
3D Printing and
Vendor Lock-in

Text processing
in Rust

Downsides to
RPi Alternatives

SINGLE-BOARD
COMPUTERS

Arduino
from the

Command Line
with arduino-cli

A Look at
NoodlePi and

TinyPi, Two RPi
Zero Projects

Set Up the
Mycroft Digital

Assistant
on an RPi 3

Introducing
PiBox, a

Custom Distro
for RPi

ISSUE 296 | MARCH 2019
www.linuxjournal.com

Since 1994: The original magazine of the Linux community

CONTENTS MARCH 2019
ISSUE 296

2 | March 2019 | https://www.linuxjournal.com

79 Arduino from the Command Line:
Break Free from the GUI with Git and Vim!
by Matthew Hoskins
Love Arduino but hate the GUI? Try arduino-cli.

99 Indie Makers Using Single-Board Computers
by Bryan Lunduke
Possibly the most amazing thing, to me, about single-board computers (SBCs)
is that they allow small teams of people (and even lone individuals) to create new
gadgets using not much more than SBCs and 3D printers. That opportunity for
makers and small companies is absolutely astounding.

110 Mycroft: a Privacy-Respecting Digital Assistant
by Jan Newmarch
How to build a Mycroft skill and then convert the Google AIY Voice Kit to
run Mycroft instead of Google Assistant.

123 Oracle Linux on Btrfs for the Raspberry Pi
by Charles Fisher
Enterprise comes to the micro server.

141 PiBox: an Embedded Systems Journey
by Michael J. Hammel
Raspberry Pi development with off-the-shelf software is easy by design. But, how
would you use it to build a custom distribution with cross-compiled applications
targeted for distributed media playback?

78 DEEP DIVE:
Single-Board Computers

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | March 2019 | https://www.linuxjournal.com

6 The Single-Board Computers Issue
 by Bryan Lunduke

10 From the Editor—Doc Searls
 The Digital Unconformity

16 Letters

 UPFRONT
24 FOSS Project Spotlight: Daylight Linux Version 3
 by Hamdy Abou El Anein

28 Antennas in Linux
 by Joey Bernard

36 Patreon and Linux Journal

37 Reality 2.0: a Linux Journal Podcast

38 Lessons in Vendor Lock-in: 3D Printers
 by Kyle Rankin

43 News Briefs

 COLUMNS
48 Kyle Rankin’s Hack and /
 Downsides to Raspberry Pi Alternatives

54 Reuven M. Lerner’s At the Forge
 Become Queen Bee for a Day, Using Python’s Built-in Data Types

61 Dave Taylor’s Work the Shell
 Fun with Mail Merge and Cool Bash Arrays

68 Zack Brown’s diff -u
 What’s New in Kernel Development

174 Glyn Moody’s Open Sauce
 By Jupyter—Is This the Future of Open Science?

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-281-944-5188.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | March 2019 | https://www.linuxjournal.com

 ARTICLE
158 Text Processing in Rust
 By Mihalis Tsoukalos
 Create handy command-line utilities in Rust.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Aaron Chantrill, Bellingham Linux Users Group;
Lawrence D’Oliveiro, Waikato Linux Users Group; Chris Ebenezer, Silicon Corridor Linux User Group;

David Egts, Akron Linux Users Group; Michael Fox, Peterborough Linux User Group;
Braddock Gaskill, San Gabriel Valley Linux Users’ Group; Roy Lindauer, Reno Linux Users Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com

Contact: Publisher Carlie Fairchild
Phone: +1-281-944-5188

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | March 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://blug.org/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
http://subscribe.linuxjournal.com

6 | March 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...and
current Deputy Editor of Linux
Journal as well as host of the
(aptly named) Lunduke Show.

When I was a child in the 1980s, I had a computer—a very
1980s computer.

It had a hefty, rectangular, grey case made of some sort of
industrial sheet metal. Two plain (but rather large), square
buttons adorned the front, begging to be pressed: “Reset”
and “Turbo”. On the right side of the case, far in the back
(nearly out of reach), sat an almost comically large, red
power switch. It was the kind of lever that would look right
at home in an action movie—used to cut the electricity to all
of New York City.

When you “threw the switch”, the PC turned on with a
deeply satisfying, soul-reverberating, “ka-THUNK”.

Inside, sat an Intel 286 CPU decked out with 640k of RAM,
which, as some unnamed person may or may not have said,
“ought to be enough for anybody”. For mass storage, it
had a big, double tall hard drive. The connection for this
drive wasn’t SATA, or SCSI, or even IDE. We’re talking about
an MFM connection here, baby (MFM stands for Modified
Frequency Modulation). As a child, I simply assumed MFM
had something to do with the fact that you could hear the

THE
SINGLE-BOARD
COMPUTERS
ISSUE

https://www.linuxjournal.com

7 | March 2019 | https://www.linuxjournal.com

THE SINGLE-BOARD COMPUTERS ISSUE

hard drive spinning up from down the street.

I kid, I kid. You couldn’t actually hear the hard drive—not over the roar of the fan in
the power supply.

It was, to say the least, a beast—beastly in size, beastly in power usage and
beastly in price.

Flash-forward [counts on fingers, gets depressed at own age, downs a pint of
ice cream, resumes writing article] 35 years later. We now have single-board
computers (SBCs) with no fans—heck, no moving parts whatsoever—running
completely silently.

These SBCs have several hundred times (in some cases, several thousand times)
the RAM. Ditto for storage. With significantly faster networking (including
wireless, which wasn’t even a thing on that old 286) and processing speed that,
even among the slowest SBCs, is so much faster, it’s almost mind-boggling.

All of this is contained within a physical size often smaller than a credit card and at a
price somewhere roughly between one hamburger and...a couple more hamburgers.

These small, silent, low-power, low-cost computers have changed things. They’ve
made general-purpose computing more affordable (and durable), bringing down
costs in data centers and allowing solo makers and small companies to create
computer-driven hardware projects that would have been nearly impossible to
tackle in days gone by.

Here in 2019, we’ve even got a whole heaping helping of SBCs from which to choose:
Arduino, BeagleBoard, Gumstix, ODROID, Pine64, Raspberry Pi—the list goes on and
on. We are spoiled for choices.

In this issue of Linux Journal, we look at SBCs from multiple angles. We start the
Deep Dive section with “Arduino from the Command Line: Break Free from the GUI
with Git and Vim!”—a detailed look into how to utilize the newly created arduino-cli
application to work with Arduino devices directly from, you guessed it, the

https://www.linuxjournal.com

8 | March 2019 | https://www.linuxjournal.com

THE SINGLE-BOARD COMPUTERS ISSUE

command line, written by Matthew Hoskins, the Senior Enterprise Architect at New
Jersey Institute of Technology.

Then, in “Indie Makers Using Single-Board Computers”, I sit down with the minds
behind two solo projects based around the Raspberry Pi Zero (the smallest of the
Raspberry Pi family): the small, PDA-like NoodlePi and the “oh my gosh, it’s like an
itty-bitty gameboy” TinyPi.

Next up, Professor Jan Newmarch takes us on a guided tour of how to set up Mycroft
(a personal digital assistant that is open-source and Linux-based) on a Raspberry Pi
3—complete with a look at how to build Mycroft “skills” (in this case, interfacing with
smart bulbs) using Python.

Turning to the Enterprise space—because these single-board computers aren’t just for
hobbyist projects—Charles Fisher gives us a review of the newly released Raspberry Pi
3 version of Oracle Linux, including instructions for installing Oracle on the Pi 3 using
the Btrfs filesystem.

We finish with a look into PiBox—a custom Linux distribution for the Raspberry Pi,
with cross-compiled applications, intended for distributed media playback, written by
the man behind the project himself, Michael J. Hammel.

These single-board computers are incredibly versatile. The size and price point alone
open up whole worlds of possibilities that seemed out of reach just a few years ago,
both in mobile computing and enterprise-grade server farms—truly amazing.

Though, if I’m being honest, I do rather miss that big, red power switch.

Also, now I want a hamburger. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.pulseway.com
https://www.linuxjournal.com/sponsors

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

10 | March 2019 | https://www.linuxjournal.com

The Digital
Unconformity
Will our digital lives leave a fossil record? Or any
record at all?

By Doc Searls

In the library of Earth’s history, there are missing books. All
were written in rock that is now gone. The greatest example
of “gone” rock first was observed by John Wesley Powell in
1869, on his expedition by boat through the Grand Canyon.
Floating down the Colorado river, he saw the canyon’s mile-
thick layers of reddish sedimentary rock resting on a basement
of gray non-sedimentary rock, and he correctly assumed that
the upper layers did not continue from the bottom one. He

https://www.linuxjournal.com

11 | March 2019 | https://www.linuxjournal.com

FROM THE EDITOR

knew time had passed between the basement rock and the floors of rock above it,
but he didn’t know how much. The answer turned out to be more than a billion years.
The walls of the Grand Canyon say nothing about what happened during that time.
Geology calls that nothing an unconformity.

In fact, Powell’s unconformity prevails worldwide. The name for this worldwide
missing rock is the Great Unconformity. Because of that unconformity, geology
knows comparatively little about what happened in the world through stretches of
time ranging regionally up to 1.6 billion years. All of those stretches end abruptly
with the Cambrian Explosion, which began about 541 million years ago. Many
theories attempt to explain what erased all that geological history, but the prevailing
paradigm is perhaps best expressed in “Neoproterozoic glacial origin of the Great
Unconformity”, published on the last day of 2018 by nine geologists writing for the
National Academy of Sciences.

Put simply, they blame snow. Lots of it—enough to turn the planet into one giant
snowball, already informally called Snowball Earth. A more accurate name for this
time would be Glacierball Earth, because glaciers, all formed from snow, apparently
covered most or all of Earth’s land during the Great Unconformity—and most or all
of the seas as well.

The relevant fact about glaciers is that they don’t sit still. They spread and slide
sideways, pressing and pushing immensities of accumulated ice down on landscapes
that they pulverize and scrape against adjacent landscapes, abrading their way through
mountains and across hills and plains like a trowel spreading wet cement. Thus, it
seems glaciers scraped a vastness of geological history off the Earth’s surface and let
plate tectonics hide the rest of the evidence. As a result, the stories of Earth’s missing
history are told only by younger rock that remembers only that a layer of moving ice
had erased pretty much everything other than a signature on its work.

I bring all this up because I see something analogous to Glacierball Earth happening
right now, right here, across our new worldwide digital sphere. A snowstorm of bits
is falling on the virtual surface of that virtual sphere, which itself is made of bits even
more provisional and temporary than the glaciers that once covered the physical
Earth. All of this digital storm, vivid and present in our current moment in time, is not

https://www.linuxjournal.com

12 | March 2019 | https://www.linuxjournal.com

FROM THE EDITOR

only doomed to vanish, but it lacks even a glacier’s talent for accumulation.

There is nothing about a bit that lends itself to persistence, other than the media it
is written on, if it is written at all. Form follows function, and right now, most digital
functions, even those we call “storage”, are temporary. The largest commercial
facilities for storing digital goods are what we fittingly call “clouds”. By design, these
are built to remember no more of what they contained than does an empty closet.
Stop paying for cloud storage, and away goes your stuff, leaving no fossil imprints.
Old hard drives, CDs and DVDs might persist in landfills, but people in the far future
may look at a CD or a DVD the way a geologist today looks at Cambrian zircons: as
signatures of digital activity in a lost period of time. If those fossils speak of what’s
happening now at all, it will be of a self-erasing Digital Earth that began in the late
20th century.

This isn’t my theory. It comes from my wife, who has long claimed that future
historians will look on our digital age as an invisible one, because it sucks so royally at
archiving itself. I think she’s right.

For example, this laptop currently sits atop a stack of books on my desk. Two of those
books are self-published compilations of essays I wrote about technology in the mid-
1980s, mostly for publications that are long gone. The originals are on floppy disks
that can be read only by PCs and apps of that time, some of which are buried in lower
strata of boxes in my garage. I just found a floppy with some of those essays. (It’s the
one with a blue edge in the wood case near the right end of the photo.) But I’ll need
to find an old machine to read it. Old apps too, all of them also on floppies. If those
still retain readable files, I am sure there are ways to recover at least the raw ASCII
text. But I’m still betting the paper copies of the books under this laptop will live a
lot longer than the floppies or the stored PCs will—if those aren’t already bricked by
decades of un-use.

As for other media, the prospect isn’t any better.

At the base of my video collection is a stratum of VHS videotapes, atop of which
are strata of Video8 and Hi8 tapes, and then one of digital stuff burned onto CDs
and stored in hard drives, most of which have been disconnected for years. Some of

https://www.linuxjournal.com

13 | March 2019 | https://www.linuxjournal.com

FROM THE EDITOR

those drives have interfaces and connections no longer supported by any computers
being made today. Although I’ve saved machines to play all of them, none I’ve checked
still work. One choked to death on a CD I stuck in it. And that was just one failure
among many that stopped me from making Christmas presents of family memories
recorded on old tapes and DVDs. I may take up the project again sometime before
next Christmas, but the odds are long against that (hey, I’m busy) and short toward
the chance that nobody will ever see or hear those recordings again. And I’m not even
counting my parents’ 8mm and 16mm movies made from the 1930s to the 1960s. In
1989, my sister and I had all of those copied over to VHS tape. We then recorded my
mother annotating the tapes onto companion cassette tapes while we watched the
show. I still have the original film in a box somewhere, but I can’t find any of the tapes.

The base stratum of my audio past is a few dozen open reel tapes recorded in the
1950s and 1960s. Above that are cassette and microcassete tapes, plus some Sony
MiniDisks recorded in ATRAC, a proprietary and incompatible compression algorithm
now used by nobody, including Sony. Although I do have ways to play some (but
not all) of those, I’m cautious about converting any of them to digital formats (Ogg,
MPEG or whatever), because all digital storage media becomes obsolete, dies, or
both—as do formats, algorithms and codecs. Already I have dozens of dead external
hard drives in boxes and drawers. And no commercial cloud service is committed to
digital preservation in perpetuity in the absence of payment. This means my saved
files in clouds are sure to be flushed after neither my heirs nor I continue paying for
their preservation.

Same goes for my photographs. My old photographs are stored in boxes and
albums of photos, negatives and Kodak slide carousels. My digital photographs
are spread across a mess of duplicated back-up drives totaling many terabytes,
plus a handful of CDs. About 60,000 photos are exposed to the world on Flickr’s
cloud, where I maintain two Pro accounts (here and here) for $50/year a piece.
More are in the Berkman Klein Center’s pro account (here) and Linux Journal’s
(here). It is unclear currently whether any of that will survive after any of those
entities stop paying the yearly fee. SmugMug, which now owns Flickr, has said
some encouraging things about photos such as mine, all of which are Creative
Commons-licensed to encourage re-use. But, as Geoffrey West tells us, companies
are mortal. All of them die.

https://www.linuxjournal.com

14 | March 2019 | https://www.linuxjournal.com

FROM THE EDITOR

As for my digital works as a whole (or anybody’s), there is great promise in what the
Internet Archive and Wikimedia Commons do, but there is no guarantee that either
will last for decades more, much less for centuries or millennia. And neither are able
to archive everything that matters (much as they might like to).

It also should be sobering to recognize that we only rent the “sites”, “locations” and
“addresses” at “domains” that we talk about “owning”. The plain and awful fact is that
nobody “owns” a domain on the internet. They pay a sum to a registrar for the right
to use a domain name for a finite period of time. There are no permanent domain
names or IP addresses. In the digital world, finitude rules.

So the historic progression I see, and try to illustrate in the photo at the beginning of
this article, is from hard physical records through digital ones we hold for ourselves,
and then up into clouds that go away, inevitably. Everything digital is snow falling and
disappearing on the waters of time.

Will there ever be a way to save for the very long term what we ironically call
our digital “assets” for more than a few dozen years? Or is all of it doomed by
its own nature to disappear, leaving little more evidence of its passage than a
digital unconformity?

I can’t think of any technical questions more serious than those two. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

16 | March 2019 | https://www.linuxjournal.com

The Light at the End of the Pipe
I read Kyle Rankin’s “Put Down the Pipe” article from the January 2019 issue with
interest, as I’m a big fan of Bash and love to learn new tricks. I can’t help feeling that
the last example using find missed one of the most powerful options to find:
-exec. This is a built-in xargs replacement and is very powerful. One of my favourite
uses is this:

find . -name "*.c" -exec grep "thing" {} /dev/null \;

This searches all “.c” files beneath the current working directory for “thing” and
outputs the name of the file and the line containing “thing”. The {} is replaced by
the files found, one by one. /dev/null forces grep to output the name of the file
containing thing, as it doesn’t otherwise do so if there’s only one file passed to it.
The beauty of -exec is that it can be used with any other shell command. The above
example improves on grep -R as there are many other options that can be used with
find to filter the files searched (for example, -type).

