/SUCCESS)
 Main PID: 371 (code=exited, status=0/SUCCESS)
 Tasks: 0 (limit: 4915)
 CGroup: /system.slice/kdump-tools.service

Feb 26 08:13:34 deb-panic systemd[1]: Starting Kernel crash
 ↪dump capture service...
Feb 26 08:13:34 deb-panic kdump-tools[371]: Starting
 ↪kdump-tools: loaded kdump kernel.
Feb 26 08:13:34 deb-panic kdump-tools[505]: /sbin/kexec -p
 ↪--command-line="BOOT_IMAGE=/boot/vmlinuz-4.9.0-8-amd64 root=
Feb 26 08:13:34 deb-panic kdump-tools[506]: loaded kdump kernel
Feb 26 08:13:34 deb-panic systemd[1]: Started Kernel crash dump
 ↪capture service.

Your crash kernel should be loaded (into memory and in the 128M region
you defined earlier):

$ cat /sys/kernel/kexec_crash_loaded
1

You can verify your kdump configuration further here:

$ sudo kdump-config show
DUMP_MODE: kdump
USE_KDUMP: 1
KDUMP_SYSCTL: kernel.panic_on_oops=1
KDUMP_COREDIR: /var/crash
crashkernel addr: 0x2d000000
 /var/lib/kdump/vmlinuz: symbolic link to /boot/
↪vmlinuz-4.9.0-8-amd64
kdump initrd:
 /var/lib/kdump/initrd.img: symbolic link to /var/lib/kdump/
↪initrd.img-4.9.0-8-amd64
current state: ready to kdump

kexec command:
 /sbin/kexec -p --command-line="BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet irqpoll nr_cpus=1 nousb
 ↪systemd.unit=kdump-tools.service
 ↪ata_piix.prefer_ms_hyperv=0"
 ↪--initrd=/var/lib/kdump/initrd.img /var/lib/kdump/vmlinuz

Let's also test it without actually running it:

$ sudo kdump-config test
USE_KDUMP: 1
KDUMP_SYSCTL: kernel.panic_on_oops=1
KDUMP_COREDIR: /var/crash
crashkernel addr: 0x2d000000
kdump kernel addr:
kdump kernel:
 /var/lib/kdump/vmlinuz: symbolic link to /boot/
↪vmlinuz-4.9.0-8-amd64
kdump initrd:
 /var/lib/kdump/initrd.img: symbolic link to
 ↪/var/lib/kdump/initrd.img-4.9.0-8-amd64
kexec command to be used:
 /sbin/kexec -p --command-line="BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet irqpoll nr_cpus=1 nousb
 ↪systemd.unit=kdump-tools.service
 ↪ata_piix.prefer_ms_hyperv=0"
 ↪--initrd=/var/lib/kdump/initrd.img /var/lib/kdump/vmlinuz

The Moment of Truth

Now that your environment is loaded to make use of kdump, you
probably should test it, and the best way to test it is by forcing a
kernel crash over SysRq. Assuming your kernel is built with SysRq support,
crashing a running kernel is as simple as typing:

$ echo "c" | sudo tee -a /proc/sysrq-trigger

What should you expect? You'll see a kernel panic/crash similar to the
one shown in Figure 1. Following this crash, the kernel loaded over kexec will
collect the state of the system, which includes everything relevant in
memory, on the CPU, in dmesg, in loaded modules and more. It then
will save this valuable crash data somewhere in /var/crash for
further analysis. Once the collection of information completes, the system
will reboot automatically and will bring you back to a functional state.

What Now?

You now have your crash file, and again, it's located in
/var/crash:

$ cd /var/crash/
$ ls
201902261006 kexec_cmd
$ cd 201902261006/

Although before opening the crash file, you probably should install the
kernel's source package:

$ sudo apt source linux-image-`uname -r`

Earlier, you installed a debug version of your Linux kernel containing
the unstripped debug symbols required for this type of debugging
analysis. Now you need that kernel. Open the kernel crash file with the
crash utility:

$ sudo crash dump.201902261006 /usr/lib/debug/
↪vmlinux-4.9.0-8-amd64

Once everything loads, a summary of the panic will appear on the screen:

 KERNEL: /usr/lib/debug/vmlinux-4.9.0-8-amd64
 DUMPFILE: dump.201902261006 [PARTIAL DUMP]
 CPUS: 4
 DATE: Tue Feb 26 10:07:21 2019
 UPTIME: 00:04:09
LOAD AVERAGE: 0.00, 0.00, 0.00
 TASKS: 100
 NODENAME: deb-panic
 RELEASE: 4.9.0-8-amd64
 VERSION: #1 SMP Debian 4.9.144-3 (2019-02-02)
 MACHINE: x86_64 (2592 Mhz)
 MEMORY: 4 GB
 PANIC: "sysrq: SysRq : Trigger a crash"
 PID: 563
 COMMAND: "tee"
 TASK: ffff88e69628c080 [THREAD_INFO: ffff88e69628c080]
 CPU: 2
 STATE: TASK_RUNNING (SYSRQ)

Notice the reason for the panic: sysrq: SysRq : Trigger
a crash. Also, notice the command that led to it:
tee. None of this should be a surprise since you
triggered it.

If you run a backtrace of what the kernel functions were that led to the
panic, you should see the following (processed by CPU core no. 2):

crash> bt
PID: 563 TASK: ffff88e69628c080 CPU: 2 COMMAND: "tee"
 #0 [ffffa67440b23ba0] machine_kexec at ffffffffa0c53f68
 #1 [ffffa67440b23bf8] __crash_kexec at ffffffffa0d086d1
 #2 [ffffa67440b23cb8] crash_kexec at ffffffffa0d08738
 #3 [ffffa67440b23cd0] oops_end at ffffffffa0c298b3
 #4 [ffffa67440b23cf0] no_context at ffffffffa0c619b1
 #5 [ffffa67440b23d50] __do_page_fault at ffffffffa0c62476
 #6 [ffffa67440b23dc0] page_fault at ffffffffa121a618
 [exception RIP: sysrq_handle_crash+18]
 RIP: ffffffffa102be62 RSP: ffffa67440b23e78 RFLAGS: 00010282
 RAX: ffffffffa102be50 RBX: 0000000000000063 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffff88e69fd10648 RDI: 0000000000000063
 RBP: ffffffffa18bf320 R8: 0000000000000001 R9: 0000000000007eb8
 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000004
 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
 #7 [ffffa67440b23e78] __handle_sysrq at ffffffffa102c597
 #8 [ffffa67440b23ea0] write_sysrq_trigger at ffffffffa102c9db
 #9 [ffffa67440b23eb0] proc_reg_write at ffffffffa0e7ac00
#10 [ffffa67440b23ec8] vfs_write at ffffffffa0e0b3b0
#11 [ffffa67440b23ef8] sys_write at ffffffffa0e0c7f2
#12 [ffffa67440b23f38] do_syscall_64 at ffffffffa0c03b7d
#13 [ffffa67440b23f50] entry_SYSCALL_64_after_swapgs at ffffffffa121924e
 RIP: 00007f3952463970 RSP: 00007ffc7f3a4e58 RFLAGS: 00000246
 RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f3952463970
 RDX: 0000000000000002 RSI: 00007ffc7f3a4f60 RDI: 0000000000000003
 RBP: 00007ffc7f3a4f60 R8: 00005648f508b610 R9: 00007f3952944480
 R10: 0000000000000839 R11: 0000000000000246 R12: 0000000000000002
 R13: 0000000000000001 R14: 00005648f508b530 R15: 0000000000000002
 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b

In your backtrace, you should notice the symbol address of what is stored in
your Return Instruction Pointer (RIP): ffffffffa102be62. Let's take a look at this symbol address:

crash> sym ffffffffa102be62
ffffffffa102be62 (t) sysrq_handle_crash+18 ./debian/build/
↪build_amd64_none_amd64/./drivers/tty/sysrq.c: 144

Wait a minute! The exception seems to have been triggered in line 144
of the drivers/tty/sysrq.c file and inside the
sysrq_handle_crash function. Hmm...I wonder what's happening
in this kernel source file. (This is why I had you installed your kernel source
package moments ago.) Let's navigate to the /usr/src
directory and untar the source package:

$ cd /usr/src
$ ls
linux_4.9.144-3.debian.tar.xz linux_4.9.144.orig.tar.xz
 ↪linux-headers-4.9.0-8-common
linux_4.9.144-3.dsc linux-headers-4.9.0-8-amd64
 ↪linux-kbuild-4.9
$ sudo tar xJf linux_4.9.144.orig.tar.xz
$ vim linux-4.9.144/drivers/tty/sysrq.c

Locate the sysrq_handle_crash function:

static void sysrq_handle_crash(int key)
{
 char *killer = NULL;

 /* we need to release the RCU read lock here,
 * otherwise we get an annoying
 * 'BUG: sleeping function called from invalid context'
 * complaint from the kernel before the panic.
 */
 rcu_read_unlock();
 panic_on_oops = 1; /* force panic */
 wmb();
 *killer = 1;
}

And more specifically, look at line 144:

*killer = 1;

It was this line that led to the page fault logged in line #6 of the
backtrace:

#6 [ffffa67440b23dc0] page_fault at ffffffffa121a618

Okay. So, now you should have a basic understanding of how to debug bad
kernel code,
but what happens if you want to debug your very own custom kernel modules
(for example, drivers)? I wrote a simple Linux kernel module that essentially
invokes a similar style of a kernel crash when loaded. Call it
test-module.c and save it somewhere in your home directory:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/version.h>

static int test_module_init(void)
{
	int *p = 1;
printk("%d\n", *p);
	return 0;
}
static void test_module_exit(void)
{
	return;
}

module_init(test_module_init);
module_exit(test_module_exit);

You'll need a Makefile to compile this kernel module (save it in the
same directory):

obj-m += test-module.o

all:
 $(MAKE) -C/lib/modules/$(shell uname -r)/build M=$(PWD)

Run the make command to compile the module and do
not delete any of the compilation artifacts; you'll need
those later:

$ make
make -C/lib/modules/4.9.0-8-amd64/build M=/home/petros
make[1]: Entering directory '/usr/src/
↪linux-headers-4.9.0-8-amd64'
 CC [M] /home/petros/test-module.o
/home/petros/test-module.c: In function "test_module_init":
/home/petros/test-module.c:7:11: warning: initialization makes
 ↪pointer from integer without a cast [-Wint-conversion]
 int *p = 1;
 ^
 Building modules, stage 2.
 MODPOST 1 modules
 LD [M] /home/petros/test-module.ko
make[1]: Leaving directory '/usr/src/
↪linux-headers-4.9.0-8-amd64'

Note: you may see a compilation warning. Ignore it
for now. This warning will be what triggers your kernel crash.

Be careful now. Once you load the .ko file, the system will
crash, so make sure everything is saved and synchronized to disk:

$ sync && sudo insmod test-module.ko

Similar to before, the system will crash, the kexec
kernel/environment will help gather everything and save it somewhere in
/var/crash, followed by an automatic reboot. After you have
rebooted and are back into a functional state, locate the new crash
directory and change into it:

$ cd /var/crash/201902261035/

Also, copy the unstripped kernel object file for your
test-module from
your home directory and into the current working directory:

$ sudo cp ~/test.o /var/crash/201902261035/

Load the crash file with your debug kernel:

$ sudo crash dump.201902261035 /usr/lib/debug/
↪vmlinux-4.9.0-8-amd64

Your summary should look something like this:

 KERNEL: /usr/lib/debug/vmlinux-4.9.0-8-amd64
 DUMPFILE: dump.201902261035 [PARTIAL DUMP]
 CPUS: 4
 DATE: Tue Feb 26 10:37:47 2019
 UPTIME: 00:11:16
LOAD AVERAGE: 0.24, 0.06, 0.02
 TASKS: 102
 NODENAME: deb-panic
 RELEASE: 4.9.0-8-amd64
 VERSION: #1 SMP Debian 4.9.144-3 (2019-02-02)
 MACHINE: x86_64 (2592 Mhz)
 MEMORY: 4 GB
 PANIC: "BUG: unable to handle kernel NULL pointer
 ↪dereference at 0000000000000001"
 PID: 1493
 COMMAND: "insmod"
 TASK: ffff893c5a5a5080 [THREAD_INFO: ffff893c5a5a5080]
 CPU: 3
 STATE: TASK_RUNNING (PANIC)

The reason for the kernel crash is summarized as follows:
BUG: unable to handle kernel NULL pointer dereference at
0000000000000001. The userspace command that led to the panic
was your insmod.

A backtrace will reveal a page fault exception at address
ffffffffc05ed005:

crash> bt
PID: 1493 TASK: ffff893c5a5a5080 CPU: 3 COMMAND: "insmod"
 #0 [ffff9dcd013b79f0] machine_kexec at ffffffffa3a53f68
 #1 [ffff9dcd013b7a48] __crash_kexec at ffffffffa3b086d1
 #2 [ffff9dcd013b7b08] crash_kexec at ffffffffa3b08738
 #3 [ffff9dcd013b7b20] oops_end at ffffffffa3a298b3
 #4 [ffff9dcd013b7b40] no_context at ffffffffa3a619b1
 #5 [ffff9dcd013b7ba0] __do_page_fault at ffffffffa3a62476
 #6 [ffff9dcd013b7c10] page_fault at ffffffffa401a618
 [exception RIP: init_module+5]
 RIP: ffffffffc05ed005 RSP: ffff9dcd013b7cc8 RFLAGS: 00010246
 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
 RDX: 0000000080000000 RSI: ffff893c5a5a5ac0 RDI: ffffffffc05ed000
 RBP: ffffffffc05ed000 R8: 0000000000020098 R9: 0000000000000006
 R10: 0000000000000000 R11: ffff893c5a4d8100 R12: ffff893c5880d460
 R13: ffff893c56500e80 R14: ffffffffc05ef000 R15: ffffffffc05ef050
 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
 #7 [ffff9dcd013b7cc8] do_one_initcall at ffffffffa3a0218e
 #8 [ffff9dcd013b7d38] do_init_module at ffffffffa3b81531
 #9 [ffff9dcd013b7d58] load_module at ffffffffa3b04aaa
#10 [ffff9dcd013b7e90] SYSC_finit_module at ffffffffa3b051f6
#11 [ffff9dcd013b7f38] do_syscall_64 at ffffffffa3a03b7d
#12 [ffff9dcd013b7f50] entry_SYSCALL_64_after_swapgs at ffffffffa401924e
 RIP: 00007f124662c469 RSP: 00007fffc4ca04a8 RFLAGS: 00000246
 RAX: ffffffffffffffda RBX: 0000564213d111f0 RCX: 00007f124662c469
 RDX: 0000000000000000 RSI: 00005642129d3638 RDI: 0000000000000003
 RBP: 00005642129d3638 R8: 0000000000000000 R9: 00007f12468e3ea0
 R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000000
 R13: 0000564213d10130 R14: 0000000000000000 R15: 0000000000000000
 ORIG_RAX: 0000000000000139 CS: 0033 SS: 002b

Let's attempt to look at the symbol at the address
ffffffffc05ed005:

crash> sym ffffffffc05ed005
ffffffffc05ed005 (t) init_module+5 [test-module]

Hmm. The issue occurred somewhere in the module initialization code of
the test-module kernel driver. But what happened to all of
the details shown in the earlier analysis? Well, because this code is
not part of the debug kernel image, you'll need to find a way to load
it into your crash analysis. This is why I instructed you to copy over the
unstripped object file into your current working directory. Now it's time to load
the module's object file:

crash> mod -s test ./test.o
 MODULE NAME SIZE OBJECT FILE
ffffffffc05ef000 test 16384 ./test.o

Now you can go back and look at the same symbol address:

crash> sym ffffffffc05ed005
ffffffffc05ed005 (T) init_module+5 [test-module]
 ↪/home/petros/test-module.c: 8

And, now it's time to revisit to your code and look at line 8:

$ sed -n 8p test.c
	printk("%d\n", *p);

There you have it. The page fault occurred when you attempted to
print the poorly defined pointer. Remember the compilation warning from
earlier? Well, it was warning you for a reason, and in this current case,
it's the reason that triggered the kernel panic. You may not be as
fortunate in future coding cases.

What Else Can You Do Here?

The kernel crash file will preserve many artifacts from your system at the
event of your crash. You can list a short summary of available commands with the
help command:

crash> help

* files mach repeat timer
alias foreach mod runq tree
ascii fuser mount search union
bt gdb net set vm
btop help p sig vtop
dev ipcs ps struct waitq
dis irq pte swap whatis
eval kmem ptob sym wr
exit list ptov sys q
extend log rd task

For instance, if you want to see a general summary of memory utilization:

crash> kmem -i
 PAGES TOTAL PERCENTAGE
 TOTAL MEM 979869 3.7 GB ----
 FREE 835519 3.2 GB 85% of TOTAL MEM
 USED 144350 563.9 MB 14% of TOTAL MEM
 SHARED 8374 32.7 MB 0% of TOTAL MEM
 BUFFERS 3849 15 MB 0% of TOTAL MEM
 CACHED 0 0 0% of TOTAL MEM
 SLAB 5911 23.1 MB 0% of TOTAL MEM

 TOTAL SWAP 1047807 4 GB ----
 SWAP USED 0 0 0% of TOTAL SWAP
 SWAP FREE 1047807 4 GB 100% of TOTAL SWAP

 COMMIT LIMIT 1537741 5.9 GB ----
 COMMITTED 16370 63.9 MB 1% of TOTAL LIMIT

If you want to see what dmesg logged up to the point of
the failure:

crash> log

[0.000000] Linux version 4.9.0-8-amd64
 ↪(debian-kernel@lists.debian.org) (gcc version 6.3.0
 ↪20170516 (Debian 6.3.0-18+deb9u1)) #1 SMP Debian
 ↪4.9.144-3 (2019-02-02)
[0.000000] Command line: BOOT_IMAGE=/boot/
↪vmlinuz-4.9.0-8-amd64 root=UUID=bd76b0fe-9d09-40a9-
↪a0d8-a7533620f6fa ro quiet crashkernel=128M
[0.000000] x86/fpu: Supporting XSAVE feature 0x001:
 ↪'x87 floating point registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002:
 ↪'SSE registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004:
 ↪'AVX registers'
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]:
 ↪256

[....]

Using the same crash utility, you can drill even deeper into memory
locations and their contents, what is being handled by every CPU core
at the time of the crash and so much more. If you want to learn more
about these functions, simply type help followed by the
function name:

crash> help mount

Something similar to a man page will load onto your screen.

Summary

So, there you have it: an introduction into kernel crash debugging. This
article
barely scrapes the surface, but hopefully, it will provide
you with a proper starting point to help diagnose kernel crashes in
production, development and test environments.

Petros Koutoupis, LJ Editor at Large, is currently a senior
performance software engineer at Cray for its Lustre High Performance File
System division.
He is also the creator and maintainer of the RapidDisk Project. Petros has
worked in the data storage industry for well over a decade and has helped
pioneer the many technologies unleashed in the wild today.

[image: Petros Koutoupis]

A Conversation with Kernel Developers from Intel, Red Hat and SUSE

Three kernel developers describe what it's really like to work on the
kernel, how they interact with developers from other companies, some pet
peeves and how to get started. By Bryan Lunduke

Like most Linux users, I rarely touch the actual code for the Linux
kernel. Sure, I've looked at it. I've even compiled the kernel myself on a
handful of occasions—sometimes to try out something new or simply to
say I could do it ("Linux From Scratch" is a bit of a right of passage).

But, unless you're one of the Linux kernel developers, odds are you just
don't get many opportunities to truly look "under the hood".

Likewise, I think for many Linux users (even the pro users, sysadmins and
developers), the wild world of kernel development is a bit of a mystery.
Sure, we have the publicly available Linux Kernel Mailing List (LKML.org)
that anyone is free to peruse for the latest features, discussions and
(sometimes) shenanigans, but that gives only a glimpse at one aspect
of being a kernel developer.

And, let's be honest, most of us simply don't have time to sift through the
countless pull requests (and resulting discussions of said pull requests)
that flood the LKML on a daily basis.

With that in mind, I reached out to three kernel developers—each working
at some of the most prominent Linux contributing companies today—to ask
them some basic questions that might provide a better idea of what being a
Linux kernel developer is truly like: what their days look like and how
they work with kernel developers at other companies.

Those three developers (in no particular order):

	
Dave Hansen, Principal Engineer, System Software Products at Intel.

	
Josh Poimboeuf, Principal Software Engineer on Red Hat Enterprise Linux.

	
Jeff Mahoney, Team Lead of Kernel Engineering at SUSE Labs.

Intel, Red Hat and SUSE—three of the top contributors of code to the
Linux kernel. If anyone knows what it's like being a kernel developer,
it's them.

I asked all three the exact same questions. Their answers are here,
completely unmodified.

Bryan Lunduke: How long have you been working with the Linux kernel? What got you
into it?

Dave Hansen (Intel): My first experience for the Linux kernel was a tiny little
device driver to drive the eight-character display on an IBM PS/2, probably
around 20 years ago. I mentioned the project on my college resume, which
eventually led to a job with IBM's Linux Technology Center in 2001. IBM is
where I started doing the Linux kernel professionally.

Josh Poimboeuf (Red Hat): My first introduction to Linux happened around 2001, when
I was a software engineer at IBM working on server firmware. IBM had
recently embraced Linux, and I was placed on a team that was responsible
for replacing legacy proprietary firmware with a new embedded PowerPC
platform based on Linux.

Once I discovered Linux, I was hooked. I installed it on my laptop
immediately. It was mind-boggling that all the source code was freely
available, and that you could control every single bit of code that ran on
your laptop. And, unbelievably, it was free.