—Steve Kerr

Thanks for “Have a Plan for Netplan”
I just wanted to thank Shawn Powers for his article “Have a Plan for Netplan” in
the October 2018 issue. I also wanted to mention a configuration detail that may be
related to the peculiar DNS mis-behaviors that Shawn reported in the article. As it
turns out, similar mis-behaviors also had been a problem for my network configuration.

My Xubuntu 18.04 desktop system uses a Netplan YAML file with networkd as
the renderer. I installed Stubby with the intent of using DNS over TLS for the
name service. However, when I first applied the Netplan configuration, I also
was observing (uncontrollable) DNS-resolution behaviors similar to those
reported in the article. After reading the article, I realized that I could disable the
systemd-resolved service and allow the Stubby resolver to exclusively take over the
DNS-resolution function. This approach ultimately solved my problems—thanks!

LETTERS

https://www.linuxjournal.com/content/put-down-pipe
https://www.linuxjournal.com/content/have-plan-netplan
https://www.linuxjournal.com

17 | March 2019 | https://www.linuxjournal.com

LETTERS

Being a Linux-newbie, it has taken considerable time and effort to figure out what (I
think) was happening. I’ll provide a dialog below to describe what I did and what may
be the cause of the problems that led to the DNS mis-behaviors.

To start, it is not readily apparent that systemd-resolved provides sufficient controllability
from Netplan—for preventing automatic access to the gateway’s DNS server.

For example, configuring with NetworkManager via the GNOME desktop allows
for invocation of a “DNS Automatic OFF” control. This option is available from the
NetworkManager configuration GUI, but I couldn’t find a similar directive for Netplan.
I’m thinking that NetworkManager has the necessary “hooks” for configuring the
systemd-resolved service with “DNS Automatic OFF”, whereas Netplan does not?

There’s a possibly related Netplan bug report here.

I used this web page for installing Stubby on Ubuntu 18.04, which uses
NetworkManager and sets “DNS Automatic OFF” via the GNOME desktop.

I performed all installation steps up to the section titled “Switching to Stubby”, which
describes configuration using NetworkManager in that section.

Of course, for my implementation, the reference in the YAML file, setting the
renderer to “NetworkManager” was removed and replaced with networkd.

I found that using netplan and running stubby as the replacement stub resolver can
be made to work if systemd-resolved is disabled, the netplan-directed nameserver
is set to 127.0.0.1, and stubby is configured to provide encrypted DNS over TLS.
Of course, Stubby is configured to use appropriate DNS servers that will support
DNS over TLS service.

Again, thanks for the article!

—Jon

https://bugs.launchpad.net/netplan/+bug/1759014
https://www.linuxbabe.com/ubuntu/ubuntu-stubby-dns-over-tls
https://www.linuxjournal.com

18 | March 2019 | https://www.linuxjournal.com

LETTERS

Shawn Powers replies: I’m glad the DNS bit helped! I recently found a glitch
(feature? LOL) with my Ubuntu MATE desktop install. I followed my own article,
because it’s not the sort of thing you do often enough to remember all the details,
and I discovered that while I had to use “DNS” in the NetworkManager.conf file to
make it work when I wrote the article, I actually had to use “dns” in my current setup.
Whoever invented capital letters should be slugged in the arm.

I’ll have to check out Stubby. The only other DNS tool I’ve used on the desktop is
DNSMasq, which I’ve also written about extensively. Stubby is new to me, and one
more thing I’ll have to investigate! Thanks!

Re: Dave Taylor and Roman Numerals
I always enjoy Dave Taylor’s immensely useful Bash column, but I think his latest
series over-complicates the problem (see Part I, Part II and Part III of Dave’s Roman
Numerals and Bash series).

Converting to Roman numerals can be done by taking each of the one- and two-letter
values you list and repeatedly subtracting them in one go—no need to repeat the
whole table. This is effectively the “greedy algorithm” approach to change-making.

I also dislike having to use lots of similar if-blocks, so I’d rather jump through some
regex hoops to avoid it. See my suggestion below for a more succinct solution:

#!/bin/bash
#
toroman
#
DECVALUE="$1"
ROMANVALUE=""
TABLE="M=1000 CM=900 D=500 CD=400 C=100 XC=90"
TABLE+=" L=50 XL=40 X=10 IX=9 V=5 IV=4 I=1"
for T in $TABLE ; do
 R=${T/=*/} ; D=${T/*=/}

https://www.linuxjournal.com/content/roman-numerals-and-bash
https://www.linuxjournal.com/content/more-roman-numerals-and-bash
https://www.linuxjournal.com/content/converting-decimals-roman-numerals-bash
https://en.wikipedia.org/wiki/Change-making_problem
https://www.linuxjournal.com

19 | March 2019 | https://www.linuxjournal.com

LETTERS

 while [[$DECVALUE -ge $D]]; do
 ROMANVALUE+=$R
 let DECVALUE-=$D
 done
done
echo $ROMANVALUE

—Mike

Dave Taylor replies: Thanks for your note, Mike. I have to admit that there’s
something about the world of regular expressions that is still daunting. And trying
to explain a complicated regex to someone who isn’t familiar with the concept (my
primary reader) is more than a bit overwhelming. Still, it’s a graceful solution. Where
were you when I was a compsci undergrad at UCSD?

Possible Article Suggestion
Regarding Kyle Rankin’s “Back to Basics: Sort and Uniq” from the January 2019 issue:
I am a relative newbie to Linux, about five years or so, on my personal computer at
home, so I enjoyed this article on going back to basics. Understanding commands and
how to use them well is how one gets more comfortable with the system.

I was thinking an article on how to read man pages might be a good idea. I think I
may have read something on it in the past, but understanding the basics and how to
understand fully how to run commands might help others too.

—Patrick Donahue

Bad Language in the Kernel Code
Ricky Gervais put it succinctly: “Nobody has the RIGHT to NOT be offended”
(my emphasis).

Yes, if you write a comment that says “xyz is a fucking idiot”—it’s probably
inappropriate to attack someone explicitly; that’s basically just rude. On the other

https://www.linuxjournal.com/content/back-basics-sort-and-uniq
https://www.linuxjournal.com

20 | March 2019 | https://www.linuxjournal.com

LETTERS

hand, if you write a comment that says, “This chunk of code is fucking awful” (and you
can say why), then why not? They’re just words to emphasize your opinion of the code.

Complaints about bad language are a red herring. The real issue is confusing who
people are (male, female, black, white, gay, other, etc.) with what they believe
(homophobic, or not, religious, atheist, pro-life, pro-choice, Republican, Democrat,
perl is a good thing, etc.). Now everyone, please, get a fucking life!

—David Jameson

The Security Issue
There was a great deal of good information in the February 2019 issue. As a retired
individual having a bit more time than I used to have, I have taken on the task of
removing everything I can from “the cloud”. My reasons are not that important, but
suffice it to say that I dislike any of my data being anywhere but on my hardware
unless I specifically send it to someone/some-group. At the same time, I want access
to my data on all my devices regardless of my location. Thus, I established my own
cloud using Nextcloud. Doing so can be a daunting task once the rather simple initial
setup is complete. Security is of great importance.

There are a number of basic tasks in the February 2019 issue that I have not taken on,
but that I should. So thank you much for an excellent selection of applicable articles!

As a side note: Passman, which is an add-on to Nextcloud does a pretty darn good job
of handling passwords. There is a plugin for browsers that works quite well connecting
to and retrieving passwords from the encrypted database on the server. Also, there is
an app for mobile devices in beta as well.

Finally, “Open Science, Open Source and R” by Andy Wills is very pertinent from my
perspective, as it addresses a rather disturbing problem of the real and/or perceived
veracity (or lack thereof) of some research and the broader problem of the recent attacks
on science. Only the scientific community can address this issue, and the author does a
good job of showing one way in which that can be done. It is critically important that we

https://www.linuxjournal.com/content/open-science-open-source-and-r
https://www.linuxjournal.com

21 | March 2019 | https://www.linuxjournal.com

LETTERS

re-establish our confidence in science and scientific methodology, and doing so means the
scientific community is going to have to re-dedicate itself to a higher level of discipline.

I also want to mention that I agree fully with Glyn Moody (see “If Software Is Funded
from a Public Source, Its Code Should Be Open Source”). Well said!

And more generally, as usual, Linux Journal delivers! Well done!

—Wesley J. Wieland

From Social Media
In Response to Receiving a Free Issue of LJ:

Danny Hernandez @danny13_33: Aww Yeah! Thank you @linuxjournal
for the subscription to your magazine! Just a quick look and there are tons of
useful articles that I can apply to my everyday SysAdmining. #Linux #DevOps
#LinuxJournal #SysAdmin

In Response to Bryan Lunduke’s “Why Is Linux Spelled Incorrectly”:

Steeve McCauley: oh god no, that’s worse than linux. I used to think it
should be linix, but I gave that up 20+ years ago.

Jason Lisonbee: It’s possible the person who first called it Linux thought of your
spelling but the “u” made it more clear that the commands and behavior were
intended to be naturally familiar to Unix users. ‘Ux’ can be short hand for ‘unix’.

Rob Kingsboro: GNU+LINICS

Chris Franz: “Linux” would be too close to Minix for Torvalds’ taste, I suspect.

Still surprises me that there is actual audio of how the man himself pronounces
it—he’s the foremost authority given that it’s based on his own damn name—

https://www.linuxjournal.com/content/if-software-funded-public-source-its-code-should-be-open-source
https://www.linuxjournal.com/content/if-software-funded-public-source-its-code-should-be-open-source
https://www.linuxjournal.com/content/why-linux-spelled-incorrectly
https://www.linuxjournal.com

22 | March 2019 | https://www.linuxjournal.com

LETTERS

and people still intentionally pronounce it LIE-nux.

Jason Lisonbee: IIRC someone else mashed the name Linus with Unix to call
it Linux. Just like someone other than Linus witnessed or learned that he had
some incident with a penguin and made that the mascot; then or later calling it
Tux, which is now the name of some derivatives, including probably a distro and
a filesystem, which AFAIK are distinct and separate products/projects.

Mihalej Archnalej Korcak: it’s LINUKS!

Abdullah Leghari: In Asia it’s pronounced like Lienuks or Lyenuks.

Rob Kingsboro: Well, that was interesting. Arbitrarily putting Xs in things is corny.

SEND LJ A LETTER We’d love to hear your feedback on the magazine and specific
articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll
publish the best ones here.

https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

April 26 - 28, 2019 • Bellingham Technical College
20th Anniversary! ❝Past, Present & Future❞

 https://blog.lfnw.org linuxfestnorthwest @lfnw linuxfestnorthwest info@linuxfestnorthwest.org

https://lfnw.org

����� �tten�ees � ���� sessions � ��� �en�ors
�pen h�r�w�re � o!i�l e�ents � "ob f�ir � #orl� f�$ous r��e

All free to attend

%inux&est 'orthwest (est.)���*+ �n �nnu�l �pen our!e e�ent
!o,pro�u!e� b- Bellingham Linux Users Group �n� the
Information Technology department at BTC. %&'# fe�tures
present�tions �n� exhibits on free �n� open sour!e topi!s+ �s
well �s %inux �istributions . �ppli!�tions+ /nfo e!+ �n� pri��!-0
so$ething for e�er-one fro$ the no�i!e to the profession�l1

https://lfnw.org
https://blog.lfnw.org
mailto:info@linuxfestnorthwest.org

24 | March 2019 | https://www.linuxjournal.com

UPFRONT

FOSS Project
Spotlight: Daylight
Linux Version 3
Daylight Linux is the only official distribution for the Raspberry Pi to work with the
Fluxbox interface. With Fluxbox, Daylight Linux is one of the lightest and fastest
distributions for all Raspberry Pi models.

Many programs, games and system tools were developed during a long year of work
in Python 3 to create version 3.

UPFRONT

https://www.linuxjournal.com

25 | March 2019 | https://www.linuxjournal.com

UPFRONT

Figure 1.
The System
at Boot

Figure 2.
The Daylight
Linux Menu

https://www.linuxjournal.com

26 | March 2019 | https://www.linuxjournal.com

UPFRONT

Figure 3.
The
Daylight
Linux
Desktop
with System
Information

Figure 4.
The
Daylight
Linux File
Manager

https://www.linuxjournal.com

27 | March 2019 | https://www.linuxjournal.com

UPFRONT

The system works with autologin, but you also can use these login/passwords:
“root”/”toor” and “Daylight”/”toor”.

A live version also is available for computers. This version aims to provide Debian-
based Linux with the lightness of Daylight Linux.

Daylight Linux version 3 runs on all Raspberry Pi models, and it’s based on Debian
Buster. Visit the official website for more information and to download.

—Hamdy Abou El Anein

http://www.daylightlinux.ch/
https://www.linuxjournal.com

28 | March 2019 | https://www.linuxjournal.com

UPFRONT

Antennas in Linux
For this article, I want to introduce a piece of software I’ve actually used recently in
my own work. My new day job involves studying the ionosphere using an instrument
called an ionosonde. This device is basically a giant radio transmitter that bounces
radio waves off the ionosphere to see its structure and composition. Obviously, an
important part of this is knowing the radiation pattern of the various transmitters and
receivers.

Several methods exist for modeling the electromagnetic fields around conductors, but
here I’m covering one called NEC2 (Numerical Electromagnetics Code). It originally
was developed in FORTRAN at the Lawrence Livermore National Laboratory in the
1970s. Since then, it’s been re-implemented several times in various languages.
Specifically, let’s look at xnec2c. This package implements NEC2 in C, and it also
provides a GTK front end for interacting with the core engine.

Figure 1. Launching
xnec2c gives you
a pretty boring
starting point.

https://www.linuxjournal.com

29 | March 2019 | https://www.linuxjournal.com

UPFRONT

xnec2c should be available in most Linux distributions. In Debian-based distributions,
you can install it with the command:

sudo apt-get install xnec2c

Once it’s installed, you can start it with xnec2c. The default display doesn’t show
anything until you actually start using it.

Figure 2. Loading an input file, you begin with a geometric view of the relevant antenna
wires, other conductors and any ground planes.

https://www.linuxjournal.com

30 | March 2019 | https://www.linuxjournal.com

UPFRONT

xnec2c’s history still affects how it behaves to the present day. This is most clear when
you look at the input file’s format. The basic structure is based on the idea of a punch
card, where each “command” to xnec2c is given by a command card—a definite
holdover from its FORTRAN roots. Luckily, the GTK front end to xnec2c provides a
reasonably functional way of building up these input files.

Several example files should be available with your installation of xnec2c. In my Ubuntu
distribution, they’re located in /usr/share/doc/xnec2c/examples. These input files have
a filename ending of “.nec”. Select one as a starting off point to play with xnec2c, and
then go ahead and make the required alterations necessary for your own project.

Figure 3. You easily can model the radiation pattern from an antenna system.

https://www.linuxjournal.com

31 | March 2019 | https://www.linuxjournal.com

UPFRONT

The central window pane provides a geometric view of the actual antenna structure
in three dimensions. You can click and drag the diagram to rotate the view and see
it from all angles. There are two larger buttons at the top of the window, named
Currents and Charges. Selecting them alternately will show either the distribution of
currents or the distribution of charges caused by the driving current.

Once you’re sure the physical layout is correct, you can start to see what the
electromagnetic behavior of the system looks like. On the menu bar at the top, there
is an entry named View. Clicking “Radiation Pattern” pops up a new window where

Figure 4. If your input file has the appropriate entries, you can see a display of the electric
and magnetic fields.

https://www.linuxjournal.com

32 | March 2019 | https://www.linuxjournal.com

UPFRONT

you can view what the electromagnetic radiation pattern looks like. A few different
options are available. The first, “Gain Pattern”, provides what most people probably
think of as the radiation pattern.

Again, you can click and drag the image to get a better view of the pattern from
various angles.

In the same window, there is a second display option. Assuming your input file has the
appropriate entries, click the “E/H Fields” button to see a view of the electric and/or
magnetic fields for your configuration.

Figure 5. You can get several detailed plots of the electrical behavior of your antenna design.

https://www.linuxjournal.com

33 | March 2019 | https://www.linuxjournal.com

UPFRONT

Several options are available at the top of the window. For example, you can
change the frequency of the driving current to see how your system behaves at
different frequencies.

The second major display that’s available shows how your antenna design behaves over
a series of driving frequencies. Clicking View→Frequency Plots pops up a new window.

The first button shows you how the gain changes over a given frequency sweep.