At IBM, I started out by doing hardware bringup and Linux application
development. But I was always especially fascinated by the kernel. So my
curiosity gradually led me to work my way down the stack. My first real
kernel experience came when I started writing device drivers in 2004.

By 2008 I was the "kernel guy" on the team, responsible for porting the
kernel to our proprietary HW, and for resolving all kernel issues found in
the field. That was a bit of a trial by fire, but it was a great way to
learn about the entire kernel tree.

The kernel is so big that my learning process still continues to this day.
That's always been one of my favorite things about the kernel. There's
always more to learn.

These days I work at Red Hat, where I do a lot more upstream work. I work
on a wide variety of things: live patching, the objtool static analysis
tool, the x86 unwinder, speculative CPU vulnerability mitigations and
more.

Jeff Mahoney (SUSE): I've been working with the Linux kernel for 20 years. I got
into it initially in college because I was interested in systems software.
I happened to buy some hardware for which there was no driver, and I wrote a
small one. Before working on the kernel, I was a systems admin for UNIX
systems, and a coworker and I then decided to try writing a clustered filesystem ourselves. It turned out that the hardware to do that was much too
expensive for us, so we ended up contributing to ReiserFS instead. That led
both of us into careers working on Linux.

Bryan: What does a regular day as a Linux kernel developer look like?

Dave (Intel): My days can vary a lot. The one constant is
probably email—lots and lots of email. It might be internal or external code reviews, or
answering a question from another Intel team or an external customer. The
best, most satisfying days are the ones where you start with a problem or a
kernel crash, and have a patch posted by the end of the day.

Josh (Red Hat): It might actually be surprising to learn the variety of
things a kernel developer does on a daily basis. Each day—and week and
month—is different. It's often "choose your own adventure".

Obviously, one of the main things a kernel developer does is write code.
Sometimes I can (mostly) disappear for a week or month (or two!) to hack
away on a new feature. Those days/weeks/months are my favorite part.

But writing code is only part of it. There's also debugging, reading code,
collaborating, testing, code review, code-related discussions, reading
papers, research and meetings. It's good to mix things up. And you get to
interact with some really smart people from all over the world, which is
really interesting.

Most communication happens through email, but many kernel developers also
attend conferences, like Linux Plumbers Conference or Kernel Recipes. A
lot of good discussion happens at conferences. They're also useful for
putting faces to names, which makes a big difference when you're mostly
interacting with people over email.

Jeff (SUSE): It's a mix of communication, coding, building and testing.
Lots of email—bug reports, code review, design discussions either
internally, on public mailing lists or IRC.

Bryan: With the kernel work your team does, how much of it is working
with others within your own company, and how much is working with
developers working on Linux at other companies? Possibly companies that
compete with each other in some ways?

Dave (Intel): Because of the incredible variety in the way that our
customers use Linux, work with the upstream kernel is an absolute
imperative. Virtually all of that work results in work with folks in the
community from other companies. There is also a lot of work that goes on
behind the scenes to support the work with the community. A great comment
from someone in the community might result in us going off for a week or a
month to revise our work. Although we might not be sending mail on LKML
on a given day, we are actively working with the community.

Josh (Red Hat): It really varies by person. Some people spend 100% of
their time working upstream with the Linux community. Others spend 100% of
their time internally, backporting and resolving issues in RHEL. Many of
us are somewhere in the middle, dividing our time in both worlds.

Red Hat's policy is "upstream first". So any features or fixes in Red
Hat's kernel have to be accepted by the upstream community first. That
gives us plenty of opportunities to work with the Linux community.

Jeff (SUSE): It depends on what we're doing—bug reports tend to be
handled within SUSE, by our developers and support teams. Part of that is
contractual, while part of it is practical. When we release a product,
we've chosen a particular kernel version and build on top of that. Any
fixes must also be against that version, and the upstream community isn't
usually interested in those. Once we've created a fix, if the bug still
exists in the latest release, we'll do that work in public.

Feature development happens on public mailing lists, where the participants
may work at SUSE, may work for other companies, or may be doing it out of
personal interest. One of the most enjoyable parts of working on Linux is
that even though there are developers from hundreds of different companies
who may be competing with one another, we get to collaborate as if we were
on a single team. In addition to the mailing lists used to do code review
and discussions, many subsystems have IRC channels where developers (and
users) chat about projects and socialize.

Bryan: When you need to work with other companies (be it Intel, SUSE, Red
Hat, Canonical, IBM and so on) on kernel issues—such as security
vulnerabilities—how does that work? Is there an established process?

Dave (Intel): There are really two complementary processes that happen.
Intel has formal company-to-company communication channels that are really
great for synchronizing the business side of things. A challenge on the
security front has been creating communication channels that support the
coordinated disclosure process and simultaneously support normal community
processes, like mailing lists. Both avenues have matured quickly and
continue to evolve to help us meet the evolving security landscape.

Josh (Red Hat): When there's an embargoed security vulnerability, we do
have strict processes in place for secure collaboration with other
companies.

Luckily, such embargoes are rare, and they're the exception to the rule for
how we normally operate. We typically work closely with developers from
other companies all the time on the Linux kernel mailing list, with no
special processes needed.

One good example is live kernel patching. My team at Red Hat created the
kpatch technology, but at the same time, a team at SUSE created kGraft.
Instead of going forward with competing approaches, we worked closely with
the SUSE team at conferences and through mailing lists to create livepatch,
which actually turned out to be a better technology than both kpatch and
kGraft.

In fact, cross-company collaborations like that happen every day on the
upstream mailing lists. It's really just business as usual. Our
interactions are always focused on what's best for upstream. In the end,
what's best for upstream is also what's best for the companies that rely
on it. That independent company-agnostic attitude is strongly reflected in
the upstream Linux culture.

Jeff (SUSE): For security vulnerabilities that aren't yet public, our
security team coordinates with their counterparts with other companies.
Otherwise, unless there's a compelling reason not to, the collaboration all
happens on public mailing lists. There, the process is to post your code,
listen and respond to review and feedback, perform the required changes,
re-post, and repeat.

When the feedback is positive, the process is complete, the maintainer for
the subsystem will pick it up (according to their timeline) and pull it
into the git repository for their subsystem. Then the maintainer asks Linus
to pull those changes into the mainline repository.

Bryan: Every software developer has a pet peeve with the projects they
work on. What's your pet peeve—the thing that you really wish you could
change—with Linux?

Dave (Intel): I really wish developers would focus on making reviewers'
lives easier. First, communicating what you are doing, why you are doing it
and why it matters is critical. Then, making sure that the code and its
supporting comments are as self-explanatory as possible. Too often, we
focus on making sure the code functions, then call it a day. To me, that's
only half of the job.

Josh (Red Hat): If I had a magic Linux wand, I would:

	
Eliminate CPU speculation—no more Spectre/Meltdown-type bugs!

	
Get rid of the need for security embargoes—but to be clear, I believe
that such embargoes are necessary in the real world.

	
More broadly diversify the Linux kernel development population. More
differing perspectives can produce better ideas. I think we're already
slowly moving in that direction.

Of those, #1 and #2 aren't realistic, but maybe we can achieve #3.

Jeff (SUSE): The lack of diversity in the community, especially the gender
gap. Women are underrepresented in computer science fields generally, but
especially so in the Linux kernel community. There has been some outreach
efforts, but more needs to be done.

Bryan: The Linux kernel is, at this point, more than a quarter of a century
old. In software terms, it's certainly been around a while! Do you see the
need for it to be replaced any time soon? If so, with what? If
not, why?

Dave (Intel): I don't really see Linux as a 25-year-old project. The
Linux of 25 years ago was not the de facto OS on servers, routers or
phones. There's no need to replace something that's continually changing,
growing and improving as fast as Linux.

Josh (Red Hat): These days, tech trends are fickle, and most technologies
have a very short lifetime. But I don't see Linux going anywhere. Its
true strength is in its development model. It's not perfect, but it's
still the best way to produce software at scale that I've ever seen. I
wouldn't be surprised to see Linux thrive well into the next quarter
century.

Jeff (SUSE): While the project is more than 25 years old, it hasn't stood
still. The kernel itself is constantly evolving to meet new needs. New
kinds of users are coming to the Linux community every year. The kernel has
had between 10,000 and 15,000 commits in each release for at least
the past ten years. The community is still growing. I don't think it will
be replaced any time soon, but it will continue to evolve.

Bryan: What would you tell folks thinking of getting into Linux kernel
development?

Dave (Intel): Please do! Linux is only becoming more important to
companies like Intel. It's a challenge to find folks with the technical
skills to work on the kernel and the skills necessary to navigate the
community. The most successful folks who join the community are the ones
that have a problem to work on. Maybe it's some device that Linux
doesn't support, or a bug that's driving you crazy on your laptop. The
folks that come with patches that don't solve a clear problem generally
have a tough time getting those patches accepted.

Josh (Red Hat): First, I'd say to just find a way to dive in and see if
you like it.

One good way to get started is to pick a small area of the kernel you're
interested in and dedicate yourself to becoming an expert on that little
piece of code. Read the code until you understand it. Tweak it and see
how it affects your system. Start reviewing patches related to it on the
mailing list. After a while, you'll start seeing opportunities for
patches, like bug fixes or code improvements.

When you do eventually post a patch, don't get overly attached to your
code. Try not to take feedback personally. Our common goal is to produce
the best code. It's ok to make mistakes. Put your ego aside, be humble,
be respectful, and listen to feedback with an open mind and try to learn
from it. That's how the code gets better. It also helps you earn respect
from others in the community.

Kernel development can take a lot of patience, humility and persistence.
It's not uncommon for code to be thrown away or rewritten several times.
The process can seem inefficient at times. But in my experience, the end
result is always better than anything proprietary development can produce.

The kernel codebase is huge, so diving into code you've never seen will be
a common occurrence. Whenever you have a question about how something
works, the answer is always in the code somewhere. Get familiar with
cscope. For vim users, I'd recommend the vim cscope plugin.

Also, work on your written communication skills, as most of your non-coding
time will be spent in email. And, of course, learning to make your code
easily readable by others is also very important.

Finally, finding a mentor (or mentors) can be valuable. I never had an
official mentor per se, but I've been lucky enough to have had many more
experienced people guide me through the years.

Jeff (SUSE): It can be a lot of fun, but it takes some effort to get started.
Start with something you're interested in, find something small to fix, and
post your work. Read about and understand the process. Listen and respond
to feedback. Experienced developers are usually willing to spend some time
helping new developers if they're willing to listen.