Figure 6. You can see multiple plots of the electrical behavior stacked on top of each other
to get a better overall view of your antenna configuration.

https://www.linuxjournal.com

34 | March 2019 | https://www.linuxjournal.com

UPFRONT

Clicking on each subsequent button adds a new graph to the same window. For
example, click the VSWR button to see how the Voltage Standing Wave Ratio (VSWR)
changes over frequency.

You probably will need to resize the window if you want to view more than a couple
graphs simultaneously. As with the E/H Fields plot from earlier, whether these plots
behave as you expect depends on the input file you’re using.

The example files provide a great place to start, but they’re not likely to match your
situation exactly. In those cases, you’ll want to edit the input files to configure the

Figure 7. You can use the built-in editor to customize the input file to your personal specifications.

https://www.linuxjournal.com

35 | March 2019 | https://www.linuxjournal.com

UPFRONT

system exactly as you need it to be.

Although you simply can open the input file in any text editor, xnec2c includes an edit
function built in. Clicking the File→Edit menu item pops open a new window where
you can see all of the input cards.

You can change the values for already existent cards, but the best feature of this
editor is that you can add new cards with the click of a button. If you are new to NEC2
and its input format, you may not necessarily remember the codes and formats for
the various types of input cards. The editor window helps with this. There even are
buttons, like mirror and scale, that aid in the design phase by taking advantage of
symmetries you may have in your antenna.

In each of these displays, you have a couple different options when it comes to
saving your results. The simplest is clicking File→Save As. This lets you save the
resulting image as a PNG file. If you select File→Save As gnuplot, the actual data
is exported into a file, and the format is appropriate for the type of data that you
might want to feed into gnuplot. This way, you can tailor the resulting graphical
display for your particular situation.

Results that xnec2c generates are not directly comparable with those from other
implementations of NEC2. Its focus is more on the functionality of being interactive.
If you want more traditional output, you can use xnec2c to view your antenna
configuration, and then use nec2c to generate your final results.

—Joey Bernard

https://www.linuxjournal.com

36 | March 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each
month in the magazine. A very special thank you this month goes to:

• Appahost.com
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• Fred
• Henrik Halbritter (Albritter)
• James Mayes
• Josh Simmons

https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

37 | March 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

38 | March 2019 | https://www.linuxjournal.com

UPFRONT

Lessons in Vendor
Lock-in: 3D Printers
The open nature of the consumer 3D printing industry has made for
a much more consumer-friendly world.

This article continues a series that aims to illustrate some of the various problems
associated with vendor lock-in. In past articles, I’ve given examples showing how
proprietary systems from disposable razors to messaging apps have replaced more
open systems leading to vendor lock-in. This article highlights an ecosystem that, so
far, has largely avoided vendor lock-in and describes the benefits that openness has
provided members of the community, myself included: 3D printing.

I’ve been involved in 3D printing for several years. I’ve owned a number of printers,
and I’ve seen incredible growth in the area from an incredibly geeky fringe to the much
more accessible hobby that it is today. I’ve also written quite a few articles in Linux
Journal about 3D printing, including a multi-part series on the current state of 3D
printing hardware and software (see the Resources section for links to Kyle’s previous
Linux Journal articles on 3D printing). I even gave a keynote at SCALE 11x on the free
software and open hardware history of 3D printing and how it mirrors the history of
the growth of Linux distributions.

The Birth of 3D Printing in the Hobbyist Market
One interesting thing about the hobbyist 3D printing market is that it was founded on
free software and open hardware ideals starting with the RepRap project. The idea
behind that project was to design a 3D printer from off-the-shelf parts that could
print as many of its own parts as possible (especially more complex, custom parts like
gears). Because of this, the first generation of 3D printers were all homemade using
Arduinos, stepper motors, 3D-printed gears and hardware you could find in the local

https://www.linuxjournal.com/content/lessons-vendor-lock-shaving
https://www.linuxjournal.com/content/lessons-vendor-lock-messaging
https://reprap.org/
https://www.linuxjournal.com

39 | March 2019 | https://www.linuxjournal.com

UPFRONT

hardware store.

As the movement grew, a few individuals started small businesses selling 3D printer
kits that collected all the hardware plus the 3D printed parts and electronics for you
to assemble at home. Later, these kits turned into fully assembled and supported
printers, and after the successful Printrbot kickstarter campaign, the race was on
to create cheaper and more user-friendly printers with each iteration. Sites like
Thingiverse and YouMagine allowed people to create and share their designs, so even
if you didn’t have any design skills yourself, you could download and print everyone
else’s. These sites even provided the hardware diagrams for some of the more popular
3D printers. The Free Software ethos was everywhere you looked.

3D Printing Enters the Consumer Market
As 3D printers entered the mainstream, and consumer brands started to enter the
market, I figured the honeymoon was over. Under the guise of ease of use, many
of these first mainstream efforts bundled their printers with proprietary, branded
software. Some even went as far as copying the old inkjet printer lock-in models
and sold their 3D printer hardware at a discount or a loss and made up the cost
with proprietary filament. Even MakerBot—one of the original 3D printer brands—
abandoned releasing its designs to the public.

Of course, not all brands went the proprietary route. Some of the original brands—
like Ultimaker, Printrbot and Lulzbot—all maintained their commitment to free
software and open hardware. The pure RepRap hobbyist community also continued
to improve and publish new designs. I figured if everything else went the proprietary
route, I would just stick with my Printrbot.

The fact that most hobbyists stuck with open designs and free software and firmware
led to some amazing innovations in 3D printing, such as the OctoPrint front end.
Instead of always connecting your computer to your printer to start a job, OctoPrint
allowed you to monitor your printer remotely and set up new print jobs all over the
network via a web interface. OctoPrint even offered an image for Raspberry Pis,
and that combination became one of the most popular ways to talk to your printer.

https://en.wikipedia.org/wiki/Printrbot
https://www.thingiverse.com/
https://www.youmagine.com/
https://www.makerbot.com/
https://ultimaker.com/
https://www.lulzbot.com/lulzbot-3d-printers?pk_campaign=3dp_search&pk_medium=CPC&pk_source=adwords&pk_kwd=lulzbot&gclid=EAIaIQobChMImI30-86W4AIVg7xkCh3HPwOZEAAYASAAEgJZdfD_BwE
https://octoprint.org/
https://www.linuxjournal.com

40 | March 2019 | https://www.linuxjournal.com

UPFRONT

Thingiverse and YouMagine were full of case designs to let you mount a Raspberry Pi
and camera to your printer.

OctoPrint flourishes because most of the printers were based off a standard and
open hardware and firmware platform. They all spoke G-code—a series of common
commands that allowed you to move stepper motors, set temperatures and otherwise
monitor and control your printer. Using slicing software, like Slic3r or Cura, you
would load an STL file containing your 3D design into the program, decide which
printer quality settings you wanted to use, and then your slicer would convert the STL
file into G-code. Normally, you then would take that G-code file and either copy it to
an SD card in your printer or use a different program to load the G-code into your
printer and monitor the print (Cura was able to act both as a slicer and as a front
end). Because Cura was free software though, OctoPrint was able to incorporate
its slicing engine into its own software, so you could upload STL files directly to the
OctoPrint web interface, and it would slice them for you.

Bring in the Clones
One of the side effects of high-quality free hardware, firmware and software for 3D
printers being readily available is that it enabled a large number of low-cost clones of
popular 3D printer designs to flood the market. Where before a lower-cost printer
was between $600–$1000, and higher-end printers were closer to $2000–$3000, now
you could find clones of those models for half the price. What’s more, although some
of those $200 and $300 printers cut corners (and some caught fire!), for the most
part, they actually produced good quality prints.

An interesting result of those clones was that since they used free software and
firmware, they all worked with the same free software tools everyone already was
using. In fact, some of them even released their own Cura profiles or complete forks
of Cura with their own printer’s settings enabled by default. The quality of the free
software tools made it so that supporting them became critical in many consumers’
decision-making process. Many of the proprietary consumer models couldn’t
compete, especially those that were incompatible with free software tools.

https://en.wikipedia.org/wiki/G-code
https://slic3r.org/
https://en.wikipedia.org/wiki/Cura_(software)
https://www.linuxjournal.com

41 | March 2019 | https://www.linuxjournal.com

UPFRONT

Oh Snap
Of course, those clones had another side effect. They made it much more difficult for
some of the established brands to compete. My personal favorite brand, Printrbot,
announced it was filing for bankruptcy this past fall. The next day, while working on
my printer, I managed to snap the micro-USB port off the motherboard. Normally, I’d
just order a replacement board, but of course, now that wasn’t an option. Yet, thanks
to the open standards in 3D printing, there were a number of generic third-party
RepRap boards I could replace it with. Sure, it would mean spending quite a bit of time
with the board to connect electronics, calibrate things and flash firmware, but the
point is that it was an option at all (and in general, it’s an option for any average 3D
printer on the market).

Unfortunately, I didn’t really have the free time to invest in such a project, so instead,
my 3D printer sat in its broken state. Fortunately, I was surprised on Christmas with a
new 3D printer—one of those low-cost clones. Because of all of the open standards
in this industry, I was able to connect it directly to my existing OctoPrint server, tell
the server about my printer’s dimensions and settings, and get right back to printing.
So far, I’ve been pleased and surprised with the quality of the prints, and I understand
that without the open hardware and free software firmware and tools, it would have
been a much different story.

The moral here is that although there sometimes are risks in a world without
vendor lock-in, that world is much better for the end user. Open standards and
interoperability provide so many more options than you would have in a proprietary
world, including giving you options even if your vendor closes shop.

—Kyle Rankin

https://www.linuxjournal.com

42 | March 2019 | https://www.linuxjournal.com

UPFRONT

Resources
• “Lessons in Vendor Lock-in: Shaving” by Kyle Rankin

• “Lessons in Vendor Lock-in: Messaging” by Kyle Rankin

• “Getting Started with 3D Printing, the Software” by Kyle Rankin

• “Getting Started with 3D Printing, the Hardware” by Kyle Rankin

• “What’s New in 3D Printing, Part I: Introduction” by Kyle Rankin

• “What’s New in 3D Printing, Part II: the Hardware” by Kyle Rankin

• “What’s New in 3D Printing, Part III: the Software” by Kyle Rankin

• “What’s New in 3D Printing, Part IV: OctoPrint” by Kyle Rankin

• RepRap.org

• Thingiverse

• YouMagine

• MakerBot

• Ultimaker

• Lulzbot

• Printrbot (Wikipedia)

• OctoPrint

• G-code

• Slic3r

• Cura

https://www.linuxjournal.com/content/lessons-vendor-lock-shaving
https://www.linuxjournal.com/content/lessons-vendor-lock-messaging
https://www.linuxjournal.com/content/getting-started-3-d-printing-software
https://www.linuxjournal.com/content/getting-started-3-d-printing-hardware
https://www.linuxjournal.com/content/whats-new-3d-printing-part-i-introduction
https://www.linuxjournal.com/content/whats-new-3d-printing-part-ii-hardware
https://www.linuxjournal.com/content/whats-new-3d-printing-part-iii-software
https://www.linuxjournal.com/content/whats-new-3d-printing-part-iv-octoprint
https://reprap.org/
https://www.thingiverse.com/
https://www.youmagine.com/
https://www.makerbot.com/
https://ultimaker.com/
https://www.lulzbot.com/lulzbot-3d-printers?pk_campaign=3dp_search&pk_medium=CPC&pk_source=adwords&pk_kwd=lulzbot&gclid=EAIaIQobChMImI30-86W4AIVg7xkCh3HPwOZEAAYASAAEgJZdfD_BwE
https://en.wikipedia.org/wiki/Printrbot
https://octoprint.org/
https://en.wikipedia.org/wiki/G-code
https://slic3r.org/
https://en.wikipedia.org/wiki/Cura_(software)
https://www.linuxjournal.com

43 | March 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• Groboards has launched a new “tiny, Adafruit Feather form-factor ‘Giant Board’

SBC that runs Linux on Microchip’s SiP implementation of its Cortex-A5-based
SAMA5D SoC and offers 128MB RAM, micro-USB, microSD and I/O including ADC
and PWM”, Linux Gizmos reports. There’s no pricing or availability information
at the time of this writing, but see the OSH Park blog and the Groboards site for
specs and more info.

• A new open-source hardware project called Alias will keep Amazon and Google
smart assistants from spying on you. According to the project’s GitHub page,
“Alias is a teachable ‘parasite’ that is designed to give users more control
over their smart assistants, both when it comes to customisation and privacy.
Through a simple app the user can train Alias to react on a custom wake-word/
sound, and once trained, Alias can take control over your home assistant by
activating it for you.”

• A new major release of the open-source Metasploit Framework is now available.
According to the Rapid7 blog post, version 5.0 of the penetration-testing tool
is the first milestone update since version 4.0 came out in 2011. Along with a
new release cadence, “Metasploit’s new database and automation APIs, evasion
modules and libraries, expanded language support, improved performance, and
ease-of-use lay the groundwork for better teamwork capabilities, tool integration,
and exploitation at scale.”

• Orange Pi 3 SBC is now available. Linux Gizmos reports that the open-source
hardware platform, Allwinner H6-based Orange Pi 3 SBC is now available for
$30, or for $40 with 2GB of RAM and 8GB eMMC. Also, other highlights include
“GbE, HDMI 2.0, 4x USB 3.0, WiFi-ac, and mini-PCIe.” For more info, visit the
Orange Pi 3 AliExpress page.

Visit LinuxJournal.com for
daily news briefs.

http://linuxgizmos.com/tiny-feather-style-sbc-runs-linux-on-cortex-a5-sip-package
http://blog.oshpark.com/2019/01/13/giant-board-adafruit-feather-sized-linux
https://groboards.com/giant-board
https://github.com/bjoernkarmann/project_alias
https://blog.rapid7.com/2019/01/10/metasploit-framework-5-0-released
http://linuxgizmos.com/orange-pi-3-sbc-arrives-with-allwinner-h6-and-mini-pcie
http://linuxjournal.com
https://www.linuxjournal.com

UPFRONT

44 | March 2019 | https://www.linuxjournal.com

• Inkscape is finally reaching the 1.0 milestone after 15 years of development.
Softpedia News reports that Inkscape 1.0 will feature “an updated user interface
that offers better support for 4K/HiDPI screens and theming support, the ability to
rotate and mirror canvases, new options for exporting to the PNG image format,
variable fonts (requires pango 1.41.1 or higher), as well as much faster path
operations and deselection of a large amounts of paths.” You can download the
pre-release alpha as an Appimage from here and see the release notes here.

• Creative Commons recently announced that 30,000 high-quality digital images
from the Cleveland Museum of Art are now available. The free and open digital
images are now under the CC0 and available via their API. The “CC0 allows anyone
to use, re-use, and remix a work without restriction.” Museum Director William M.
Griswold said “Open Access with Creative Commons will provide countless new
opportunities to engage with works of art in our collection. With this move, we
have transformed not only access to the CMA’s collection, but also its usability—
inside as well as outside the walls of our museum.”

• Dell launched its new XPS 13 9380 Developer Edition laptop, which runs Ubuntu
out of the box. According to Forbes, highlights include Intel 8th generation i3,
i5 and i7 processors; Ubuntu 18.04 LTS preloaded; InfinityEdge display with top
camera placement; and much more. See Dell.com for more information.

• Raspberry Pi announces its Computer Module 3+ (CM3+) is now available
for $25. The CM3+ is the “newest version of our flexible board for industrial
applications and offers over ten times the ARM performance, twice the RAM
capacity, and up to eight times the Flash capacity of the original Compute Module.”
The company also has released a refreshed Compute Module Development kit.
The CM3+ will be available until at least January 2026.

• Firefox 65.0 was released to Channel users. New features include enhanced
tracking protection, better experience for multilingual users, support for
HandOff on macOS, better video streaming for Windows users, and improved
performance and web compatibility, with support for the WebP image format.

https://news.softpedia.com/news/inkscape-1-0-open-source-vector-graphics-editor-is-finally-coming-after-15-years-524596.shtml
https://linux.softpedia.com/get/Artistic-Software/Inkscape-61.shtml
http://wiki.inkscape.org/wiki/index.php/Release_notes/1.0
https://creativecommons.org/2019/01/23/cleveland-museum
https://creativecommons.org/2019/01/23/cleveland-museum
https://www.forbes.com/sites/jasonevangelho/2019/01/23/dell-launches-new-ubuntu-powered-xps-13-9380-nose-cam-not-included/#6a002fe75a5f
https://www.dell.com/en-us/work/shop/laptops/new-13-9380/spd/xps-13-9380-laptop?appliedRefinements=302
https://www.raspberrypi.org/blog/compute-module-3-on-sale-now-from-25
https://www.raspberrypi.org/blog/compute-module-3-on-sale-now-from-25
https://www.raspberrypi.org/products/compute-module-development-kit-2
https://www.mozilla.org/en-US/firefox/65.0/releasenotes
https://www.linuxjournal.com

UPFRONT

45 | March 2019 | https://www.linuxjournal.com

Go here to download Firefox.