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

Using Machine Learning to Optimize Linux Networking

The Linux networking stack can benefit from "inferences" due to
machine learning, which may be used in "smart" applications. By Damian Valles
and Stan McClellan

Machine Learning (ML) is driving the exploration of vast volumes of data.
With the right training data, ML can outperform many traditional forms of
automation and analysis in diverse industries and applications. A critical
advantage of this approach is that ML can cut through human biases and
protocols established over decades in some cases. ML even can be used on
Linux kernel-level data streams to optimize networked activities—and to
enable the system to "understand" its environment. Here, we use ML on
data that is constantly generated by the Linux networking stack to provide an
additional, rudimentary form of "intelligence" about networked
systems that are nearby. We approach this problem by allowing ML algorithms
to work on the byproducts of the Stream Control Transmission Protocol (SCTP).

SCTP is a relatively new transport protocol for IP networks. Defined
originally in RFC 4960, it provides many reliability benefits, such as
multi-homing, multi-streaming and path selection, which are useful in
control-plane or signaling applications. SCTP is used in place of
conventional transport protocols (such as TCP and UDP) in telecommunications,
Smart Grid, Internet-of-Things (IoT) and Smart Cities applications, among
others. We chose to use SCTP for this ML experiment because it has many
useful applications and characteristics. However, the use of ML approaches
in different types of kernel-level data streams also may be useful for
classifying congestion patterns, forecasting data movement and providing new
application-specific "intelligence".

But, before going further in the use of ML techniques inside the Linux kernel, we
should discuss some background concepts. The most popular form of ML is Deep
Learning (DL) Neural Network (NN) algorithms. An NN model consists of an
input neural layer, hidden layers and output layer. Figure 1 shows these layers
as orange, blue and black nodes, respectively. The number of
inputs depends on the number of parameters that are considered to develop the
model. The hidden neural layers can be configured in many forms to perform
different statistical analysis using weight factors and activation functions.
The number of outputs in the last neural layer provides the weighted outcomes
of the model.

[image: Neural Network]

Figure 1. Deep learning neural network: orange nodes are the input layer,
blue nodes are hidden layers, and black nodes are the output layer. The red
circles on the far right are outputs that have been "clustered" by
the network.

NN models are trained using approaches known as supervised, unsupervised and
reinforcement learning, which are described briefly in the following sections.

Supervised training uses data with labels that tell the network which outputs
should be produced by specific input parameters. The training process
reconfigures weighting values within the hidden and output layers to ensure
these outcomes. The more data presented to the network during training, the
more accurate outcomes appear when inputs are not in the training data.

The trained NN model is then validated using input data that is similar to
the training data but without labels or desired outputs. Validation outputs
should be similar to training outputs. The training-validation cycle helps a
designer understand the percentage of accuracy the network has reached after
being trained. If the accuracy is too low for the design, further training
is required, and different NN design parameters are tuned. The training and
validation phases must be tuned iteratively until the desired or required
accuracy appears.

The final step is the test phase of the NN model. At this point, the model is
fed input data not presented during training or validation phases. The
data set used in the test phase is often a small subset of the overall data set
used for the NN model design. The test phase results are known as the real
values of accuracy.

Unsupervised training uses training data that is not labeled. The network
"learns" autonomously by adjusting its weights based on patterns detected in
the input data. Unsupervised designs typically analyze input data that is
unknown or unstructured from the designer's perspective. As a result,
this approach takes longer for the NN model to be trained and requires more
data if high accuracy is required.

Reinforcement learning is becoming the most robust ML training approach to
manage complex problems in many industries and research fields. This approach
trains the model through a reward system. Random scenarios circulate to the
input, and a reward is fed to the model when reaching the desired outcome.
This approach requires much computational time to train the NN model due to
the learning curve. However, reinforced models have reached a high competency
for solving problems and out-performing human experts in many applications.
One of the most effective reinforcement learning examples was mastered by
Google's AlphaGo team to win the ancient game Go. The NN model was able to
beat the best Go players in the world.

To incorporate ML techniques into Linux networking processes, we use
Round-Trip Times (RTT) and Retransmission Timeouts (RTO) values as input
values for a layered NN model trained via unsupervised and supervised
learning. In this approach, RTT/RTO values from a network interaction based
on SCTP are collected, then used to train the NN model. Using this data, the
trained model produces outcomes that create new insights (or
"inferences") into the networking context of the system. The
objective is to see if the ML system can differentiate between various known
network scenarios, or if the ML system can produce new information about
network activities. In our results, the RTT and RTO values already exist
inside the Linux kernel, and the insights/outcomes that result from the ML
process are unique and useful.

The approach developed to integrate an NN model to devices is known as an
inference model. An inference model is an optimized NN model code engine
that can run on a computer device. A useful inference model generator comes
from NVIDIA's TensorRT Programmable Inference Accelerator application. This
way, inference models through TensorRT then can be imported to the Linux
kernel for networking modules, scheduling of processes, priority
calculations or other kernel functionalities that can provide a smarter
execution flow for application-specific implementations.

The goal here is to obtain a smarter network flow using the SCTP protocol and
an ML-based evaluation of related kernel-level data. The results of our
experiments clearly show that it's possible to optimize network activities
by using an inference model to digest the current state and select the right
processing or subsequent state. Figure 2 shows the inference model
implementation situated between reading metrics from the SCTP module in the
Linux kernel and the selection of outcomes. The inference model reads input
parameters from the current state of network activities, then processes the
data to determine an outcome that better "understands" the state of
the network. Given that the implementation may be application-specific, the
inference model also may be trained to have different outcomes biased to the
application.

[image: Inference model]

Figure 2. Inference model implementation: RTT/RTO values from SCTP are fed to
an inference model to produce smarter congestion handling.

We created four different scenarios to test several ML implementations in the
Linux kernel. These scenarios are detailed below, and they represent a wireless
device moving away from or toward a wireless access point with a few
variations, including the access point being in signal over-saturation. In
our experiments, 2,500 samples were recorded for each scenario and left
unlabeled. Each data set collected was normalized against its maximum value.
By normalizing the data, patterns become more pronounced, which improves the
ML analysis. Here are the scenarios:

	
A device moving away/toward, 1 meter to 25 meters away.

	
A device moving 15 meters away/toward, rounding a corner and continuing
10 meters further.

	
A device moving 25 meters away/toward with a wall between it and the
wireless source.

	
A device moving 25 meters away/toward with two walls between it and the
wireless source.

Congestion due to other devices is a common phenomenon in a wireless network.
To model this issue, we included a collection of cross traffic in the network
to evoke congestion. Figure 3 shows the system designations, where A/B
systems provided cross traffic and are connected via wired Ethernet, and Host/Client systems provided test data and are connected via wireless. In this
scenario, 5,000 15-second samples were collected from the Client node as
it sent SCTP-Test packets to the Host node, while A-to-B traffic consisted of
1MB, 512KB, 256KB, 128KB and 1KB chunk size FTP traffic.

[image: Congestion Experiment]

Figure 3. Congestion Experiment Setup

To create additional cross-traffic variation, we also used the VLC media
player to stream a file over UDP from A-to-B. In this scenario, we collected
5,000 15-second samples from the Client device as it sent SCTP-Test
packets to the Host device. Since the bitrate of the UDP stream changed
continuously due to compression algorithms, further adjustments in chunk
sizes were unnecessary.

To classify the data obtained from our network scenarios, we used four ML
classification algorithms that were trained using unsupervised or supervised
learning techniques. These ML techniques are briefly described below.

K-Means Clustering:

	
K-Means is an algorithm for clustering data. Though computationally
expensive, K-Means is good at creating clusters with very high learning
rates.

	

	
Since K-Means is an unsupervised algorithm, it allows for independent
interpretation of the results.

Support Vector Machine (SVM):

	
SVMs are a kind of supervised learning method that can be used for
clustering. SVMs use a subset of the training data in the decision function,
making it memory-efficient.

	
Using an SVM with the Radial Basis Function (RBF) kernel with a moderate, its
C-parameter proved computationally expensive but had the best training rates.

Decision Trees (DT):

	
DTs are a supervised learning method for classification. In creating simple
rules from labeled data features, it attempts to predict the values of the
target variable.

	
DTs have prediction costs logarithmic to the number of training sets. In
fact, DTs are exceptional at using incomplete data sets and training models
with low numbers of sets and still yielding high similarity quotients with
statistical methods like K-means.

Nearest Neighbor Classifier (NCC):

	
NCC is a supervised NN model that uses centroids to define boundaries when
classifying data sets. NCCs also are good at classifying sets where
probability distributions are unknown and can respond to changes quickly.

	
Since network delay patterns are likely to change as devices and users are
introduced or removed from the network, an NCC may be better at adapting to
those changes.

As an example of the outcomes of our testing, Figure 4 shows the results of
classifying the normalized network data using K-Means clustering. Note from
Figure 4 that four differentiated outcomes are clearly present: 1) systems
"moving toward" or 2) "moving away" from each other, as well
as systems experiencing 3) "signal saturation" and (4) "network
congestion". Note that regardless of the test scenario, the ML algorithm
can discern valuable information about the networked systems. Although
additional analysis can produce more
information, these outcomes may be
quite useful in certain applications.

[image: ML classification]

Figure 4. ML classification outcomes of Linux kernel network data using the
K-Means algorithm. The classified data clearly indicates four different
outcomes for external networked systems.

The ideal outcome or classification for the different network testing
scenarios is a clear separation between the four groups, as shown in
Figure 4. Two of the cases are clearly and individually separated from the
group. However, in the cases of congestion and signal over-saturation, the
classification overlaps without a clear separation. This lowers the accuracy
of the ML model. To improve the classification, we would need to include
another parameter in the analysis that helps to discriminate between
congestion and saturation.

In all cases, the ML techniques analyzed data that is consistently produced
internal to the Linux kernel to gain new insights about the external
network context. However, since these algorithms are operating on
kernel-level data, the issue of efficiency is also important.

Figure 5 summarizes the accuracy and efficiency of classifying the network
data using ML algorithms. From Figure 5, it's clear that the SVM
approach is most efficient: it achieves the highest accuracy using the least
number of training samples. This means that the SVM classifier can quickly
distinguish differences in the kernel data and can produce useful
outcomes efficiently. It is also an excellent practice to realize a large number of
examples to see the convergence of accuracy for each classifier. However, NN
models that reach 100% accuracy may produce large failure rates due to
overfitting.

[image: classification algorithms]

Figure 5. Accuracy and speed of classification algorithms when using
normalized data from different networking scenarios.

Accurate and fast classification of network data using ML techniques may
result in Linux systems that can autonomously react based on external network
conditions. These reactions may include modifying kernel data, selecting
alternate retransmission or transport protocols, or adjusting other internal
parameters based on external context. This form of "inference" is a
fundamental problem in systems communicating via a network. In our
experiments, network data was collected directly from the existing kernel
processes and used to train the four ML classifiers to produce interesting
and useful inferences.

Our results suggest that the SVM approach may be a promising ML technique for
inferring results from kernel networking data. The SVM approach reduces the
number of nodes per layer, adjusts precision of the data without losing
accuracy and reduces the latency of computation. The output of the
inference layer provides the networking stack with additional information to
handle different scenarios. The inference development represents a form of
customizing network communication between endpoints for a variety of
applications. Other network conditions may benefit from inference models
that utilize different data produced by the networking stack.