• Lucern Custom Instruments from the UK teamed up with Tracktion Corporation
of Seattle to create Spirit Animal, an electric guitar with a Raspberry Pi synthesizer
built in. According to the Raspberry Pi Blog, the guitar “boasts an onboard Li-ion
battery granting about 8 hours of play time, and a standard 1/4” audio jack for
connecting to an amp. To permit screen-sharing, updates, and control via SSH, the
guitar allows access to the Pi’s Ethernet port and wireless functionality.” See also
the Gear News website and the Lucern Instruments Facebook page for more
information.

• Kodi 18.0 “Leia” is now available for all supported platforms. This is a major
release, reflecting nearly 10,000 commits, 9,000 changed files and half a million
lines of code added. This new release features support for gaming emulators,
ROMs and controls; DRM decryption support; significant improvements to the
music library; live TV improvements; and much more. See the changelog for more
details, and go here to download.

• ZaReason debuted its new Gamerbox 9400, “the ultimate Linux gaming PC”.
And, the Gamerbox is just the beginning, ZDNet reports, quoting ZaReason CEO
Cathy Malmrose: “Our current team is mostly gamers so, not surprisingly, that is
the direction we are going. We have a full line of gaming machines in R&D.” The
Gamerbox runs Ubuntu 18.04, with a 64-bit Pentium 3.8Ghz G5500 Coffee Lake
processor and 8GB of DDR4 memory.

• Google announced two new audio apps for Android to help people who are
deaf or hard of hearing: Live Transcribe and Sound Amplifier. Live Transcribe
“takes real-world speech and turns it into real-time captions using just the phone’s
microphone”. Live Transcribe will roll out gradually as a limited beta via the Play
Store and pre-installed on Pixel 3 devices. You can sign up here to be notified
when it’s more widely available. Sound Amplifier makes “audio more clear and
easier to hear. You can use Sound Amplifier on your Android smartphone with
wired headphones to filter, augment and amplify the sounds in your environment.

https://www.mozilla.org/firefox/download/thanks
https://www.raspberrypi.org/blog/spirit-animal-synth-guitar
https://www.gearnews.com/namm-2019-lucem-custom-instruments-spirit-animal-softsynth-loaded
https://www.facebook.com/lucemcustoms
https://kodi.tv/article/kodi-180
https://kodi.wiki/view/Kodi_v18_(Leia)_changelog
https://kodi.tv/download
https://zareason.com/Gamerbox-9400.html
https://www.zdnet.com/article/zareason-gamerbox-9400-the-ultimate-linux-gaming-pc
https://www.blog.google/outreach-initiatives/accessibility/making-audio-more-accessible-two-new-apps
https://www.android.com/accessibility/live-transcribe
https://www.linuxjournal.com

UPFRONT

46 | March 2019 | https://www.linuxjournal.com

It works by increasing quiet sounds, while not over-boosting loud sounds.” Sound
Amplifier is available now via the Play Store and supports Android 9 Pie or later and
comes pre-installed on Pixel 3.

• The Document Foundation announced the official release of LibreOffice
6.2 with NotebookBar. This is a major new release that “features a radical new
approach to the user interface—based on the MUFFIN concept—and provides
user experience options capable of satisfying all users’ preferences, while
leveraging all screen sizes in the best way.” This version has many new features,
including substantial changes to icon themes, context menus are tidied up and
interoperability with proprietary file formats has been improved. See this video
for details on all the new features. Note that LibreOffice 6.1.5 also was released
recently for enterprise-class deployments. You can download LibreOffice 6.2 or
LibreOffice 6.1.5 from here.

• Raspberry Pi has opened a store in the Grand Arcade, Cambridge, UK. See this
video for details and follow #RPiStore for more photos and info.

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://blog.documentfoundation.org/blog/2019/02/07/libreoffice-6-2
https://blog.documentfoundation.org/blog/2019/02/07/libreoffice-6-2
https://blog.documentfoundation.org/blog/2016/12/21/the-document-foundation-announces-the-muffin-a-new-tasty-user-interface-concept-for-libreoffice
https://www.youtube.com/watch?v=6HUnR5IoAQk
https://www.youtube.com/watch?v=6HUnR5IoAQk
https://www.youtube.com/watch?v=QLBVAUo586A
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

The Free Software Foundation
presents

Featuring keynote speeches by:

Bdale Garbee Debian Project
Micky Metts Agaric
Tarek Loubani Glia Project
Richard Stallman Free Software Foundation

Free Software Foundation associate members and students attend gratis!

https://Libreplanet.org/2019
http://u.fsf.org/lp19regp

48 | March 2019 | https://www.linuxjournal.com

Downsides to
Raspberry Pi
Alternatives
Learn about some of the risks when choosing an
alternative to a Raspberry Pi for your project.

By Kyle Rankin

I have a lot of low-cost single-board computers (SBCs)
at my house. And, I’ve written a number of articles for
Linux Journal that discuss how I put those computers to
use—whether it’s controlling my beer fridge, replacing a
rackmount file server, acting as a media PC connected to
my TV or as an off-site backup server in my RV (plus many
more). Even more recently, I wrote a “Pi-ventory” article
where I tried to count up just how many of these machines
I had in my home.

Although the majority of the SBCs I use are some form of
Raspberry Pi, I also sometimes use Pi alternatives—SBCs
that mimic the Raspberry Pi while also offering expanded
features—whether that’s gigabit Ethernet, faster CPUs, SATA
ports, USB3 support or any number of other improvements.
These boards often even mimic the Raspberry Pi by having
“Pi” in their names, so you have Orange Pi and Banana Pi
among others. Although Pi alternatives allow you to solve
some problems better than a Raspberry Pi, and in many cases

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com

HACK AND /

49 | March 2019 | https://www.linuxjournal.com

they provide hardware with better specifications for the same price, they aren’t
without their drawbacks. So in this article, I take a look at the downsides of going
with a Pi alternative based on my personal experience.

Third-Party Support
The initial Raspberry Pi was a runaway success, and all of the subsequent models
have sold incredibly well. There are only a few variants on the Raspberry Pi
platform, and later hardware upgrades have done a good job at maintaining
backward-compatibility where possible (in particular with overall board dimensions
and placement of ports). There also have been only a few “official” Raspberry Pi
peripherals through the years (the camera being the best example). When you
have this many of a particular hardware device out in the world, and the primary
vendor is mostly focused on the hardware itself, you have a strong market for add-
ons and peripherals from third parties.

The secondary Raspberry Pi market is full of cases, peripherals and add-on hardware
like USB WiFi dongles that promise to be compatible out of the box with earlier
models that didn’t include WiFi. Adafruit is a good example of an electronics vendor
who has jumped into the Raspberry Pi secondary market with a lot of different
hobbyist kits that feature the Raspberry Pi as the core computing and electronics
platform. That company and others also have created custom add-on shields intended
to stack on top of the Raspberry Pi and add additional features including a number of
different screen options, sensors and even cellular support. There’s even a company
that offers a case to turn a Raspberry Pi into a small laptop.

By contrast, the secondary market for Pi alternatives is pretty small. You might find
cases or other basic peripherals, but because there just aren’t as many of those
devices out in the world, it’s much riskier for a company to go to the trouble of
making specific add-ons just for those devices. Fortunately, you often can re-use
peripherals intended for a Raspberry Pi in these Pi alternatives. Many competitors
make a point to ensure they are pin-for-pin compatible with the Raspberry Pi’s GPIO
pins, which are used for many add-ons. Even with this though, compatibility is not a
sure thing—you have to do your research in many cases or risk wasting money on an

https://www.adafruit.com/
https://www.linuxjournal.com

HACK AND /

50 | March 2019 | https://www.linuxjournal.com

add-on that might fit but might not have software support once you boot.

The Community
One of the major things Raspberry Pi has going for it is its community. Because
of its popularity and how many of these devices were sold compared to those of
competitors, it has an enormous community of users that spread across all kinds of
disciplines—from electrical engineers to gamers to sysadmins to artists.

There are a lot of advantages to having a large and diverse community behind a
project. It means that when you want to do something with your SBC, you are less
likely to be the first. There’s a good chance you will find more complete (and more
up-to-date) documentation and HOWTOs for whatever you want to do. It also means
if you run into problems following one of these guides, there is a community on
forums and chat rooms who can help walk you through it.

Many of the Pi alternatives do have communities in their own right with forums and
chat rooms that you can turn to for support. There are also guides online for some
of the more common use cases for a particular board (for instance, boards that
feature SATA and gigabit Ethernet being used as a file server). Some of the common
software projects (like media PC projects) often also include Pi alternatives in their
documentation alongside Raspberry Pi if a particular board becomes popular for
that use. So in many cases, the community is there, but if you start to stray from the
common uses for your particular board, you are more likely to be on your own, or at
least you’ll have to adapt a Raspberry Pi guide to your SBC.

OS Support
There are a couple official operating systems for the Raspberry Pi direct from the
vendor. Due to the popularity of the Raspberry Pi and the number of people using
them, these operating systems support the hardware well and receive regular
updates. Raspbian, one of the most popular OS options for the Raspberry Pi,
essentially behaves like a standard Debian distribution with Raspberry Pi-specific
scripts and kernel patches so you can get the most out of the hardware (and perform
overclocking and other tweaks).

https://www.raspbian.org/
https://www.linuxjournal.com

HACK AND /

51 | March 2019 | https://www.linuxjournal.com

The community also has created a wide range of special-purpose OSes for the
Raspberry Pi based on Raspbian that add specific features. Some examples include
OSMC, which adds the Kodi media PC software, and OctoPrint, which adds a
network-based 3D printer front end. There are also projects that build a custom
Raspberry Pi OS from the ground up, such as OpenELEC and LibreELEC, which
include Kodi just like OSMC does but with a stripped-down, special-purpose OS that
boots much faster.

OS support, in particular kernel support, is probably the biggest downside to
choosing a Pi alternative. Each vendor tends to provide a few different OS options
with their boards, some that mimic Raspbian and others that are based on Android.
These distributions also provide custom kernels with patches to support the
hardware, but unfortunately compared to the Raspberry Pi world, it’s a toss-up
as to how well these kernels support the hardware. I’ve had some Pi alternatives
work perfectly well and stably with the vendor-provided Linux OS, while others
seemed incredibly unstable. These custom kernels also are problematic because in
some cases, it can be challenging to track down the source code for their custom
patches. Even if you do find the patches, you might be on your own if you want to
apply them to a newer kernel.

The other problem with Pi alternatives is fragmentation and long-term support for
the provided OS. Vendors tend to create their own custom distributions for their
boards instead of using Raspbian or other shared distributions. These vendors also
tend to create updated models every few years, but the OS for a particular revision
tends to freeze in time. This means outdated Linux distributions and Android
versions as time goes on. If you are someone who wants to use these SBCs as a
server platform in particular, having regular security updates and overall updates
for your services is very important. In these cases, the kernel packages also tend to
freeze in place.

Fortunately, the Armbian project has stepped up to provide a general-purpose
Raspbian-like OS for Pi alternatives. Depending on your board, Armbian will have
Debian- and Ubuntu-based images you can use, each with kernels patched to support

https://osmc.tv/
https://kodi.tv/
https://octoprint.org/
https://openelec.tv/
https://libreelec.tv/
https://www.armbian.com/
https://www.linuxjournal.com

HACK AND /

52 | March 2019 | https://www.linuxjournal.com

your hardware. Unfortunately, for some boards, the kernel is a bit less stable, and
Armbian tries to gauge stability for all of the hardware it supports. Armbian also gets
regular updates, so a board that was unstable one day might improve over time.
More important, you will get more regular updates to the rest of the software on
your system with less worry that the device will be abandoned. As we all accumulate
more and more of these computers around our homes, regular security updates are
incredibly important.

Conclusion
If you are debating between a Raspberry Pi and another board for your project, I hope
this article has been helpful. In general, my advice is just to do your research before
you buy any particular board—even a Raspberry Pi. Without proper research, you
may end up with a board that won’t work well for your project or that works only with
an ancient OS. Defaulting to a Raspberry Pi is also not a silver bullet. I’ve chosen Pi
alternatives for many of my projects specifically because a Raspberry Pi would have
been under-powered (or didn’t have proper hardware support) for my needs.◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

HACK AND /

53 | March 2019 | https://www.linuxjournal.com

Resources
• “Temper Temper” by Kyle Rankin

• “Temper Pi” by Kyle Rankin

• “Working on My Temper” by Kyle Rankin

• “N900 with a Slice of Raspberry Pi” by Kyle Rankin

• “Raspberry Strudel: My Raspberry Pi in Austria” by Kyle Rankin

• “Flash ROMs with a Raspberry Pi” by Kyle Rankin

• “LJ Tech Editor’s Personal Stash of Raspberry Pis and Other Single Board
Computers” by Kyle Rankin

• “Papa’s Got a Brand New NAS” by Kyle Rankin

• “Banana Backups” by Kyle Rankin

• “Super Pi Brothers” by Kyle Rankin

• “DIY RV Offsite Backup and Media Server” by Kyle Rankin

• “Two Portable DIY Retro Gaming Consoles” by Kyle Rankin

• “Raspberry Pi Alternatives” by Kyle Rankin

• Raspbian

• OSMC

• Kodi

• OctoPrint

• OpenELEC

• LibreELEC

• Armbian

• Adafruit

https://www.linuxjournal.com/article/10809
https://www.linuxjournal.com/content/temper-pi
https://www.linuxjournal.com/article/10904
https://www.linuxjournal.com/content/n900-slice-raspberry-pi
https://www.linuxjournal.com/content/raspberry-strudel-my-raspberry-pi-austria
https://www.linuxjournal.com/content/flash-roms-raspberry-pi
https://www.linuxjournal.com/content/piventory-lj-tech-editors-personal-stash-raspberry-pis-and-other-single-board-computers
https://www.linuxjournal.com/content/piventory-lj-tech-editors-personal-stash-raspberry-pis-and-other-single-board-computers
https://www.linuxjournal.com/content/papas-got-brand-new-nas
https://www.linuxjournal.com/content/banana-backups
https://www.linuxjournal.com/content/super-pi-brothers
https://www.linuxjournal.com/content/diy-rv-offsite-backup-and-media-server
https://www.linuxjournal.com/content/two-portable-diy-retro-gaming-consoles
https://www.linuxjournal.com/content/raspberry-pi-alternatives
https://www.raspbian.org/
https://osmc.tv/
https://kodi.tv/
https://octoprint.org/
https://openelec.tv/
https://libreelec.tv/
https://www.armbian.com/
https://www.adafruit.com/
https://www.linuxjournal.com

54 | March 2019 | https://www.linuxjournal.com

UPFRONT

Become Queen
Bee for a Day
Using Python’s
Built-in Data Types
Cheaters never win, but at least they can
use Python.

By Reuven M. Lerner

Like many other nerds, I love word puzzles. I’m not always great
at them, and I don’t always have time to do them, but when I
do, I really enjoy them.

I recently discovered a new daily puzzle, known as “spelling
bee”, that the New York Times offers online. The idea is simple.
There are seven different letters, one in the center of a circle
and six around it. Your job is to make as many different words
as you can from those seven letters. Each word must be at least
four letters long, and each word also must contain the center
letter. You can use each letter as many times as you want.

So if the letters are “eoncylt”, with a center letter of “y”,
some of the words you could create might be “cyclone”,
“eyelet” and “nylon”.

The online game gives you a score based on how many words

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

http://lerner.co.il/
https://www.linuxjournal.com

55 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

you’ve made from the potential pool. If you get them all, you’re awarded “queen
bee” status.

I do pretty well at this puzzle, but I’ve never managed to find all of the hidden words.
Nevertheless, I have become queen bee on a few occasions. How? The answer is
simple. I cheated. How? Using Python, of course.

Now, cheating at games isn’t necessarily the first order of business when it comes to
programming. And cheating at word games in which you’re competing against yourself
is probably a sign of unhealthy competition. But, doing so also provides a great way
to review some of the ways you can use Python’s built-in data types and the ease with
which you can process words and text.

So in this article, I explore a number of ways you can cheat—and yes, become the
queen bee, if only for a day.

Trying All Combinations
To start, you simply might try to form all of the possible combinations you can
with the letters you’re given. As you might remember from high-school math class,
there’s a difference between “permutations” and “combinations”. When you generate
“permutations”, the order is important, but when you generate “combinations”, the
order is not important.