As ML techniques are included in new designs and applications, they have
become a valuable tool and part of the implementation process for smarter
networks. Concepts related to "machine learning" and "artificial
intelligence" even may be implemented inside the Linux kernel to improve
networking performance.

Resources

	
"Introduction to Stream
Control Transmission Protocol" by Jan Newmarch, LJ, September 2007

	
Silver, D., Schrittwieser, J., et al., "Mastering the game of Go without human
knowledge", Nature 550: 354–359, Macmillan Publishers Limited, DOI:
10.1038/nature24270

	
NVIDIA TensorRT Programmable
Interface Accelerator

	
"Introduction to
K-means Clustering" by Andrea Trevino on December 6, 2016

	
Towards Data Science: Support Vector Machine—Introduction to Machine
Learning Algorithms by Rohith Gandhi on June 7, 2018

	
Decision Trees (DTs): A. Navada, A. N. Ansari, S. Patil, and B. A.
Sonkamble, "Overview of the use of decision tree algorithms in machine
learning", 2011 IEEE Control and System Graduate Research Colloquium,
Shah Alam, 2011, pp. 37–42

	
Nearest Centroid Classifier (NCC): V. Praveen, K. Kousalya and K. R.
Prasanna Kumar, "A nearest centroid classifier-based clustering algorithm for
solving vehicle routing problem," 2016 2nd International Conference on
Advances in Electrical, Electronics, Information, Communication, and
Bioinformatics (AEEICB), Chennai, 2016, pp. 414–419.

 About the Authors

Damian Valles is a second-year Assistant Professor in the Ingram School of
Engineering at Texas State University. His goal is not to partially tear
another Achilles Heel anytime soon while staying active. Damian welcomes
your comments at dvalles@txstate.edu or Twitter: @VallesDamian.

Stan McClellan has been an avid Linux user and network experimenter for many
years. One of his interests is using Linux to help Damian avoid another
athletic injury. He can be reached at s.mcclellan@ieee.org.

Linux TCP SO_REUSEPORT: Usage and Implementation

Improve your server performance using a relatively new feature of
the Linux networking stack: the SO_REUSEPORT socket option. By Krishna
Kumar

[image: Alt Tag Name]

HAProxy and NGINX are some of the few applications that use the TCP
SO_REUSEPORT socket
option of the Linux networking stack. This option,
initially introduced in 4.4 BSD, is used to implement high-performance
servers that help better utilize today's large multicore systems. The
first few sections of this article explain some essential concepts of
TCP/IP sockets, and the remaining sections use that knowledge to describe
the rationale, usage and implementation of the SO_REUSEPORT socket option.

TCP Connection Basics

A TCP connection is defined by a unique 5-tuple:

[Protocol, Source IP Address, Source Port, Destination IP Address, Destination
Port]

Individual tuple elements are specified in different ways by clients
and servers. Let's take a look at how each tuple element is initialized.

Client Application

Protocol: this field is initialized when the socket is created based on
parameters provided by the application. The protocol is always TCP for the purposes
of this article. For example:

socket(AF_INET, SOCK_STREAM, 0); /* create a TCP socket */

Source IP address and port: these are usually set by the kernel when the
application calls connect() without a prior invocation to
bind(). The kernel
picks a suitable IP address for communicating with the destination server
and a source port from the ephemeral port range (sysctl
net.ipv4.ip_local_port_range).

Destination IP address and port: these are set by the application by invoking
connect(). For example:

server.sin_family = AF_INET;
server.sin_port = htons(SERVER_PORT);
bcopy(server_ent->h_addr, &server.sin_addr.s_addr,
 server_ent->h_length);
/* Connect to server, and set the socket's destination IP
 * address and port# based on above parameters. Also, request
 * the kernel to automatically set the Source IP and port# if
 * the application did not call bind() prior to connect().
 */
connect(fd, (struct sockaddr *)&server, sizeof server);

Server Application

Protocol: initialized in the same way as described for a client application.

Source IP address and port: set by the application when it
invokes bind(),
for example:

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = INADDR_ANY;
srv_addr.sin_port = htons(SERVER_PORT);
bind(fd, &srv_addr, sizeof srv_addr);

Destination IP address and port: a client connects to a server by completing
the TCP
three-way handshake. The server's TCP/IP stack creates a new socket
to track the client connection and sets its Source IP:Port and Destination
IP:Port from the incoming client connection parameters. The new socket is
transitioned to the ESTABLISHED state, while the server's
LISTEN socket is
left unmodified. At this time, the server application's call to
accept() on
the LISTEN socket returns with a reference to the newly
ESTABLISHED socket.
See the listing at the end of this article for an example
implementation of client and server applications.

TIME-WAIT Sockets

A TIME-WAIT
socket is created when an application closes its end of a
TCP connection first. This results in the initiation of a TCP four-way
handshake, during which the socket state changes from ESTABLISHED to
FIN-WAIT1 to FIN-WAIT2 to TIME-WAIT, before the socket is closed. The
TIME-WAIT state is a lingering state for protocol reasons. An application can
instruct the TCP/IP stack not to linger a connection by sending a TCP RST
packet. In doing so, the connection is terminated instantly without going
through the TCP four-way handshake. The following code fragment implements the
reset of a connection by specifying a socket linger time of zero seconds:

const struct linger opt = { .l_onoff = 1, .l_linger = 0 };

setsockopt(fd, SOL_SOCKET, SO_LINGER, &opt, sizeof opt);
close(fd);

Understanding the Different States of a Server Socket

A server typically executes the following system calls at start up:

1) Create a socket:

server_fd = socket(...);

2) Bind to a well known IP address and port number:

ret = bind(server_fd, ...);

3) Mark the socket as passive by changing its state to LISTEN:

ret = listen(server_fd, ...);

4) Wait for a client to connect and get a reference file descriptor:

client_fd = accept(server_fd, ...);

Any new socket, created via socket() or accept() system calls, is tracked in
the kernel using a "struct sock"
structure. In the code fragment above, a
socket is created in step #1 and given a well known address in step #2. This
socket is transitioned to the LISTEN state in step #3. Step #4 calls
accept(), which blocks until a client connects to this IP:port. After the
client completes the TCP three-way handshake, the kernel creates a second socket and
returns a reference to this socket. The state of the new socket is set to
ESTABLISHED, while the server_fd socket remains in a
LISTEN state.

The SO_REUSEADDR Socket Option

Let's look at two use cases to better understand the SO_REUSEADDR
option for TCP sockets.

Use case #1: a server application restarts in two steps, an exit followed by
a start up. During the exit, the server's LISTEN socket is closed immediately.
Two situations can arise due to the presence of
existing connections to the server:

	
All established connections that were being handled by this dying server
process are closed, and those sockets transition to the TIME-WAIT state.

	
All established connections that were handed off to a child process
continue to remain in the ESTABLISHED state.

When the server is subsequently started up, its attempt to bind to its
LISTEN port fails with EADDRINUSE, because some sockets on the system are
already bound to this IP:port combination (for example, a socket in either
the TIME-WAIT or ESTABLISHED state). Here's a
demonstration of this problem:

Server is listening on port #45000.
$ ss -tan | grep :45000
LISTEN 0 1 10.20.1.1:45000 *:*

A client connects to the server using its source
port 54762. A new socket is created and is seen
in the ESTABLISHED state, along with the
earlier LISTEN socket.
$ ss -tan | grep :45000
LISTEN 0 1 10.20.1.1:45000 *:*
ESTAB 0 0 10.20.1.1:45000 10.20.1.100:54762

Kill the server application.
$ pkill -9 my_server

Restart the server application.
$./my_server 45000
bind: Address already in use

Find out why
$ ss -tan | grep :45000
TIME-WAIT 0 0 10.20.1.1:45000 10.20.1.100:54762

This listing shows that the earlier ESTABLISHED socket is the same one that
is now seen in the TIME-WAIT state. The presence of this socket bound to the
local address—10.20.1.1:45000—prevented the server from being able to
subsequently bind() to the same IP:port combination for its
LISTEN socket.

Use case #2: if two processes attempt to bind() to the same IP:port
combination, the process that executes bind() first succeeds, while the latter
fails with EADDRINUSE. Another instance of this use case involves an
application binding to a specific IP:port (for example, 192.168.100.1:80),
and another application attempting to bind to the wildcard IP address with
the same port number (for example, 0.0.0.0:80) or vice versa. The latter
bind() invocation fails, as it attempts to bind to all addresses with the same
port number that was used by the first process. If both processes set the
SO_REUSEADDR option on their sockets, both sockets can be bound successfully.
However, note this caveat: if the first process calls bind() and
listen(),
the second process still would be unable to bind() successfully, since the
first socket is in the LISTEN state. Hence, this use case is usually meant for
clients that want to bind to a specific IP:port before connecting to
different services.

How does SO_REUSEADDR help solve this problem? When the server is restarted
and invokes bind() on a socket with
SO_REUSEADDR set, the kernel ignores all
non-LISTEN sockets bound to the same IP:port combination. The
UNIX Network Programming book describes
this feature as:
"SO_REUSEADDR allows a listening server to start and bind its well-known
port, even if previously established connections exist that use this port as
their local port".

However, we need the SO_REUSEPORT option to allow two or more processes to
invoke listen() on the same port successfully. I describe this option
in more detail in the remaining sections.

The SO_REUSEPORT Socket Option

While SO_REUSEADDR allows sockets to bind() to the same IP:port combination
when existing ESTABLISHED or TIME-WAIT sockets may be
present, SO_REUSEPORT
allows binding to the same IP:port when existing LISTEN sockets
also may be
present. The kernel ignores all sockets, including sockets in the
LISTEN state,
when an application invokes bind() or listen() on a
socket with SO_REUSEPORT
enabled. This permits a server process to be invoked multiple times, allowing
many processes to listen for connections. The next section examines the
kernel implementation SO_REUSEPORT.

How Are Connections Distributed among Multiple Listeners?

When multiple sockets are in the LISTEN state, how does the kernel decide which
socket—and, thus, which application process—receives an incoming
connection? Is this determined using a round-robin, least-connection, random
or some other method? Let's take a deeper look into the TCP/IP code to
understand how socket selection is performed.

Notes:

	
Data structures and code snippets in this section are heavily simplified
for the sake of clarity—removing some structure elements, function
arguments, variables and unnecessary code—but without losing correctness.
Some parts of the listing are also in pseudo-code for better ease of
understanding.

	
sk represents a kernel socket data structure of type "struct sock".

	
skb, or the socket buffer, represents a network packet of type "struct
sk_buff".

	
src_addr, src_port and dst_addr,
dst_port refers to source IP:port and
destination IP:port, respectively.

	
Readers can correlate the code snippets with the actual source code,
if desired.

As an incoming packet (skb) moves up the TCP/IP stack, the IP subsystem calls
into the TCP packet receive handler, tcp_v4_rcv(), providing the
skb as
argument. tcp_v4_rcv() attempts to locate a socket associated with
this skb:

sk = __inet_lookup_skb(&tcp_hashinfo, skb, src_port, dst_port);

tcp_hashinfo is a global variable of type struct
inet_hashinfo, containing,
among others, two hash tables of ESTABLISHED and
LISTEN sockets, respectively.
The LISTEN hash table is sized to 32 buckets, as shown below:

#define LHTABLE_SIZE 32 /* Yes, this really is all you need */
struct inet_hashinfo {
 /* Hash table for fully established sockets */
 struct inet_ehash_bucket *ehash;
 /* Hash table for LISTEN sockets */
 struct inet_listen_hashbucket listening_hash[LHTABLE_SIZE];
};

struct inet_hashinfo tcp_hashinfo;

__inet_lookup_skb() extracts the source and destination IP addresses from the
incoming skb and passes these along with the source and destination ports to
__inet_lookup() to find the associated ESTABLISHED or
LISTEN socket, as shown
here:

struct sock *__inet_lookup_skb(tcp_hashinfo, skb,
 ↪src_port, dst_port)
{
 /* Get the IPv4 header to know
 * the source and destination IPs */
 const struct iphdr *iph = ip_hdr(skb);

 /*
 * Look up the incoming skb in tcp_hashinfo using the
 * [Source-IP:Port, Destination-IP:Port] tuple.
 */
 return __inet_lookup(tcp_hashinfo, skb, iph->saddr,
 ↪src_port, iph->daddr, dst_port);
}

__inet_lookup() looks in tcp_hashinfo->ehash for an already established
socket matching the client four-tuple parameters. In the absence of an
established socket, it looks in tcp_hashinfo->listening_hash for a
LISTEN
socket:

struct sock *__inet_lookup(tcp_hashinfo, skb, src_addr,
 ↪src_port, dst_addr, dst_port)
{
 /* Convert dest_port# from network to host byte order */
 u16 hnum = ntohs(dst_port);

 /* First look for an established socket ... */
 sk = __inet_lookup_established(tcp_hashinfo, src_addr,
 ↪src_port, dst_addr, hnum);
 if (sk)
 return sk;

 /* failing which, look for a LISTEN socket */
 return __inet_lookup_listener(tcp_hashinfo, skb, src_addr,
 src_port, dst_addr, hnum);
}

The __inet_lookup_listener() function implements the selection of
a LISTEN
socket:

struct sock *__inet_lookup_listener(tcp_hashinfo, skb,
 ↪src_addr, src_port, dst_addr, dst_port)
{
 /*
 * Use the destination port# to calculate a hash table
 * slot# of the listen socket. inet_lhashfn() returns
 * a number between 0
 * and LHTABLE_SIZE-1 (both inclusive).
 */
 unsigned int hash = inet_lhashfn(dst_port);

 /* Use this slot# to index the global LISTEN hash table */
 struct inet_listen_hashbucket *ilb =
 ↪tcp_hashinfo->listening_hash[hash];

 /* Track best matching LISTEN socket
 * so far and its "score" */
 struct sock *result = NULL, *sk;
 int hi_score = 0;

 for each socket, 'sk', in the selected hash bucket, 'ilb' {
 /*
 * Calculate the "score" of this LISTEN socket (sk)
 * against the incoming skb. Score is computed on
 * some parameters, such as exact destination port#,
 * destination IP address exact match (as against
 * matching INADDR_ANY, for example),
 * with each criteria getting a different weight.
 */
 score = compute_score(sk, dst_port, dst_addr);
 if (score > hi_score) {
 /* Highest score - best matched socket till now */
 if (sk->sk_reuseport) {
 /*
 * sk has SO_REUSEPORT feature enabled. Call
 * inet_ehashfn() with dest_addr, dest_port,
 * src_addr and src_port to compute a
 * 2nd hash, phash.
 */
 phash = inet_ehashfn(dst_addr, dst_port,
 src_addr, src_port);

 /* Select a socket from sk's SO_REUSEPORT group
 * using 'phash'.
 */
 result = reuseport_select_sock(sk, phash);
 if (result)
 return result;
 }

 /* Update new best socket and its score */
 result = sk;
 hi_score = score;
 }
 }

 return result;
}

Selecting a socket from the SO_REUSEPORT group is done with
reuseport_select_sock():

struct sock *reuseport_select_sock(struct sock *sk,
 unsigned int phash)
{
 /* Get control block of sockets
 * in this SO_REUSEPORT group */
 struct sock_reuseport *reuse = sk->sk_reuseport_cb;

 /* Get count of sockets in the group */
 int num_socks = reuse->num_socks;

 /* Calculate value between 0 and 'num_socks-1'
 * (both inclusive) */
 unsigned int index = reciprocal_scale(phash, num_socks);

 /* Index into the SO_REUSEPORT group using this index */
 return reuse->socks[index];
}

Let's step back a little to understand how this works. When the first
process invoked listen() on a socket with
SO_REUSEPORT enabled, a pointer in
its "struct sock" structure, sk_reuseport_cb, is allocated. This structure
is defined as:

struct sock_reuseport {
 u16 max_socks; /* Allocated size of socks[] array */
 u16 num_socks; /* #Elements in socks[] */
 struct sock *socks[0]; /* All sockets added to this group */
};

The last element of this structure is a "flexible array
member". The
entire structure is allocated such that the socks[] array has 128 elements of
type struct sock *. Note that as the number of listeners increases beyond
128, this structure is reallocated such that the socks[] array size is
doubled.

The first socket, sk1, that invoked listen(), is saved in the first slot of
its own socks[] array, for example:

sk1->sk_reuseport_cb->socks[0] = sk1;

When listen() is subsequently invoked on other sockets
(sk2, ...) bound to
the same IP:port, two operations are performed:

	
The address of the new socket (sk2, ...) is appended to the
sk_reuseport_cb->socks[] of the first socket (sk1).

	
The new socket's sk_reuseport_cb pointer is made to point to the first
socket's sk_reuseport_cb pointer. This ensures that all
LISTEN sockets of the
same group reference the same sk_reuseport_cb pointer.

Figure 1 shows the
result of these two steps.

[image: Alt Tag Name]

Figure 1. Representation of the SO_REUSEPORT Group of
LISTEN Sockets

In Figure 1, sk1 is the first LISTEN socket, and
sk2 and sk3 are sockets
that invoked listen() subsequently. The two steps described above are
performed in the following code snippet and executed via the
listen() call
chain:

static int inet_reuseport_add_sock(struct sock *new_sk)
{
 /*
 * First check if another identical LISTEN socket, prev_sk,
 * exists. ... Then do the following:
 */
 if (prev_sk) {
 /*
 * Not the first listener - do the following:
 * - Grow prev_sk->sk_reuseport_cb structure if required.
 * - Save new_sk socket pointer in prev_sk's socks[].
 * prev_sk->sk_reuseport_cb->socks[num_socks] = new_sk;
 * - prev_sk->sk_reuseport_cb->num_socks++;
 * - Pointer assignment of the control block:
 * new_sk->sk_reuseport_cb = prev_sk->sk_reuseport_cb;
 */
 return reuseport_add_sock(new_sk, prev_sk);
 }

 /*
 * First listener - do the following:
 * - allocate new_sk->sk_reuseport_cb to contain 128 socks[]
 * - new_sk->sk_reuseport_cb->max_socks = 128;
 * - new_sk->sk_reuseport_cb->socks[0] = new_sk;
 * - new_sk->sk_reuseport_cb->numsocks = 1;
 */
 return reuseport_alloc(new_sk);
}

Now let's go back to reuseport_select_sock() to see how a
LISTEN socket is
selected. The socks[] array is indexed via a call to
reciprocal_scale() as
follows:

unsigned int index = reciprocal_scale(phash, num_socks);
return reuse->socks[index];

reciprocal_scale() is an optimized function that implements a
pseudo-modulo operation using multiply and shift operations.

As shown earlier, phash was calculated in
__inet_lookup_listener():

phash = inet_ehashfn(dst_addr, dst_port, src_addr, src_port);

And, num_socks is the number of sockets in the
socks[] array. The function
reciprocal_scale(phash, num_socks) calculates an index, 0 <=
index <
num_socks. This index is used to retrieve a socket from the
SO_REUSEPORT
socket group.

Hence, you can see that the kernel selects a socket by hashing the client IP:port
and server IP:port values. This method provides a good distribution of
connections among different LISTEN sockets.

SO_REUSEPORT in Action

Let's look at the effect of SO_REUSEPORT on the command line through two tests.

1) An application opens a socket for listen and creates two processes.

Application code path: socket(); bind(); listen(); fork();

$ ss -tlnpe | grep :45000
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=3020,fd=3),("my_server",pid=3019,fd=3))
 ↪ino:3854904087 sk:37d5a0

The string ino:3854904087 sk:37d5a0 describes a single kernel socket.

2) An application creates two processes, and each creates a LISTEN
socket after setting SO_REUSEPORT.

Application code path: fork(); socket(); setsockopt(SO_REUSEPORT);
bind(); listen();

$ ss -tlnpe | grep :45000
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=1975,fd=3)) ino:3854935788 sk:37d59c
LISTEN 0 128 *:45000 *:* users:(("my_server",
↪pid=1974,fd=3)) ino:3854935786 sk:37d59d

Now you see two different kernel sockets—notice the different inode numbers.

Applications using multiple processes to accept connections on a single
LISTEN socket may experience significant performance issues, since each
process contends for the same socket lock in accept(), as shown in the
following simplified pseudo-code:

struct sock *inet_csk_accept(struct sock *sk)
{
 struct sock *newsk = NULL; /* client socket */

 /* We need to make sure that this socket is listening, and
 * that it has something pending.
 */
 lock_sock(sk);
 if (sk->sk_state == TCP_LISTEN)
 if ("there are completed connections waiting
 ↪to be accepted")
 newsk = get_first_connection(sk);
 release_sock(sk);

 return newsk;
}

Both lock_sock() and release_sock() internally acquires and releases a
spinlock embedded in sk. (See Figure 3 later in this article to observe the
overhead due to the spinlock contention.)

Benchmarking SO_REUSEPORT

The following setup is used to measure SO_REUSEPORT performance:

	
Kernel version: 4.17.13.

	
Client and server systems both have 48 hyper-threaded cores and are
connected to each other using a 40g NIC over a switch.

	
Server is started in one of two ways:
create a single LISTEN socket and fork 48 times, or
fork 48 times, and each child process creates a LISTEN socket after
enabling SO_REUSEPORT.

	
Client creates 48 processes. Each process connects and disconnects to the
server a million times sequentially.

With the fork of the LISTEN socket:

server-system-$./my_server 45000 48 0 (0 indicates fork)
client-system-$ time ./my_client <server-ip> 45000 48 1000000
real 4m45.471s

With SO_REUSEPORT:

server-system-$./my_server 45000 48 1 (1 indicates
 ↪SO_REUSEPORT)
client-system-$ time ./my_client <server-ip> 45000 48 1000000
real 1m36.766s

Performance Analysis of SO_REUSEPORT

Figures 2–5 provide a look at the performance profile for the above two tests using
the perf tool.