You easily can see this using Python’s itertools module, a part of the standard
library that has functions named permutations and combinations. Each takes
both an iterable data structure and the number of items you want in each resulting
list. For example:

>>> list(itertools.combinations(['a', 'b', 'c', 'd'], 2))
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'),
 ↪('c', 'd')]

>>> list(itertools.permutations(['a', 'b', 'c', 'd'], 2))

https://www.linuxjournal.com

56 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

[('a', 'b'),
 ('a', 'c'),
 ('a', 'd'),
 ('b', 'a'),
 ('b', 'c'),
 ('b', 'd'),
 ('c', 'a'),
 ('c', 'b'),
 ('c', 'd'),
 ('d', 'a'),
 ('d', 'b'),
 ('d', 'c')]

As you can see, the output from combinations saw the order as unimportant and
thus returned just ('a', 'b'). But permutations saw the order as important, and
thus returned both ('a', 'b') and ('b', 'a').

You could use this to generate all of the letter combinations for possible words
and then sift through that, right? Well, not really, for two reasons. First, the game
allows you to repeat letters. And second, these functions let you specify a only single
number of outputs.

You can solve the first problem by using the combinations_with_replacement
function, which not only has a long name, but (as the name states) also allows letters
to appear more than once in the output. For example:

>>> list(itertools.combinations_with_replacement(['a', 'b',
 ↪'c', 'd'], 2))
[('a', 'a'),
 ('a', 'b'),
 ('a', 'c'),
 ('a', 'd'),
 ('b', 'b'),

https://www.linuxjournal.com

57 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

 ('b', 'c'),
 ('b', 'd'),
 ('c', 'c'),
 ('c', 'd'),
 ('d', 'd')]

However, you want to find words that are at least four letters long. Let’s assume
that the longest possible word would be 12 letters long. You could use a for loop,
appending the results from each iteration to a list. But an even more Pythonic
way to do this would be to use a list comprehension—or even better, a nested list
comprehension. Comprehensions are, in my experience, one of the hardest concepts
for new Python developers to use. However, they are perfect for creating and
transforming sequences, which is precisely what’s happening here:

>>> one_combination
 for n in range(4, 13)
 for one_combination in
 itertools.combinations_with_replacement('abc', n)]

This code iterates over the range from 4 to 13, thus producing the integers from 4
through 12. For each of these values of n, you then produce all of the combinations,
with replacement, of that length and with the letters “a”, “b” and “c”. The results then
are output as a list.

This is great, but it’s missing at least two things. First, you aren’t interested in
combinations, so much as words. And there aren’t just a few letters for which you’re
searching, but seven letters—one of which must appear in the word.

So let’s beef up the comprehension a bit in order to get all of the words:

>>> all_letters = 'eoncylt'
>>> center_letter = 'y'
>>> [''.join(one_combination)

https://www.linuxjournal.com

58 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

 for n in range(4, 13)
 for one_combination in
 itertools.combinations_with_replacement(all_letters, n)
 if center_letter in one_combination]

The good news is that this now indeed has generated all of the possible combinations
that might give you the answer. The bad news is that it’s also generated a lot of
combinations that aren’t really words. Indeed, according to my count, this created
31,788 “words”, including such greats as “occccccylt” and “eeeyt”.

So yes, you could become the queen bee by going through and entering all of these
words, one by one, as input into the game. Somehow though, I think entering 31,788
words takes the fun out of cheating.

Enter the Dictionary
To make cheating more efficient and fun, let’s try a different strategy. Instead of
generating all of the possible combinations of letters, let’s instead search through
only those combinations that are correct. How can you know what’s correct? Via
the dictionary, of course—and the fact that Linux comes with an English-language
dictionary makes this easier.

Indeed, although it often can be useful to generate combinations, it’s probably a wiser
strategy just to start with the dictionary and choose the words that fit your needs.

The dictionary that I’m using for this example is in /usr/share/dict/american-english,
and it contains 102,401 different words, each on a line by itself. The fact that each
word is on a separate line turns out to be a great advantage, because it means that
you can (once again) create a list comprehension. In this case, the source of the list
comprehension won’t be an iterator from itertools, but rather the dictionary file
itself. Iterating over a file in Python gives you one line per iteration. Here’s how you
can get these words:

[one_word.strip()

https://www.linuxjournal.com

59 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

 for one_word in open(words_file)]

But, wait a moment. This will return all of the words. You’re interested only in those
words that contain the seven letters in the puzzle, as well as the center letter.

One solution to this would be to write a function that checks whether the word fits
your needs. For example:

>>> def is_legal(word, all_letters, center_letter):
 word = word.strip()

 if len(word) < 4:
 return False

 if center_letter not in word:
 return False

 for one_letter in word:
 if one_letter not in all_letters:
 return False

 return True

The function would appear to work too:

>>> is_legal('cy', all_letters, center_letter)
 False

>>> is_legal('cycle', all_letters, center_letter)
 True

>>> is_legal('hairbrush', all_letters, center_letter)
 False

https://www.linuxjournal.com

60 | March 2019 | https://www.linuxjournal.com

AT THE FORGE

Armed with this function, you now can read through the dictionary and get the
words that fit:

[one_word.strip()
 for one_word in open(words_file)
 if is_legal(one_word, all_letters, center_letter)]

Note the use of the strip method to remove leading and trailing whitespace from
the word, mostly because of the newline that you’ll get from each word in the file. For
this reason, you’ll also use strip in the is_legal function to ensure that you don’t
have to deal with the newline.

So, does it work? The answer is yes, mostly. On some days, my Python program finds
words that weren’t in the game. And on other days, the game is looking for words that
aren’t in the Linux dictionary. But for the most part, everything seems to work well,
and although I try hard to win the game each day, there are definitely some days when
I give up, run my program and feel smug at my programming skills, if not my word-
game skills.

Conclusion
Whoever said that “cheaters never win” didn’t take into consideration that cheating
might lead to a better understanding of programming and data structures. And
indeed, I often tell people that the key to good programming is often not knowing the
best algorithms, but rather knowing which libraries to apply and how to combine the
strengths of the language you’re using, so that you can do as little work as possible.
This article shows how to tackle a simple real-world problem that involved very little
of your own code. Rather, understanding the problem, Python’s standard library and
its data structures combined to give the answers. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

61 | March 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Fun with Mail
Merge and Cool
Bash Arrays
Creating a sed-based file substitution tool.

By Dave Taylor

A few weeks ago, I was digging through my spam folder and
found an email message that started out like this:

Dear #name#
Congratulations on winning the $15.7 million
lottery payout!
To learn how to claim your winnings, please...

Obviously, it was a scam (does anyone actually fall for these?),
but what captured my attention was the #name# sequence.
Clearly that was a fail on the part of the sender who presumably
didn’t know how to use AnnoyingSpamTool 1.3 or whatever the
heck he or she was using.

The more general notation for bulk email and file
transformations is pretty interesting, however. There are
plenty of legitimate reasons to use this sort of substitution,
ranging from email newsletters (like the one I send every week
from AskDaveTaylor.com—check it out!) to stockholder
announcements and much more.

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.askdavetaylor.com/
https://www.askdavetaylor.com/
https://www.linuxjournal.com

62 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

With that as the inspiration, let’s build a tool that offers just this capability.

The simple version will be a 1:1 substitution, so #name# becomes, say, “Rick Deckard”,
while #first# might be “Rick” and #last# might be “Deckard”. Let’s build on that,
but let’s start small.

Simple Word Substitution in Linux
There are plenty of ways to tackle the word substitution from the command line,
ranging from Perl to awk, but here I’m using the original UNIX command sed (stream
editor) designed for exactly this purpose. General notation for a substitution is s/old/
new/, and if you tack on a g at the end, it matches every occurrence on a line, not
only the first, so the full command is s/old/new/g.

Before going further, here’s a simple document that has necessary substitutions embedded:

$ cat convertme.txt
#date#

Dear #name#, I wanted to start by again thanking you for your
generous donation of #amount# in #month#. We couldn't do our
work without support from humans like you, #first#.

This year we're looking at some unexpected expenses,
particularly in Sector 5, which encompasses #state#, as you
know. I'm hoping you can start the year with an additional
contribution? Even #suggested# would be tremendously helpful.

Thanks for your ongoing support. With regards,

Rick Deckard
Society for the Prevention of Cruelty to Replicants

Scan through it, and you’ll see there’s a lot of substitutions to do: #date#,

https://www.linuxjournal.com

63 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

#name#, #amount#, #month#, #first#, #state# and #suggested#. It turns
out that #date# will be replaced with the current date, and #suggested# is one
that’ll be calculated as the letter is processed, but that’s for a bit later, so stay
tuned for that.

To make life easy, a source file that’s a comma-separated list allows for easy
interaction with a source spreadsheet, so a sample input data file might look
like this:

name:first:amount:month:state
Eldon Tyrell:Eldon:500:July:California

At its most basic, the first line defines variable names (without the # notation), and
subsequent lines are a set of values for a particular donor or recipient. To start, let’s
read in the variable names:

while IFS=',' read -r f1 f2 f3 f4 f5 f6 f7
do
 declare -a varname=($f1 $f2 $f3 $f4 $f5 $f6 $f7)
done

Key to understanding this is to know about IFS, the internal field separator.
Normally, it’s white space, which is why, for example, ls my file name looks
for three files called my, file and name. But you can change it, as I demonstrate
by changing IFS to a comma.

Those Cool Bash Arrays
I declare an array called varname that receives each of the fields read into the script.
There are only five fields in use at this point, but let’s support up to seven to make the
resultant script a bit more flexible.

Arrays are really cool in Bash actually, but the notation is a smidge funky. That is, you
can’t just use $array[index], because it won’t be parsed correctly, so curly braces

https://www.linuxjournal.com

64 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

are a necessary addition:

echo ${varname[1]}

That works just fine.

For a basic algorithm, you’re going to have two parallel arrays (parallel in that their
indices will match up): one that retains all the variable names, and the other that
contains the values for this instance of the data entry list.

This means you’ll need to differentiate between the situation when the script is
reading the first line and when subsequent lines of the data file are read. Easily done:

((lines++))

if [$lines -eq 1] ; then # field names
 # variable names
 declare -a varname=($f1 $f2 $f3 $f4 $f5 $f6 $f7)
else
 # values for this line (can contain spaces)
 declare -a value=("$f1" "$f2" "$f3" "$f4" "$f5"
 "$f6" "$f7")
fi

As with most code, this makes assumptions here, but they’re safe: variable names
aren’t quoted because they’re always a single word, but variable values might
have spaces, so they do end up quoted in the declare statement. Otherwise, this
should be easy, and the ((lines++)) notation should make you cheer—it’s a
nice Bash shortcut!

Once you’re past the very first line, the script can look in varname[x] for the xth
variable name, and value[x] for the value of that named variable, expressed as a
series of sed-friendly substitution commands:

https://www.linuxjournal.com

65 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

for ((i=0; i<${#value[*]}; i++))
do
 if [! -z "${value[$i]}"] ; then
 echo "s/#${varname[$i]}#/${value[$i]}/g"
 fi
done

Which produces this:

s/#name#/Eldon Tyrell/g
s/#first#/Eldon/g
s/#amount#/500/g
s/#month#/July/g
s/#state#/California/g

That’s pretty darn close to what you want actually. Let’s push forward.

Working with sed
The stream editor sed is far more powerful than its modest and ancient history might
suggest. It’s perfect for this job, as shown above.

You could write the above lines into a temp file and invoke sed directly, but let’s avoid
the file I/O and turn it all into a command-line argument as necessary. That’s done by
simply separating each command with a semicolon, which you can do by building it in
a temp variable instead:

for ((i=0; i<${#value[*]}; i++))
do
 if [! -z "${value[$i]}"] ; then
 if [-z "$SUBS"] ; then
 SUBS="s/#${varname[$i]}#/${value[$i]}/g"
 else
 SUBS="$SUBS;s/#${varname[$i]}#/${value[$i]}/g"

https://www.linuxjournal.com

66 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

 fi
 fi
done

There’s undoubtedly a way to avoid the innermost if-then-else statement to omit the
unnecessary ; prefix, but sometimes it’s easier to have a few lines of code than yet
more gobbledygook.

Otherwise, the above is a simple expansion from the previous for loop shown. This
time, it builds the entire sed command within the SUBS substitution variable. Here’s
how to test:

echo " sed \"$SUBS\" $inputfile"

When you run this with the input data file, here’s what’s pushed out to the terminal:

sed "s/$name$/Eldon Tyrell/g;s/$first$/Eldon/g;
 s/$amount$/500/g;s/$month$/July/g;
 s/$state$/California/g" convertme.txt
sed "s/$name$/Rachel/g;s/$first$/Rachel/g;
 s/$amount$/100/g;s/$month$/March/g;
 s/$state$/New York/g" convertme.txt

(Note: line breaks added for formatting purposes only.)

It’s actually a very small step from here to invoke the command, so let’s do that:

$ sub.sh
#date#

Dear Eldon Tyrell, I wanted to start by again thanking you
for your generous donation of 500 in July. We couldn't do
our work without support from humans like you, Eldon.

https://www.linuxjournal.com

67 | March 2019 | https://www.linuxjournal.com

WORK THE SHELL

This year we're looking at some unexpected expenses,
particularly in Sector 5, which encompasses California, as
you know. I'm hoping you can start the year with an
additional contribution? Even #suggested# would be
tremendously helpful.

Thanks for your ongoing support. With regards,

Rick Deckard
Society for the Prevention of Cruelty to Replicants
$

Generally, this looks good. #date# and #suggested# are still untranslated, but that’s
as expected. What is a bit odd is that it didn’t get the second entry too. A bug.

I’m going to stop here, however, and maybe next time, I’ll add some system
substitutions like #date# and figure out how to calculate #suggested#, which
can be 50% of the actual donation. See you soon! ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

68 | March 2019 | https://www.linuxjournal.com

diff -u
What’s New in Kernel Development

By Zack Brown

Chasing Archives
Kernel development is truly impossible to keep track of. The
main mailing list alone is vast beyond belief. Then there are all
the side lists and IRC channels, not to mention all the corporate
mailing lists dedicated to kernel development that never see
the light of day. In some ways, kernel development has become
fundamentally mysterious.

Once in a while, some lunatic decides to try to reach back into
the past and study as much of the corpus of kernel discussion
as he or she can find. One such person is Joey Pabalinas,
who recently wanted to gather everything together in Maildir
format, so he could do searches, calculate statistics, generate
pseudo-hacker AI bots and whatnot.

He couldn’t find any existing giant corpus, so he tried to create
his own by piecing together mail archived on various sites. It
turned out to be more than a million separate files, which was
too much to host on either GitHub or GitLab. He asked the
linux kernel mailing list for suggestions on better hosting
opportunities. Although he acknowledged, “It’s possible I’m the
only weirdo who finds this kind of thing useful, but I figured I
should share it just in case I’m not.”

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

https://www.linuxjournal.com

69 | March 2019 | https://www.linuxjournal.com

diff -u

Joe Perches suggested plumbing the archives at kernel.org/lore.html, which
go back decades. But Joey said he’d tried that, and he found it all but impossible
to convert those archives to the Mailbox format he wanted. Instead, he’d spent
the previous several weeks scraping the lkml.org archive and scripting his own
conversion routines.

Konstantin Ryabitsev remarked:

The maildir format is kind of terrible for LKML, because having millions of
messages in a single directory is very hard on the underlying FS. If you break it up
into multiple folders, then it becomes difficult to search. This is the main reason
why we have chosen to go with the public-inbox format, which solves both of
these problems and allows for a very efficient archive updating and replication
using git.

Meanwhile, Jasper Spaans raised his eyebrows at Joey’s statement that he’d gotten
more than a million separate files by scraping lkml.org. Jasper said:

First of all, there are more than 3M messages stored in the lkml.org database, so I
guess you’ve missed some messages or something is really broken. Besides, unless
you figured out how to get to the raw data, you’ve just scraped a rendering which
discards stuff like pgp signatures etc and has very incomplete headers. Unless you
don’t care for those of course.

Jasper added that he’d also been working on extracting Maildir-type data out of the
lore website, and he sent Joey the code he’d been using to do that.

Eric Wong also sent Joey a script he’d been using to convert slrn threaded Usenet
repositories to Maildir; although like others, he recommended against putting millions
(and millions) of files into a single directory.

The discussion wasn’t headed anywhere; it was just various people sharing knowledge
and making judgment calls.

http://kernel.org/lore.html
http://lkml.org/
http://lkml.org/
http://lkml.org/
https://www.linuxjournal.com

70 | March 2019 | https://www.linuxjournal.com

diff -u

Once upon a time, and a very long time ago it was, I wanted to get a hold of the
earliest archives of Linux kernel development discussions. I asked everyone where
I could find them, and one of the developers replied that he had a lot of that stuff
mixed up in his mail archives, along with all manner of other email messages. I
wrote back and eagerly told him I’d love to get my hands on it. He wrote back again,
explaining that there was just no way he could take the time to extract the private
stuff from the public stuff. And, that was the end of that. I’ve always wondered why
he responded to my initial email in the first place, if he was just going to say no at the
end. And, that’s the tale of how I came this close to writing up summaries of the very
earliest Linux developments.

Considering Fresh C Extensions
Matthew Wilcox recently realized there might be a value in depending on C
extensions provided by the Plan 9 variant of the C programming language. All it
would require is using the -fplan9-extensions command-line argument when
compiling the kernel. As Matthew pointed out, Plan 9 extensions have been supported
in GCC as of version 4.6, which is the minimum version supported by the kernel. So
theoretically, there would be no conflict.

Nick Desaulniers felt that any addition of -f compiler flags to any project always
would need careful consideration. Depending on what the extensions are needed for,
they could be either helpful or downright dangerous.

In the current case, Matthew wanted to use the Plan 9 extensions to shave precious
bytes off of a cyclic memory allocation that needed to store a reference to the “next”
value. Using the extensions, Matthew said, he could embed the “next” value without
breaking various existing function calls.

Nick also suggested making any such extension dependencies optional, so that other
compilers would continue to be able to compile the kernel.

It looked as though there would be some back and forth on the right way to proceed,
but Linus Torvalds immediately jumped in to veto the entire concept, saying:

https://www.linuxjournal.com

71 | March 2019 | https://www.linuxjournal.com

diff -u

Please don’t.

The subset of the plan9 extensions that are called just “ms” extensions is fine. That’s
a reasonable thing, and is a very natural expansion of the unnamed structures we
already have—namely being able to pre-declare that unnamed structure/union.

But the full plan9 extensions are nasty, and makes it much too easy to write
“convenient” code that is really hard to read as an outsider because of how the types
are silently converted.

And I think what you want is explicitly that silent conversion.

So no. Don’t do it. Use a macro or an inline function that makes the conversion
explicit so that it’s shown when grepping.

The “one extra argument” is not a strong argument for something that simply
isn’t that common. The upsides of a nonstandard feature like that needs to be
pretty compelling.

We’ve used various gcc extensions since day #1 (“inline” being perhaps the biggest
one that took _forever_ to become standard C), but these things need to have very
strong arguments.

“One extra argument” that could be hidden by a macro or a helper inline is simply not
a strong argument.

Nick was sympathetic to this point, and said:

Implicit conversions are the most pointed to “defect” in languages like JavaScript. I
understand why they’re convenient, but the resulting surprising bugs don’t outweigh
their cost (again, my opinion), and developers frequently can’t keep these implicit
conversion rules straight (whether we’re talking about JavaScript or C).

https://www.linuxjournal.com

72 | March 2019 | https://www.linuxjournal.com

diff -u

There was no real conversation after Linus’ denunciation. But, the question
of which compiler extensions to use and which not to use is very interesting,
especially for a project like Linux that’s used everywhere and runs everything.
With all the different environments it needs to support, that support needs to
include the possibility of all sorts of development platforms. To some extent, Linus’
argument that Matthew was trying to create hard-to-read code is relevant, but it’s
also relevant that other compilers and other build environments also need to be
able to support Linux development.

Handling Complex Memory Situations
Jérôme Glisse felt that the time had come for the Linux kernel to address
seriously the issue of having many different types of memory installed on a single
running system. There was main system memory and device-specific memory, and
associated hierarchies regarding which memory to use at which time and under which
circumstances. This complicated new situation, Jérôme said, was actually now the
norm, and it should be treated as such.

The physical connections between the various CPUs and devices and RAM chips—that
is, the bus topology—also was relevant, because it could influence the various speeds
of each of those components.

Jérôme wanted to be clear that his proposal went beyond existing efforts to handle
heterogeneous RAM. He wanted to take account of the wide range of hardware and
its topological relationships to eek out the absolute highest performance from a given
system. He said:

One of the reasons for radical change is the advance of accelerator like GPU or
FPGA means that CPU is no longer the only piece where computation happens. It
is becoming more and more common for an application to use a mix and match of
different accelerator to perform its computation. So we can no longer satisfy our self
with a CPU centric and flat view of a system like NUMA and NUMA distance.

He posted some patches to accomplish several different things. First, he wanted to

https://www.linuxjournal.com

73 | March 2019 | https://www.linuxjournal.com

diff -u

expose the bus topology and memory variety to userspace as a clear API, so that both
the kernel and user applications could make the best possible use of the particular
hardware configuration on a given system. A part of this, he said, would have to
take account of the fact that not all memory on the system always would be equally
available to all devices, CPUs or users.

To accomplish all this, his patches first identified four basic elements that could be
used to construct an arbitrarily complex graph of CPU, memory and bus topology on
a given system.

These included “targets”, which were any sort of memory; “initiators”, which were
CPUs or any other device that might access memory; “links”, which were any sort of
bus-type connection between a target and an initiator; and “bridges”, which could
connect groups of initiators to remote targets.

Aspects like bandwidth and latency would be associated with their relevant links and
bridges. And, the whole graph of the system would be exposed to userspace via files
in the SysFS hierarchy.

In addition, Jérôme’s patches provided a way to express memory policy. A system’s
memory policy is the mechanism it uses to decide which memory to use for a given
task. For example, it might use faster memory first and slower memory only when fast
memory is full. But, the kernel’s current memory policy was organized on a per-CPU
basis, which Jérôme felt was not good enough. But, he also acknowledged that trying
to change that aspect of kernel infrastructure directly might break a lot of existing
code. To deal with this, his patch added an entirely new memory policy API that new
user code could take advantage of and old user code simply could ignore.

Aneesh Kumar responded to all of this, in particular praising Jérôme’s approach
of keeping the new API separate from the old. But Aneesh said, “that is also the
drawback isn’t it? We now have multiple entities tracking cpu and memory.”

Aneesh also wanted to confirm that “once we have these different types of targets,

https://www.linuxjournal.com

74 | March 2019 | https://www.linuxjournal.com

diff -u

ideally the system should be able to place them in the ideal location based on the
affinity of the access. ie. we should automatically place the memory such that initiator
can access the target optimally.”

Jérôme seemed to agree with this in principle, but he also seemed to feel that making
any of this automatic was still not guaranteed. The first step, he felt, was to expose
the APIs and data structures, and then see what could be accomplished.

Meanwhile, Dave Hansen pointed out that there were existing elements of the
kernel that dealt with heterogeneous memory. Dave said that HMAT (Heterogeneous
Memory Attribute Table) existed in firmware specifically to express the topology to
the kernel. Dave also said that NUMA (Non-Uniform Memory Access) was already
part of the kernel, and wasn’t lying fallow. Additionally, he pointed out that the ACPI
(Advanced Configuration and Power Interface) specification had officially embraced
NUMA, and there were Linux developers actively contributing patches to support this.

So, Dave was not immediately enthusiastic about ditching this ongoing momentum
in one direction, in order to accept Jérôme’s radical solution that went in an entirely
new direction.

But, Jérôme replied that he was not trying to overthrow the existing work or any
kernel patches that made use of HMAT. He said that all of that was still useful just on
its own. But he added:

I do not see how to evolve NUMA to support device memory. [...] I can not expose
device memory as NUMA node as device memory is not cache coherent on AMD and
Intel platform today. [...] In some case that memory is not visible at all by the CPU
which is not something you can express in the current NUMA node.

Somewhat mollified, Dave replied:

Yeah, our NUMA mechanisms are for managing memory that the kernel itself manages
in the “normal” allocator and supports a full feature set on. That has a bunch of

https://www.linuxjournal.com

75 | March 2019 | https://www.linuxjournal.com

diff -u

implications, like that the memory is cache coherent and accessible from everywhere.

The HMAT patches only comprehend this “normal” memory, which is why we’re
extending the existing /sys/devices/system/node infrastructure.

This series has a much more aggressive goal, which is comprehending the connections
of every memory-target to every memory-initiator, no matter who is managing the
memory, who can access it, or what it can be used for.

Theoretically, HMS could be used for everything that we’re doing with /sys/devices/
system/node, as long as it’s tied back into the existing NUMA infrastructure somehow.

Jérôme agreed with all of the above, and Dave seemed to be on board with Jérôme’s
approach. But, he did have some practical objections. For one thing, he said:

We support 1024 NUMA nodes on x86. The ACPI HMAT expresses the connections
between each node. Let’s suppose that each node has some CPUs and some memory.

That means we’ll have 1024 target directories in sysfs, 1024 initiator directories
in sysfs, and 1024*1024 link directories. Or, would the kernel be responsible for
“compiling” the firmware-provided information down into a more manageable
number of links?

Some idiot made the mistake of having one sysfs directory per 128MB of memory
way back when, and now we have hundreds of thousands of /sys/devices/system/
memory/memoryX directories. That sucks to manage. Isn’t this potentially
repeating that mistake?

Dave also was worried that if Jérôme went forward with his patches, it could be four
or five years before all the problems were solved, in which case, some portions of
memory management would be bottle-necked waiting for those solutions, which
could have been solved sooner using existing NUMA projects.

https://www.linuxjournal.com

76 | March 2019 | https://www.linuxjournal.com

diff -u

Additionally, Dave was curious how Jérôme’s code would scale. He said, “It’s quite
easy to represent a laptop, but can this scale to the largest systems that we expect to
encounter over the next 20 years that this ABI will live?”

At this point, Jérôme and Dave were joined by several other folks and began diving
into the technical details, further objections and possible solutions that might come
out of Jérôme’s work. Ultimately, it seemed as if these patches did not represent a
threat to existing approaches to memory, and that Jérôme would have support—or at
least tolerance—from NUMA-related projects.

The things I love about this discussion are, first of all, that one developer got a big
idea that seemed to go against current thinking, but that solved problems he saw as
real. Second, that a developer on the other side of the issue was actually interested in
the new approach and willing to take it seriously rather than tear it down.

Also, the whole direction of hardware resources is really becoming so strange. The
kernel tries to eek out absolutely everything it can from the various devices on the
system—even to the point of going beyond the ways in which those devices thought
they would be used! And then once the kernel starts using them that way, other
devices come out that use the kernel’s new infrastructure. And so we end up with
some kind of crazy situation requiring crazy solutions like what Jérôme has proposed.

Note: if you’re mentioned in this article and want to send a response, please send
a message with your response text to ljeditor@linuxjournal.com and we’ll run
it in the next Letters section and post it on the website as an addendum to the
original article. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

https://handshake.org/signup

78 | March 2019 | https://www.linuxjournal.com

DEEP DIVE
SINGLE-BOARD
COMPUTERS

https://www.linuxjournal.com

DEEP
DIVE

79 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Arduino from the
Command Line:
Break Free from the
GUI with Git and Vim!

Love Arduino but hate the GUI? Try arduino-cli.

By Matthew Hoskins

https://www.linuxjournal.com

In this article, I explore a new tool released by the Arduino team that can free you
from the existing Java-based Arduino graphical user interface. This allows developers
to use their preferred tools and workflow. And perhaps more important, it’ll enable
easier and deeper innovation into the Arduino toolchain itself.

The Good-Old Days
When I started building hobby electronics projects with microprocessors in the
1990s, the process entailed a discrete processor, RAM, ROM and masses of glue logic
chips connected together using a point-to-point or “wire wrapping” technique. (Look
it up kids!) Programs were stored on glass-windowed EPROM chips that needed

DEEP
DIVE

80 | March 2019 | https://www.linuxjournal.com

Figure 1.
Example Mid-1990s
Microprocessor

https://www.linuxjournal.com

81 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

to be erased under UV light. All the tools were expensive and difficult to use, and
development cycles were very slow. Figures 1–3 show some examples of my mid-
1990s microprocessor projects with discrete CPU, RAM and ROM. Note: no Flash, no
I/O, no DACs, no ADCs, no timers—all that means more chips!

It all changed in 2003 with Arduino.

The word “Arduino” often invokes a wide range of opinions and sometimes emotion.
For many, it represents a very low bar to entry into the world of microcontrollers.
This world before 2003 often required costly, obscure and closed-source
development tools. Arduino has been a great equalizer, blowing the doors off the
walled garden. Arduino now represents a huge ecosystem of hardware that speaks
a (mostly) common language and eases transition from one hardware platform to
another. Today, if you are a company that sells microcontrollers, it’s in your best
interest to get your dev boards working with Arduino. It offers a low-friction path to
getting your products into lots of hands quickly.

Figure 2.
Example Mid-1990s
Microprocessor

https://www.linuxjournal.com

82 | March 2019 | https://www.linuxjournal.com

It’s also important to note that Arduino’s simplicity does not inhibit digging deep into
the microcontroller. Nothing stops you from directly twiddling registers and using
advanced features. It does, however, decrease your portability between boards.

For people new to embedded development, the Arduino software is exceptionally
easy to get running. That has been a major reason for its success—it dumps out of
the box ready to rock. But for more seasoned developers, the included graphical user
interface can be frustrating. It can be a barrier to using modern development tools
and version control like Git. I know the compiler and toolchain is buried deep in that
GUI somewhere. I just want to use my favorite editor, compile my code and upload
my project to a dev board using my favored workflow. For many developers, this is a

DEEP
DIVE

Figure 3.
Example Mid-1990s
Microprocessor

https://www.linuxjournal.com

83 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

command-line or scripted process.

Enter arduino-cli
There have been a couple attempts to break out Arduino to the command line, but
most failed to get wide support. However, now the Arduino team has alpha-released
arduino-cli. This new framework not only provides a comprehensive set of command-
line functions, but the team also says it will be used as the core underneath the
next generation of the Arduino graphical interface. This is exciting news and shows
commitment to this new concept.

For me, my preferred development workflow is using Git for version control and the
Vim editor, so that’s what I demonstrate in the remainder of this article.

Installing arduino-cli
At the time of this writing, the arduino-cli is in alpha release. It’s being distributed
both as a Go source package and pre-built binaries. The Go language produces very
portable binaries, so you just need to download the correct file and put the binary
somewhere in your $PATH. Most users reading this likely will want the Linux 64-bit for
Intel/AMD systems. In the examples here, my system happens to be running Fedora
29, but any recent Linux should work. Check the project’s GitHub page for updated
versions; at the time of this writing, 0.3.2 is the latest alpha release. Finally, make
sure your user can access serial- and USB-connected Arduino devboards by adding
them to the “dialout” group (note: you’ll need to re-log in to pick up the new group
membership, and substitute “me” for your user name in the last command):

me@mybox:~ $ wget https://downloads.arduino.cc/arduino-cli/
↪arduino-cli-0.3.2-alpha.preview-linux64.tar.bz2
downloading
me@mybox:~ $ tar -xjf arduino-cli-0.3.2-alpha.preview-
↪linux64.tar.bz2
me@mybox:~ $ sudo mv arduino-cli-0.3.2-alpha.preview-linux64
 ↪/usr/local/bin/arduino-cli
me@mybox:~ $ sudo usermod -a -G dialout me

https://www.linuxjournal.com

84 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Assuming /usr/local/bin is in your $PATH, you should be able to run arduino-cli as any
user on your Linux system.