[image: Performance Counter]

Figure 2. Performance Counter Statistics without
SO_REUSEPORT

[image: Performance Profile]

Figure 3. Performance Profile of the Top 25 Functions without
SO_REUSEPORT

[image: Counter Statistics]

Figure 4. Performance Counter Statistics with SO_REUSEPORT

[image: Top 25]

Figure 5. Performance Profile of the Top 25 Functions with
SO_REUSEPORT

Source Code for Client and Server Applications

The listing below implements a server and client application that were used
for SO_REUSEPORT performance testing:

$ cat my_server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <netdb.h>

void create_children(int nprocs, int parent_pid)
{
 while (nprocs-- > 0) {
 if (getpid() == parent_pid && fork() < 0)
 exit(1);
 }
}

int main(int argc, char *argv[])
{
 int reuse_port, fd, cfd, nprocs, opt = 1, parent_pid =
 ↪getpid();
 struct sockaddr_in server;

 if (argc != 4) {
 fprintf(stderr, "Port# #Procs {0->fork, or
 ↪1->SO_REUSEPORT}\n");
 return 1;
 }

 nprocs = atoi(argv[2]);
 reuse_port = atoi(argv[3]);
 if (reuse_port) /* proper SO_REUSEPORT */
 create_children(nprocs, parent_pid);

 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 if (reuse_port)
 setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, (char *)&opt,
 sizeof opt);

 server.sin_family = AF_INET;
 server.sin_addr.s_addr = INADDR_ANY;
 server.sin_port = htons(atoi(argv[1]));

 if (bind(fd, (struct sockaddr *)&server, sizeof server)
 ↪< 0) {
 perror("bind");
 return 1;
 }

 if (!reuse_port) /* simple fork instead of SO_REUSEPORT */
 create_children(nprocs, parent_pid);

 if (parent_pid == getpid()) {
 while (wait(NULL) != -1); /* wait for all children */
 } else {
 listen(fd, SOMAXCONN);
 while (1) {
 if ((cfd = accept(fd, NULL, NULL)) < 0) {
 perror("accept");
 return 1;
 }
 close(cfd);
 }
 }

 return 0;
}

$ cat my_client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <strings.h>
#include <sys/wait.h>
#include <netdb.h>

void create_children(int nprocs, int parent_pid)
{
void create_children(int nprocs, int parent_pid)
{
 while (nprocs-- > 0) {
 if (getpid() == parent_pid && fork() < 0)
 exit(1);
 }
}

int main(int argc, char *argv[])
{
 int fd, count, nprocs, parent_pid = getpid();
 struct sockaddr_in server;
 struct hostent *server_ent;
 const struct linger nolinger = { .l_onoff = 1,
 ↪.l_linger = 0 };

 if (argc != 5) {
 fprintf(stderr, "Server-IP Port# #Processes
 ↪#Conns_per_Proc\n");
 return 1;
 }

 nprocs = atoi(argv[3]);
 count = atoi(argv[4]);

 if ((server_ent = gethostbyname(argv[1])) == NULL) {
 perror("gethostbyname");
 return 1;
 }

 bzero((char *)&server, sizeof server);
 server.sin_family = AF_INET;
 server.sin_port = htons(atoi(argv[2]));
 bcopy((char *)server_ent->h_addr, (char *)
↪&server.sin_addr.s_addr,
 server_ent->h_length);

 create_children(nprocs, parent_pid);

 if (getpid() == parent_pid) {
 while (wait(NULL) != -1); /* wait for all children */
 } else {
 while (count-- > 0) {
 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 if (connect(fd, (struct sockaddr *)&server,
 sizeof server) < 0) {
 perror("connect");
 return 1;
 }

 /* Reset connection to avoid TIME-WAIT state */
 setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger,
 sizeof nolinger);
 close(fd);
 }
 }

 return 0;
}

Resources

	
"The SO_REUSEPORT socket option" by
Michael Kerrisk on LWN.net

	
Network Socket
(Wikipedia)

	
Transmission
Control Protocol (Wikipedia)

	
TCP State
Transition Diagram

	
Kernel Source
Code

	UNIX
Network Programming by W. Richard Stevens, Bill Fenner and Andrew M.
Rudoff

	
Arrays of Length
Zero

	
Reciprocal
Multiplication

About the Author

Krishna Kumar works at Flipkart Internet Pvt Ltd, India's largest e-commerce
company. He is especially interested in today's topic, as Flipkart uses this
technology to host millions of connections from visitors all over the world.
His other interests are playing chess, struggling to learn to use apps, and
occasionally bringing stray puppies home much to his wife's consternation.
Please send your comments and feedback to krishna.ku@flipkart.com.

Open Sauce: Open Source—It's in the Genes

What happens when you release 500,000 human genomes as open source?
This. By Glyn Moody

DNA
is digital. The three billion chemical bases that make up the human
genome encode data not in binary, but in a quaternary system, using four
compounds—adenine, cytosine, guanine, thymine—to represent four
genetic "digits": A, C, G and T. Although this came as something of a
surprise in 1953, when Watson and Crick proposed an A–T and C–G pairing as
a "copying mechanism for genetic material" in their famous
double helix paper, it's hard to see how hereditary information could
have been transmitted efficiently from generation to generation in any
other way. As anyone who has made photocopies of photocopies is aware,
analog systems are bad at loss-free transmission, unlike digital encodings.
Evolution of progressively more complex structures over millions of years
would have been much harder, perhaps impossible, had our genetic material
been stored in a purely analog form.

Although the digital nature of DNA was known more than half a century ago, it
was only after many years of further work that quaternary data could be
extracted at scale. The Human
Genome Project, where laboratories around the world pieced together the
three billion bases found in a single human genome, was completed in 2003,
after 13 years of work, for a cost of around $750
million. However, since then, the cost of sequencing genomes has
fallen—in fact, it has plummeted even faster
than Moore's Law for semiconductors. A complete human genome now
can be sequenced for a few hundred dollars, with sub-$100 services
expected soon.

As costs have fallen, new services have sprung up offering to
sequence—at least partially—anyone's genome. Millions have sent
samples of their saliva to companies like 23andMe in order to learn things
about their "ancestry, health,
wellness and more". It's exciting stuff, but there are big downsides
to using these companies. You may be giving a company the right to use
your DNA for other purposes. That is, you are losing control of the most
personal code there is—the one that created you in the boot-up
process we call gestation. Deleting
sequenced DNA can be hard.

That's bad enough, but it gets worse. Because the DNA of all your
relatives is similar to yours to varying degrees, when you have your genome
sequenced, you are effectively giving away part of their DNA too. Whether
they agree or not, they lose
their genetic anonymity, which may have serious and unforeseen
consequences. In the US, police are using genetic information that has
been made public by individuals to
find partial matches of DNA from a crime scene. By building and
exploring family trees on a massive scale, the police can narrow their
investigations down to a few suspects to help them pinpoint the criminal.

Just as software code can be open source rather than proprietary, so there
are publicly funded genomic sequencing initiatives that make their results
available to all. One of the largest projects, the UK Biobank (UKB), involves 500,000
participants. Any researcher, anywhere in the world, can download
complete, anonymized data sets, provided they are approved by the UKB
board. One important restriction is that they must not try to re-identify
any participant—something that would be relatively easy to do given
the extremely detailed clinical history that was gathered from volunteers
along with blood and urine samples. Investigators asked all 500,000
participants about their habits, and examined them for more than 2,000
different traits, including data on their social lives, cognitive
state, lifestyle and physical health.

Given the large number of genomes that need to be sequenced, the first open
DNA data sets from UKB are only partial, although the plan is to sequence
all genomes more fully in due course. These smaller data sets allow what is
called "genotyping",
which provides a rough map of a person's DNA and its specific properties.
Even this partial sequencing provides valuable information, especially when
it is available for large numbers of people. As an article in
Science
points out, it is not just the size and richness of the open data sets that
makes the UK Biobank unique, it is the
thorough-going nature of the sharing that is required from researchers:

Researchers around the world can freely delve into the UKB data
and rapidly build on one another's work, resulting in unexpected dividends
in diverse fields, such as human evolution. In a crowdsourcing spirit rare
in the hypercompetitive world of biomedical research, groups even post
tools for using the data without first seeking credit by publishing in a
journal.

The benefits from applying open-source methodology to half a million
genomes are significant and growing by the day. About 7,000 researchers
have registered to use UKB data on 1,400 projects, and more than 600 papers have
been published. It is leading to rapid advances that are simply not
possible when the DNA is proprietary. And as with open source, doing good
brings benefits:

"The U.K. is getting all of the world's best brains" to study
its citizens, says Ewan Birney, director of the EMBL European
Bioinformatics Institute in Hinxton, U.K., and a member of the UKB's
steering committee. The U.K. focus is also the project's chief downside, as
it explores just one slice of humanity: northern Europeans. It holds data
for only about 20,000 people of African or Asian descent, for example. Yet
as new papers appear every few days, researchers say the UKB remains a
shining example of the power of curiosity unleashed. "It's the thing we
always dreamed of," [president and director of the Broad Institute in
Cambridge, Massachusetts] Lander says.

It's the classic "given
enough eyeballs, all bugs are shallow". By open-sourcing the genomic
code of 500,000 of its citizens, the UK is getting the top DNA hackers in
the world to find the "bugs"—the variants that are associated with
medical conditions—that will help our understanding of them and may
well lead to the development of new treatments for them. The advantages
are so obvious, it's a wonder people use anything else. A bit like open
source.

Glyn Moody has been writing about the internet since 1994, and about free
software since 1995. In 1997, he wrote the first mainstream feature about
GNU/Linux and free software, which appeared in Wired. In 2001, his
book
Rebel Code: Linux And The Open Source Revolution was published.
Since
then,
he has written widely about free software and digital rights. He has a blog,
and he is active on social media: @glynmoody on Twitter or identi.ca, and
+glynmoody on Google+.