Alternatively, if you want to build the Go package from source, you can use the
get function to download, build and install the source package from the Arduino
GitHub repository:

me@mybox:~ $ sudo dnf -y install golang
me@mybox:~ $ cd ; export GOPATH='pwd'/go
me@mybox:~ $ go get -u github.com/arduino/arduino-cli
me@mybox:~ $ sudo mv $GOPATH/bin/arduino-cli /usr/local/bin/

Arduino from the Command Line
First, let’s do some housekeeping. You need to pull over the current index of Arduino
“cores” and search for the core that supports your dev board. In this first example,
let’s install support for the classic UNO board powered by an ATMega AVR processor:

me@mybox:~ $ arduino-cli core update-index
Updating index: package_index.json downloaded
me@mybox:~ $ arduino-cli core search avr
Searching for platforms matching 'avr'

ID Version Name
arduino:avr 1.6.23 Arduino AVR Boards
arduino:megaavr 1.6.24 Arduino megaAVR Boards
atmel-avr-xminis:avr 0.6.0 Atmel AVR Xplained-minis
emoro:avr 3.2.2 EMORO 2560
littleBits:avr 1.0.0 littleBits Arduino AVR Modules

me@mybox:~ $ arduino-cli core install arduino:avr
*** lots of downloading omitted ***
me@mybox:~ $ arduino-cli core list
ID Installed Latest Name

https://www.linuxjournal.com

85 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

arduino:avr@1.6.23 1.6.23 1.6.23 Arduino AVR Boards

That’s it. You have everything you need to create a new Arduino project for an
Arduino UNO board. Now, let’s create a project called myBlinky. You’ll also initialize
and set up a Git repository to manage version control, then make your first commit:

me@mybox:~ $ arduino-cli sketch new myBlinky
Sketch created in: /home/me/Arduino/myBlinky
me@mybox:~ $ cd /home/me/Arduino/myBlinky
me@mybox:~/Arduino/myBlinky $ git config --global
 ↪user.email "me@mybox.com"
me@mybox:~/Arduino/myBlinky $ git config --global
 ↪user.name "My Name"
me@mybox:~/Arduino/myBlinky $ git init
Initialized empty Git repository in /home/me/Arduino/
↪myBlinky/.git/
me@mybox:~/Arduino/myBlinky $ ls -la
total 16
drwxr-xr-x 3 me me 4096 Nov 22 10:45 .
drwxr-xr-x 3 me me 4096 Nov 22 10:45 ..
drwxr-xr-x 7 me me 4096 Nov 22 10:45 .git
-rw-r--r-- 1 me me 35 Nov 22 10:45 myBlinky.ino

me@mybox:~/Arduino/myBlinky $ cat myBlinky.ino

void setup() {
}

void loop() {
}

me@mybox:~/Arduino/myBlinky $ git add -A
me@mybox:~/Arduino/myBlinky $ git commit -m "Initial Commit"

https://www.linuxjournal.com

86 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

[master (root-commit) ee95972] Initial Commit
1 file changed, 6 insertions(+)
create mode 100644 myBlinky.ino

me@mybox:~/Arduino/myBlinky $ git log
commit ee9597269c5da49d573d6662fe8f8137083b7768
 ↪(HEAD -> master)
Author: My Name <me@mybox.com>
Date: Thu Nov 22 10:48:33 2018 -0500

 Initial Commit

Nice! The tool creates the project under the same Arduino directory structure
where the graphical tools would expect to find them allowing you to flip between
tools if you wish. It also creates a template .ino file with the familiar setup()
and loop() functions.

The empty Git repository was initialized, and you can see it created the .git
subdirectory where all the version data will be kept. Time to code!

Now, simply open up myBlinky.ino in your preferred editor—which in the interest of
maximum street cred is Vim of course. Never EMACS (joking!)...seriously, use any
editor you like (I hear Eclipse is nice)—then type in and save a classic “hello world”
blinky program. Something like this:

// Simple Demo Blinker -MEH
#define PIN_LED 13

void setup() {
 pinMode(PIN_LED,OUTPUT);
}

void loop() {

https://www.linuxjournal.com

87 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

 digitalWrite(PIN_LED,HIGH);
 delay(500);
 digitalWrite(PIN_LED,LOW);
 delay(500);
}

Now, let’s compile and upload it to the Arduino UNO. Use the board set of
commands to search for the upload:

me@mybox:~/Arduino/myBlinky $ arduino-cli board list
FQBN Port ID Board Name
arduino:avr:uno /dev/ttyACM0 2341:0001 Arduino/Genuino Uno

It found the board. Now compile:

me@mybox:~/Arduino/myBlinky $ arduino-cli compile -b
 ↪arduino:avr:uno
Build options changed, rebuilding all
Sketch uses 930 bytes (2%) of program storage space. Maximum
 ↪is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving
 ↪2039 bytes for local variables. Maximum is 2048 bytes.

Compile was clean. Next, upload to the board using the upload command, board
name and port you discovered earlier:

me@mybox:~/Arduino/myBlinky $ arduino-cli upload
 ↪-b arduino:avr:uno -p /dev/ttyACM0

As is common with command-line tools, silence is golden. The upload command
completes, and the UNO is happily blinking away. You better lock in this good fortune
with a git commit:

https://www.linuxjournal.com

88 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

me@mybox:~/Arduino/myBlinky $ git commit -a -m "It works!
 ↪First blink."
[master 35309a0] It works! First blink.
1 file changed, 7 insertions(+)

The -m option takes a commit message; it should be a note about what’s included
in this commit. If you omit the message, git will open a template message in a text
editor (the default is Vim, but you can change it by setting $EDITOR).

Support for Third-Party Development Boards
Now for something a little more ambitious, let’s try to use a non-Arduino
development board and walk through the steps of adding a third-party core. This can
be tricky even with the graphical user interface, but it’s pretty simple with arduino-cli.
Let’s target the very popular ESP8266.

For starters, you need to add the third-party repository to a file so arduino-cli knows
how to locate the core. This is done with a file named .cli-config.yml. You might think
this should go in your home directory or in the project directory, and you would be
right to think that. But, one quirk of this early release of arduino-cli is that this file
lands in the same directory where the arduino-cli program lives. For now, this is /usr/
local/bin, but keep an eye on the website, as this is likely to change in future releases!
Below, you’ll add a new board config definition. This file uses YAML format, so be
careful to use only spaces in the indenting. Edit (with sudo), and place the following
text in /usr/local/bin/.cli-config.yml:

board_manager:
 additional_urls:
 - http://arduino.esp8266.com/stable/
↪package_esp8266com_index.json

Now, like before, update the index and install the core:

me@mybox:~/Arduino/myBlinky $ arduino-cli core update-index

https://www.linuxjournal.com

89 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Updating index: package_index.json downloaded
Updating index: package_esp8266com_index.json downloaded

You can see that it found and downloaded the index for esp8266 cores. Good. Now,
let’s download and install the core itself:

me@mybox:~/Arduino/myBlinky $ arduino-cli core search esp
Searching for platforms matching 'esp'

ID Version Name
esp8266:esp8266 2.4.2 esp8266

me@mybox:~/Arduino/myBlinky $ arduino-cli core install
 ↪esp8266:esp8266
Downloading esp8266:esptool@0.4.13...
esp8266:esptool@0.4.13 downloaded *** much omitted ***

Now, you can rebuild your myBlinky project for the esp8266 and upload it. You first
need to edit your myBlinky.ino and change the #define PIN_LED to whichever pin
has the LED. On my dev board, it’s pin 2. Make that modification and save it:

#define PIN_LED 2

After plugging in the esp8266 dev board, you again run the board list command to
try to find it:

me@mybox:~/Arduino/myBlinky $ arduino-cli board list
FQBN Port ID Board Name
 /dev/ttyUSB0 1a86:7523 unknown

It detects it, but it can’t determine what it is. That is quite common for boards like the
esp8266 that require a button push or special programming mode.

https://www.linuxjournal.com

90 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Next, compile and upload after resetting your esp8266 board while pressing the
program button. Like last time, use the board name and port discovered during the
list operation:

me@mybox:~/Arduino/myBlinky $ arduino-cli board listall
 ↪|grep esp8266
Generic ESP8266 Module esp8266:esp8266:generic
(omitted long list)
me@mybox:~/Arduino/myBlinky $ arduino-cli upload -b
 ↪esp8266:esp8266:generic -p /dev/ttyUSB0
Uploading 252000 bytes from /home/me/Arduino/myBlinky/
↪myBlinky.esp8266.esp8266.generic.bin to flash at 0x00000000
... [32%]
... [64%]
... [97%]
....... [100%]

And, it blinks! Make another git commit and save your progress:

me@mybox:~/Arduino/myBlinky $ git add -A
me@mybox:~/Arduino/myBlinky $ git commit -m
 ↪"Blinking on esp8266 board"
[master 2ccff1d] Blinking on esp8266 board
5 files changed, 61 insertions(+), 1 deletion(-)
create mode 100755 myBlinky.arduino.avr.uno.elf
create mode 100644 myBlinky.arduino.avr.uno.hex
create mode 100644 myBlinky.esp8266.esp8266.generic.bin
create mode 100755 myBlinky.esp8266.esp8266.generic.elf

As you can see, it saves the compiled binary versions of the compiled code in the
project directory. You can add *.bin, *.hex and *.elf to a .gitignore file if you wish to
omit these from your commits. If you do save them, you can use the -i option and
the .bin file to upload a specific binary.

https://www.linuxjournal.com

91 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Adding Libraries
Building on your success, you should download and install a library. Let’s up the blinky
game and install support for some Adafruit NeoPixels (aka WS2812B, PL9823 and so
on). First, search for it using the lib command, then download and install:

me@mybox:~/Arduino/myBlinky $ arduino-cli lib search neopixel
(omitting large list)
me@mybox:~/Arduino/myBlinky $ arduino-cli lib install
 ↪"Adafruit NeoPixel"
Adafruit NeoPixel@1.1.7 downloaded

Installed Adafruit NeoPixel@1.1.7

Now you need to modify the program; edit the .ino file with these modifications:

// Fancy NeoPixel Blinky Blinker

#include <Adafruit_NeoPixel.h>
#define PIN_LED 14

Adafruit_NeoPixel strip = Adafruit_NeoPixel(1, PIN_LED,
 ↪NEO_GRB + NEO_KHZ800);

void setup() {
 strip.begin();
}

void loop() {

 strip.setPixelColor(0,strip.Color(255,0,0))'
 delay(200);
 strip.setPixelColor(0,strip.Color(0,255,0));
 delay(200);

https://www.linuxjournal.com

92 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

 strip.setPixelColor(0,strip.Color(0,0,255));
 delay(200);
}

Next, do the same compile and upload dance, after, of course, attaching a NeoPixel or
compatible LED to pin 14:

me@mybox:~/Arduino/myBlinky $ arduino-cli compile -b
 ↪esp8266:esp8266:generic
Build options changed, rebuilding all
Sketch uses 248592 bytes (49%) of program storage space.
 ↪Maximum is 499696 bytes.
Global variables use 28008 bytes (34%) of dynamic memory,
 ↪leaving 53912 bytes for local variables. Maximum
 ↪is 81920 bytes.
me@mybox:~/Arduino/myBlinky $ arduino-cli upload -b
 ↪esp8266:esp8266:generic -p /dev/ttyUSB0
Uploading 252960 bytes from /home/me/Arduino/myBlinky/
↪myBlinky.esp8266.esp8266.generic.bin to flash at 0x00000000
.. [32%]
.. [64%]
.. [96%]
........ [100%]

And, you should have a colorful blinky—pretty slick. It’s another good time to commit
your changes to capture your progress:

me@mybox:~/Arduino/myBlinky $ git add -A
me@mybox:~/Arduino/myBlinky $ git commit -m
 ↪"Blinky with NeoPixels"
[master 122911f] Blinky with NeoPixels
3 files changed, 20 insertions(+), 13 deletions(-)
rewrite myBlinky.ino (81%)

https://www.linuxjournal.com

93 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Using GitHub
Up to now, the git repository has been completely local in your project directory.
There’s nothing wrong with that, but let’s say you want to publish your work to
GitHub. It’s pretty quick and easy to get started. First, log in to github.com and
create an account if you don’t already have one. Then, click the button to create
a “new repository”.

Fill in the details for your project, and be sure to leave unchecked the option
to initialize the repository with a README. This is because you already have a

Figure 4.
New Repository

Figure 5.
Create Repo

https://github.com/
https://www.linuxjournal.com

94 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

repository created, and you’ll be “pushing” your local repository to GitHub, so
you want it empty.

After creating it, you will be presented with some helpful options on how to push
code into GitHub. You want the commands for “push existing repository”.

Now let’s do it! Follow the instructions to create a git “remote” entry named
“origin”, which will represent GitHub. Then you will push, and it will prompt you
for your GitHub user name and password (substitute your own GitHub URL, user
name and password):

me@mybox:~/Arduino/myBlinky $ git remote add origin
 ↪https://github.com/sysmatt/myBlinky.git
me@mybox:~/Arduino/myBlinky $ git push -u origin master
Username for 'https://github.com': sysmatt
Password for 'https://sysmatt@github.com': ******************
Counting objects: 18, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (18/18), 825.31 KiB | 5.00 MiB/s, done.
Total 18 (delta 4), reused 0 (delta 0)
remote: Resolving deltas: 100% (4/4), done.
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

Now, if you browse to the repository on GitHub.com, you’ll see all your files
and every one of your commits. You can travel back in time and look at every

Figure 6.
Push Existing
Repository

https://www.linuxjournal.com

95 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

revision. In practice, you can use SSH keys to eliminate having to enter your
password every time.

Time Travel (aka Breaking the Laws of Physics
with Git)
Time travel, you say? Yes indeed. Let’s say you want to jump back in time and
review your version of myBlinky from when you had it working with the Arduino
UNO. It seems like ages ago. It’s easy! You just need to identify the commit id and
“checkout” that version.

Use the log command to list all your commits:

me@mybox:~/Arduino/myBlinky $ git log
commit 122911f99dddce2dabbb251c3b640c8c7f9f98d9 (HEAD ->
 ↪master, origin/master)
Author: My Name <me@mybox.com>
Date: Thu Nov 22 21:22:59 2018 -0500

 Blinky with NeoPixels

commit 2ccff1d7326b1523649510f24644c96df6dc6e12
Author: My Name <me@mybox.com>

Figure 7.
Commit History

https://www.linuxjournal.com

96 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Date: Thu Nov 22 11:42:02 2018 -0500

 Blinking on esp8266 board
commit 35309a0c9e90668052abc9644f77f906ab57949c
Author: My Name <me@mybox.com>
Date: Thu Nov 22 11:09:44 2018 -0500

 It works! First blink.

commit ee9597269c5da49d573d6662fe8f8137083b7768
Author: My Name <me@mybox.com>
Date: Thu Nov 22 10:48:33 2018 -0500

 Initial Commit

It looks like the commit starting with 35309a0c is the one you’re after. Note: you can
shorten the commit hash string to as few as four characters, as long as it uniquely
identifies only one commit. Let’s explore that version:

me@mybox:~/Arduino/myBlinky $ git checkout 35309a0c
HEAD is now at 35309a0... It works! First blink.
me@mybox:~/Arduino/myBlinky $ ls -l
-rw-r--r-- 1 me me 191 Nov 22 22:01 myBlinky.ino
me@mybox:~/Arduino/myBlinky $ cat myBlinky.ino
// Simple Demo Blinker -MEH
#define PIN_LED 13

void setup() {
 pinMode(PIN_LED,OUTPUT);
}

void loop() {
 digitalWrite(PIN_LED,HIGH);

https://www.linuxjournal.com

97 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

 delay(500);
 digitalWrite(PIN_LED,LOW);
 delay(500);
}

Now let’s say you’re done poking around, so let’s time travel forward to the
current day and get things back to before you broke the laws of physics. In the
simple git repository, this means jumping back to the current commit in the
“master” branch:

me@mybox:~/Arduino/myBlinky $ git checkout master
Previous HEAD position was 35309a0... It works! First blink.
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
me@mybox:~/Arduino/myBlinky $ ls -l
total 1332
-rwxr-xr-x 1 me me 13956 Nov 22 22:04
 ↪myBlinky.arduino.avr.uno.elf
-rw-r--r-- 1 me me 2640 Nov 22 22:04
 ↪myBlinky.arduino.avr.uno.hex
-rw-r--r-- 1 me me 252960 Nov 22 22:04
 ↪myBlinky.esp8266.esp8266.generic.bin
-rwxr-xr-x 1 me me 1082905 Nov 22 22:04
 ↪myBlinky.esp8266.esp8266.generic.elf
-rw-r--r-- 1 me me 436 Nov 22 22:04 myBlinky.ino

Nice! You’re back to the NeoPixel blinky. You see, git stores all the versions
of your committed code under the .git subdirectory. This is actually the real
location of the repository. The files you edit are just the “work area”. When you
jump around between commits, git is doing all the magic of modifying the files in
the work area. If you wanted to jump back and start modifying the old version of
code, you could create a new “branch” to contain that work and move forward

https://www.linuxjournal.com

98 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

with an AVR and esp8266 fork of your code. It’s very powerful.

I’ve barely scratched the surface here. Git, GitHub and arduino-cli are all quite
comprehensive tools. I hope this article has given you a taste of what’s possible when
you harness good programming workflows for your Arduino projects. ◾

Matthew Hoskins is the Senior Enterprise Architect at New Jersey Institute of Technology where he leads the team of talented
professionals that keep our dizzying array of services working together. Systems, storage, on-premises and in the cloud, we do it all.
When it’s done right, no one notices. Matt is @SYSMATT on Twitter.

Resources
• Arduino-CLI Announcement

• Arduino-CLI GitHub

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://blog.arduino.cc/2018/08/24/announcing-the-arduino-command-line-interface-cli
https://github.com/arduino/arduino-cli
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

99 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

Indie Makers
Using Single-
Board Computers
Possibly the most amazing thing, to me, about single-board
computers (SBCs) is that they allow small teams of people (and
even lone individuals) to create new gadgets using not much more
than SBCs and 3D printers. That opportunity for makers and small
companies is absolutely astounding.

By Bryan Lunduke

Two such projects have really caught my attention lately: the Noodle Pi and the TinyPi.