[image: Glyn Moody]

OEBPS/Images/12749f3.jpg
1 configuring kdump-tools —————————————————

If you choose this option, the kdump-tools mechanism will be enabled. A
reboot is still reguired in order to enable the crashkernel kernel

parameter.
Should kdump-tools be enabled by default?
<No>

OEBPS/Images/12759f3.jpg

OEBPS/Images/12752aa.jpg

cover.jpeg
Sign Git Commits Open Source and Tighten Your Code
with GPG Human Genomes with Mypy

LINUX

JOUR

Since 1994: The original magazg

THE
KERNEL
ISSUE

HOW THE
KERNEL HANDLES
MEMORY

A TALK WITH
THREE KERNEL
DEVELOPERS

DEBUGGING [
LINUX KERNEL |
PANICS

HOW TO
BUILD YOUR

OWN KERNEL l

ISSUE 298 | MAY 2018
wwwlinuxjournal.com

OEBPS/Images/ljlogo_masthd_fmt.png
Vlllll')fi

OEBPS/Images/PIA_logo.jpg
prlvatemternetaccess

always use protection

OEBPS/Images/12749aa.jpg

OEBPS/Images/12757f6.jpg
Python Shell

Python 2.7.15+ (default, Oct 2 2018, 22:12:08)
[GCC 8.2.0] on linux2

>>> from paraview.simple import *

>>>

RunScript || Clear Reset Close

OEBPS/Images/12538f4.jpg

OEBPS/Images/12625f3.jpg
A

))) -

HOST T Cllent

=

OEBPS/Images/12747aa.jpg

OEBPS/Images/12732aa.jpg

OEBPS/Images/12759f1.jpg
PATREON

OEBPS/Images/12538f5.jpg

OEBPS/Images/12743aa.jpg

OEBPS/Images/12625f4.jpg
4000

3500

:

(]
w
(=3
S

:

1500

Total Data Transferred
o =
g 8

=1

0

RMS vs Total Data Transferred

A Walking Towards
mWalking Away °
® Signal Saturation

® Congestion

e

100 200 300 400 500
RMS Against Ideal Curve (MB)

600

OEBPS/Images/12764f2.jpg
B |ombout e resoe clens schecues Stoges hector

Jobs started during the past 24 hours <
omm (-]
0 0 1 0
Most recent job status per job name <
Search e O =
oscip- | EEID tweows bremertsl 20190205 20190208

Showing 110 1 of 1 rows.

Hilocahostdir & Administrator +

Job Totals
jobs Files
2 01 Ey
Running Jobs

There are no obs running,

Q

OEBPS/Images/12757f7.jpg
Plugin Manager

Local plugins are automatically searched for in /ust/lib/paraview/plugins.

Local Plugins
Name Property
» AcceleratedAlgorithms Not Loaded
» AnalyzeNIFTIIO Not Loaded
» ArrowGlyph Not Loaded
» CDIReader Not Loaded
» CatalystScriptGeneratorPlugin Not Loaded
» EyeDomeLightingView Not Loaded
» GMVReader Not Loaded
» GeodesicMeasurement Not Loaded
» LagrangianParticleTracker Not Loaded
» Moments Not Loaded
» NonOrthogonalSource Not Loaded
» SLACTools Not Loaded
» SierraPlotTools Not Loaded
» StreamLinesRepresentation Not Loaded
» StreamingParticles Not Loaded
» SurfacelIC Not Loaded
» PacMan Not Loaded
» ThickenLayeredcells Not Loaded
» vtkPVinitializerPlugin Loaded
Load New ...

HClose

OEBPS/Images/12760aa.jpg

OEBPS/Images/12759f2.jpg
'@ BECOME A PATRON

OEBPS/Images/12538f1.jpg
(struct sock *sk1)

b
hiongnd (struct sock_reuseport)
([]struct sock ¥
(struct sock *sk2)
(struct sock *sk3)
‘sk_reuseport_cb

sk_reuseport_cb

OEBPS/Images/12757f3.jpg
ParaView 5.4.1 64-bit

ple g0t Yiew gources Eiters Toohs Satabat. eacrs Help

S ER OO FRE HAPDPMS e o Cmaxisay)

B8 2 5 ¢) o neratins - sle o XMadRhdABCL? BEOG
E9OE3®O ' ® e weEsg

B8 oLyoursi® | Olayoutszs |+
FE o@ EOE AQPCEERA L

propertes | Information

properties as
° pelete

Search.. (useExc o cear tend ¢

= properties (mandetbrot) DO CIOR

Proectonives o 0 2

originex azs_ s o o

szecx s as 2 s

vl [0

SubsampleRate |7

= Display (UniformGridRepresentatic 3| © € &
Representation sice -

OEBPS/Images/LJ298-May2019-DeepDive.jpg
DEEP DIVE

THE KERNEL

OEBPS/Images/12625f5.jpg
Number Accuracy | Accuracy
Accuracy
of of K- Accuracy of of

Training Means of SVM | Decision | Nearest

Samples Tree Centroid

150 90.67% 96.55% 96.67% | 68.67%
98.96% 79.33%

1,500 92.82% 99.99% 98.13% 86.23%

15,000 92.82% 99.99% 98.21% 86.67%

OEBPS/Images/12764f1.jpg
Text Console
GUI Console

Windows File Daemon

Unix File Daemon

Web Interface

Mac File Daemon

Director

Storage Media

Storage Daemon

Media Changers

<=

Catalog

| G

-3

OEBPS/Images/12748f1.jpg
opcode source 1 source 2 destination

OEBPS/Images/12538f2.jpg

OEBPS/Images/12757f2.jpg
ParaView 5.4.1 64-bit

ple gt view e Bl Jocs Saatrt st
e 89 HAD> DS Time (maxis 3)

B & 2 € 6 | @ wislodcoos - sutace Al gLRce? Beea
eee® G

Pipeline Browser 8% o Layout s |+
Lo #x »@ mEE AGT

propertes | information
Properties
*pelete

= properties (anext) | 3

B variables
v # Objectids
7 4 GlobalElement ds
o
% Global Node ids
oiseL.
veL
AccL

VT

OEBPS/Images/12757f4.jpg
le dit Viw Sources Flters oo Gatast. Macros elp

P BER O FRGE KAPPMS
[(FEEEE
B9Q002®O e RewreE
Piplne srowser 25 o upoum® | Opins
ot # »Renderview1 @ 8 0@ ®
* ceanee
Descrptivestatist
- T
. D ssessed oot
v lehesqw
properties | itormaton
sroperie as
0 | Npsie | 2

= properties Descrpth | 3 B *

bute
pointoata

8 varibles of nterest

Taining
Fracion

[e

Tie: o e
X¥adbk gy s H

Spresdshestvient @805 6

hoving et TRte P v preclon: 6 2 5L

‘Showing Descripthestatstcs (ssessed Do)

Sresdshestviewz 81810158,

- Atribute: pont ata ~ preciion: 6 ©

JBlOa

OEBPS/Images/12748f2.jpg
n Linux Journal Kernel | Bae Memory: 512 MB
Running Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging

GNU GRUB version 2.02

The Linux Journal Kernel

Use the T and ! keys to select which entry is highlighted
Press enter to boot the selected 0S, ‘e’ to edit the commands
before booting or 'c’ for a command-line.

The highlighted entry will be executed automatically in 2s

Reset the virtual machine:

3 Left 32

OEBPS/Images/12751aa.jpg

OEBPS/Images/12538f3.jpg

OEBPS/Images/12757f1.jpg
Ele £dit View Sources Fiters Tools Catabyst Macros. belp
29

¢t e

oo % | oLyous s
iti: Py

ParaView 5.4.1 64-bit

Properties | Information
properties

= View (Render vie

s Grid
Center Axes Visbilky

orientation Axes

¥ Orientation Axes sty

Hidden Line Removal

OEBPS/Images/12744aa.jpg

OEBPS/Images/12757f5.jpg
leEdit View sources Fiters Tools Gatabst. Macros Help

CRG HAPPMS T o

ALK
R

e ®% 0O oz
Ppeline srowser 85 oayoun® | Dlyous2s
L S 2 % »Renderviews 81810 %

Properties
Propeties

ntormation

2: | Hpdete

= propertis w9 B €

selet g
ot artay
Bincount o

Component x.
= oisplayspre O © €
Field Assodaton row dota
= View(spresd D B €
cellrontsize <

v

Spresdshestviews @800 ¢

howing Histogram1 - Atrlbuter fom Data - Precson ¢
owio bt b s

EEED

Sresdshestviens 180108
Showing None - urbore: precision: 621 /L) &

OEBPS/Images/12538c.jpg
Server with SO REUSEPORT

Application process #1

Application process #2

Application process #3

Application process #4

Kernel space

User space

Server without SO REUSEPORT

—

Application process #1

>

Application process #2

-l

Application process #3

—

Application process #4

Kernel space

User space

OEBPS/Images/12625f2.jpg
Trained Model

Network

Layer

Ly
433

Inference Model Modules

OEBPS/Images/33429.png

OEBPS/Images/12748f3.jpg
[tinicdouml el || gse amory: 51208
Running Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging

Foodbye from Linux Journalt

Left 3¢

OEBPS/Images/12753aa.jpg

OEBPS/Images/12749f1.jpg
e B B T g 1 o i I S S
oo
s 8

00
00

27.

27

27.
27.
27.

509349] CR2: 0000000000000000 CR 0000000119506000 CR4: 0000000000060670
.509938] DRO: 0000000000000000 DR 0000000000000000 DR2: 0000000000000000
510500] DR3: 0000000000000000 DR6: 00000000fffe0ffo DR7: 0000000000000400
511080] Stack:

511518] ffffffffa702c597 0000000000000002 fffffffffffffffb ffffbcad008b3
.513069] 0000000002375008 ffffffffato2cadh ffff3725965ac000 ffffffffasera
.514603] 0000000000000002 ffff372596333f00 ffffffffaseohdbo ffff372596333
.516136] Call Trace:

.516569) [<ffffffffa702c597>] ? __handle_sysrg+0xf7/0x150

.517063) [<ffffffffa7o2cadb>] ? write_sysrg_trigger+0x2b/0x30

.517565] [<fffffffface7ac00>] 7 proc_reg_write+0x40/0x70

.518057] [<ffffffffaeobdbo>] 7 vis_urite+0xb0/0x130

.518540] [<ffffffffabe0cif2>] 7 SyS_urite+0x52/0xco

.513037] [<ffffffffa6co3b7d>] ? do_syscall_64+0x8d/0xf0

.519530) [<ffffffffa721924e>] ? entry_SYSCALL_64_after_swapgs+0x58/0xc6
.520063) Code: 41 Sc 41 Sd 41 Se 41 Sf e9 3c 08 cf ff 66 2e of 1f 84 00 00
00 66 30 0f 1f 44 00 00 c7 05 23 Se a8 00 01 00 00 00 Of ae 8 <c6> 04 25

00 00 01 c3 0f 1f 44 00 00 0f 1f 44 00 00 53 Bd

.533456]
.534112])
.534538]

RIP [<ffffffffa702be62>] sysrg_handle_crash+0x12/0x20
RSP <ffffbcaq008h3e78>
CR2: 0000000000000000

OEBPS/Images/12748aa.jpg

OEBPS/Images/12625f1.jpg
Data Parameter 1 -

Data Parameter 2 »

Data Parameter N »

OEBPS/Images/12584c.jpg
B, A

Reallty 2 O

ooooooooo

OEBPS/Images/12749f2.jpg
— 1 Configuring kexec-tools ——————————————
If you choose this option, a system reboot will trigger a restart into a
kernel loaded by kexec instead of going through the full system boot
loader process.

Should kexec-tools handle reboots (sysvinit only)?

<Yes>