The Noodle Pi is a simple, handheld computer (about the size of a deck of playing
cards). And, when I say simple, I mean simple. It’s got a micro-USB charging port,
another for plugging in USB devices, a touch screen and a battery. Think of it like an
old-school PDA without any buttons (other than a small power toggle) and the ability
to run a full Linux-based desktop.

The TinyPi is a gaming handheld. And, believe it or not, it’s even smaller than the
Noodle Pi, with a tiny screen and tiny buttons. This is the sort of handheld game
console you could put on a keychain.

Both of these are built on top of the (super-tiny and super-cheap) Raspberry Pi Zero.
And, both are built by lone individuals with a heavy reliance on 3D printers.

http://www.noodlepi.com/
https://www.tindie.com/products/petay/tinypi-a-tiny-pi-based-gaming-device
https://www.linuxjournal.com

100 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 1. The Credit-Card-Sized, Pi Zero-Powered, Noodle Pi

Figure 2.
The Impossibly
Small TinyPi
(Banana for Scale)

https://www.linuxjournal.com

101 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

I wanted to know how they did it and how their experience was. What can we learn
from these independent gadget makers? So, I reached out to both of them and asked
them each the same questions (more or less).

Let’s start with a chat with Pete Barker (aka “pi0cket”), maker of the TinyPi.

Interview with Pete Barker (pi0cket), TinyPi Maker
Bryan Lunduke: Could you give a quick overview of the TinyPi?

Pete Barker: TinyPi is (unofficially) the world’s smallest pi-based gaming device. It
started life as a bit of a joke—”how small can i make this?”—but it actually turned into
something pretty good. The Pro version added more features and improvements, and
a kickstarter was funded on December 30, 2018. Manufacturing is already underway,
and the early-bird backers should start getting the kits in February 2019.

BL: When you first started working on the TinyPi, was it always envisioned to be
based on a Raspberry Pi Zero?

PB: It actually was the release of the Zero that sparked the project. I already had been
playing with the Raspberry Pi, but the reduced footprint was a game-changer.

BL: Any other boards that were considered back then?

PB: At the time, the zero was the best out there for the price and size. There were
some “banana” and “orange” pis but they tended to be a little on the large size.

BL: Did the Pi Zero meet your needs? Was it...fast enough?

PB: We always want more speed. The Zero would be great if it had the power of
a Pi3, but then it would eat the batteries. The Zero does a great job of emulating
retrogames, and it also works well for other things.

BL: If you had it to do all over again, what sort of single-board computer would you use?

https://pi0cket.com/
https://www.linuxjournal.com

102 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

PB: I have been investigating alternatives. There are a few “NanoPi” boards that have
quad-core processors in small footprints. There is also the BeagleBone on-chip, which
lets you build your own SBC with very few components. The biggest draw to the
Raspberry Pi boards is the software support. Because the RPis are super popular and
well established, there’s a fast range of software ready to roll.

BL: What part of building something around a single-board computer was the least
enjoyable? Any headaches?

PB: There were no real headaches. It’s all been a learning curve throughout the

Figure 3. The parts of the TinyPi—the Smallest Handheld Game Console I Can Possibly Imagine

https://www.linuxjournal.com

103 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

project. Two years ago, I had never designed a PCB or used any form of CAD.

BL: Do you use Pis (or other similar boards) in your own life, outside the TinyPi?

PB: I actually have a scary number of Raspberry Pis in my house. One is running DNS
filtering and freeview decoding, and one is on each TV playing media from a NAS
box. I have multiple handhelds filled with Pi, and I’m even working on a pocket-sized
keyboard and screen combo called “clicker”.

BL: If you could change one thing about the Pi Zero, what would it be?

PB: A Pi Zero with the power of the Pi3 would be great, but i don’t think that will
become a reality. And a smaller footprint with maybe castellated edges would mean
that I could make something even smaller (something like this, but not $99).

And now let’s pose those same questions to Ashish Gulhati, maker of the Noodle Pi.

Interview with Ashish Gulhati, Noodle Pi Maker
Bryan Lunduke: What is the Noodle Pi?

AG: Okay, so the Noodle Pi is a handheld PC based on the Raspberry Pi Zero, with a
hi-res touchscreen, and integrated camera and battery. End users can assemble and
disassemble it, with no tools or soldering required. A modular docking system enables
you to pair it up with a variety of keyboards and gamepads, and you also can wear it
on your wrist or in a holster clipped to a belt or pocket. Noodle Air is an air-gapped
version of Noodle Pi, intended for high-security applications.

Noodle Pi was launched on Kickstarter in July 2017, and it has shipped to backers in
17 countries. Sadly, the HyperPixel display used in the Noodle Pi was discontinued less
than a year after launch, so the original Noodle Pi is currently unavailable. An updated
version is in the works and should be available soon.

I’m planning to launch a Kickstarter for a different Noodle Pi device very soon (not

https://hackaday.io/project/20937-pi0cket-clicker
http://www.arducam.com/24-24mm-coin-size-raspberry-pi-compatible-board
http://www.noodlepi.com/
https://www.linuxjournal.com

104 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

the updated version of the original Noodle Pi, which will be next).

BL: When you first started working on the Noodle Pi, did you always envision that it’d
be based on a Raspberry Pi Zero?

AG: In July 2016, when I decided to make a handheld device as a deployment platform
for Unsnoopable (my app for completely unsnoopable messaging), I envisioned that
device as based on the Pi Zero right from the start.

But I’ve been trying to put together a practical, open and flexible wearable computer
for almost two decades.

Around 2012, I hacked together a few prototype wearable Noodle computers for my
own use. Some of them were based on the original Raspberry Pi Model B released in
February 2012.

My first wearable Linux computer, back in 2001, was based on a Sony VAIO
Picturebook (with a Transmeta Crusoe processor!), a Daeyang CyVisor head-mounted
display and a Twiddler chorded keyboard.

BL: Did you consider any other boards back then?

AG: The Pi Zero was pretty much the only board small enough to fit into a reasonably
small handheld, with the ability to run a full Linux system and for which some
compatible touchscreen displays were readily available. I also wanted to include a
camera in the device, and the Pi Zero v1.3, which included a camera connector, had
just been released. So that was perfect.

I did later consider the Pi Compute Module 3 Lite, which has a faster processor than
the Pi Zero. However, that would need a carrier board, and together they’d end up
being too big.

The original Noodle Pi design in July 2016 also required a second board, or additional

https://www.linuxjournal.com

105 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

components soldered onto the Pi Zero’s USB pads, to add WiFi and Bluetooth
support, which made it very difficult to cram everything into the form factor of device
I was aiming for.

So for a while, I procrastinated on the Noodle Pi and worked on some other
prototypes based on the Jaguar Board. The procrastination strategy worked, and
ideas from those prototypes helped with the design of the Noodle Pi.

Procrastinating on the Noodle Pi also paid off when the need for additional
components for wireless functionality was neatly eliminated in February 2017 with the
launch of the Pi Zero W, which added onboard WiFi and Bluetooth.

The touchscreen was the final sticking point as none of the small screens available
in early 2017 offered a reasonably high resolution, and they required soldering and
destructive modifications to fit into a reasonable device form factor. That was solved
in June 2017 with the HyperPixel display.

BL: Did the Pi Zero meet your needs? Was it...fast enough?

AG: Yes, I think the Pi Zero is a fantastic little SBC, and it was very cool how it got
the camera interface and the WiFi/Bluetooth upgrades just as I needed them for
the Noodle Pi—and the HyperPixel display. With all these capabilities, I think it’s
easily the most versatile and feature-packed SBC of its size. In 2018, the Pi Zero
WH version was launched, which includes a pre-soldered header. That simplifies
the assembly of the Noodle Pi.

Speed definitely is a bit of a constraint on the Pi Zero, but then my main goal was to
deploy fairly lightweight apps written in Perl, and the Pi Zero is more than capable
of handling that, and of scanning QR codes using its camera, which is important for
some of my apps.

Compared to the first computer I owned, an IBM PC XT with an 8088 @ 4.77 MHz and
640KB of RAM, the Pi Zero is a blazing speed demon. It’s great for console apps, and it

https://www.linuxjournal.com

106 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

runs most GUI apps just fine too.

Of course, it isn’t really suited for some applications, but the great thing is that you
can just pull out your MicroSD card from a Pi Zero, pop it into a Pi 3, and you have
the same system running on a much faster computer. I use this trick quite often.

You can use a Noodle Pi on the go, and at home/office, just pop the MicroSD into a Pi
3 connected to a big screen and full keyboard, and presto, it’s a faster more powerful
desktop machine!

BL: If you had it to do all over again, what sort of single-board computer would
you use?

AG: For a small integrated handheld device, I’d stick with the Pi Zero. I’m working on
the updated version of the Noodle Pi, which should be available in the near future.

I’m also working on a slightly different variation of the Noodle Pi, which I plan to
launch first, probably in February 2019.

I picked up some NanoPi SBCs to play around with. There are some interesting
possibilities there, but they don’t have integrated WiFi/Bluetooth antennas like the Pi
Zero W does, so the Zero still wins for wireless connectivity.

There’s also the Banana Pi Zero, which could potentially be a nice drop-in upgrade for
the Pi Zero, but I wasn’t able to get it to boot up anything the last time I tried. And it
doesn’t have integrated wireless antennas either.

BL: What part of building something around a single-board computer was the least
enjoyable? Any headaches?

AG: For the most part, it was and continues to be quite enjoyable. I love working with
SBCs, and it’s great that there’s such a variety of them available now. One thing I don’t
particularly enjoy is soldering, which is why I wanted to make sure that the Noodle Pi

https://www.linuxjournal.com

107 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

could be assembled without any soldering required.

Back in the early 1990s, when I got started with digital electronics, I enjoyed making
prototype circuit boards using wire-wrapping. That was great fun. I made a whole
custom 68K-powered computer that way.

With the original Pi model B in 2012, the USB ports were quite flaky and that was a
pain, but the Pi Zero’s USB is fine.

The headaches were more on the production side of things, with endless tiny tweaks
and prototyping required to get the model and print parameters just right, and with
various malfunctions and maintenance issues with the 3D printers during production.
I’m hoping we’ll see some significant advances in consumer 3D printing tech soon,
leading to big reliability and quality improvements.

BL: Do you use Pis (or other similar boards) in your own life, outside the Noodle Pi?

AG: Absolutely. In fact, I now rely on SBCs for nearly all of my computing (other than
production servers). I have quite a variety of prototype Noodle devices based on Pis
and other SBCs, which serve as my main workstations and mobile computers. I hope
to launch some more of these as Noodle products over the next few months.

I also have a bunch of boards in clusters for testing the HashCash vault and some
other projects.

I’ve used every conceivable type of mobile computer during the past 25 years, and I’ve
never really found the perfect sweet spot of mobility, price and power with laptops
and commercially available handheld devices, which is what led me to keep hacking up
Noodle computers.

I think the modularity afforded by SBCs is a big win. With Noodle computers based on
SBCs, I don’t have to worry about a screen or battery or keyboard problem rendering
my whole machine unusable. I can just quickly swap out parts and get back to work.

https://www.linuxjournal.com

108 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

I’ve had work disrupted way too many times because of such issues with laptops,
which could be repaired only by the authorized repair center. That’s no good for me. I
need computers that I can fix myself in five minutes.

This is why I haven’t been tempted to pick up a GPD Pocket or the Gemini PDA,
which I would have paid big bucks for five years ago. After switching mainly to Noodle
computers based on SBCs, I find that the modularity and repair-ability are just too
important to give up.

BL: If you could change one thing about the Pi Zero, what would it be?

AG: If a genie granted me one change to the Pi Zero, I’d say: make it completely open
with no proprietary blob required to boot up.

Of course, it’d also be great to see it updated to a faster multi-core CPU. But for
the most part, I think it’s an awesome SBC that packs incredible capabilities into a
really tiny package.

BL: Any other anecdotes or interesting stories you’d like to share about the process
of building a Pi Zero-based handheld?

AG: This isn’t specifically about building a Pi Zero handheld, but I find it fun and
interesting how procrastinating at various points allowed the available tech time to
catch up to what I was trying to do.

And given that my main goal with the Noodle Pi was just to be able to deploy my Perl
apps on an open handheld device, had I procrastinated a bit longer, I probably could
just have done that on the upcoming Purism Librem 5 and saved myself a lot of work!

On the other hand, it’s nice to have had the Noodle Pi as a development platform
during the past year and a half. Apps written for the Noodle Pi should be easy to
deploy on the Librem 5 when it ships, hopefully with minimal changes to the code.

https://www.linuxjournal.com

109 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Conclusion
Big round of thanks to both Pete Barker and Ashish Gulhati for taking the time
to share their experiences in building devices based on the Pi Zero. I love seeing
independent and creative makers designing (and shipping) cool little niche Linux
computers like this. I’m absolutely positive I’m not alone in hoping that the coming
years sees this trend increasing. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing
Guy (tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal as well as host of the
popular Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

110 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Mycroft: a Privacy-
Respecting Digital
Assistant
How to build a Mycroft skill and then convert the Google AIY
Voice Kit to run Mycroft instead of Google Assistant.

By Jan Newmarch

Mycroft is a digital assistant along the lines of Google Home, Amazon Alexa and the
many others that are currently coming onto the market. Unlike most of these though,
it has two major differences:

• The code is open source, and you can install it on most Linux systems.

• There is a focus on privacy.

Many assistants will listen all of the time, sending everything they hear into the
“cloud”. As you all know, many of these companies are vacuums for data, and their
business models are built on using that data. Mycroft goes against that model by
minimizing the amount of data collected and anonymizing the data when it has to
interact with other systems.

Google processing is given in Table 1.

https://www.linuxjournal.com

111 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Table 1. Google Assistant Query Processing

Local Execution Remote Execution

Recognise wakeup word

Capture query

Speech to text (recorded in your Google
account)

Match to intent

Call matching skill

Remote service if required by skill

Generate response

Text to speech

Mycroft changes this around to what’s shown in Table 2.

Table 2. Mycroft Query Processing

Local Execution Remote execution

Recognise wakeup word

Capture query

Speech to text (anonymous)

Match to intent

Call matching skill

Remote service if required by skill

Generate response

Text to speech

https://www.linuxjournal.com

112 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

All processing is local except for the speech to text and text to speech modules, and
possibly an external web service. The “speech to text” service is currently Google’s
Speech to Text service, but there is an option of using the Mozilla DeepSpeech engine.
The requests are anonymized to be from “MycroftAI” rather than from a particular
user. The “Remote service if required by skill” will depend on what needs to be done to
satisfy the query—for example, getting the local time won’t need one, while getting the
weather will need access to a weather service, such as OpenWeatherMap. The “Text to
speech” module, by default, uses a mechanical-sounding voice produced by software
called Mimic 2, based on the Tacotron architecture, but the voice is configurable.
However, there is a noticeable lag of several seconds while a voice response is
prepared, and choosing a more complex voice increases this delay.

The Google AIY Voice Kit
You can buy digital assistants as “black boxes”. Google has created a do-it-yourself
“white box” (Figure 1). It consists of the following:

Figure 1.
Google AIY
Voice Kit

https://www.linuxjournal.com/content/openweathermap.org
https://www.linuxjournal.com

113 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

• A cardboard enclosure (yes okay, it’s brown, not white).

• A speaker.

• A microphone.

• A “voice hat” board to process audio.

• A big button to give some privacy—the kit won’t listen until you press the button.

The kit is driven by a Raspberry Pi 3, which you supply yourself.

You can download an image for the Raspberry Pi that can drive the voice hat, and
there’s a lengthy set of instructions to turn it into a Google Assistant. This is non-
trivial, requiring a Google account and using OAuth for identification purposes. But
I’m not going that route here, as this is a nice little box for installing Mycroft.

Installing Mycroft
Mycroft requires a good quality microphone and reasonable speaker, which the
Raspberry Pi doesn’t have. The AIY kit has these as well as the little brown box
in which to put everything. But, the AIY image doesn’t include Mycroft, and the
Raspberry Pi image for Mycroft—picroft—doesn’t have drivers for the voice hat.

There are two ways if getting Mycroft onto the Raspberry Pi you use with the AIY kit:
add Mycroft to the AIY image or install AIY support onto the picroft image.

The first is straightforward but time-consuming: using the AIY image from here,
download the Mycroft files from GitHub and build it on the Raspberry Pi. It’s not hard.

The second is slightly less time-consuming: the Raspberry Pi image from September
2018 allows you to select the AIY devices during setup, and then downloads and
builds all the relevant AIY files. At the time of this writing, Google has broken this by
not having a particular Python “wheel” file available for the Raspberry Pi 3B or 3B+,

https://github.com/google/aiyprojects-raspbian/releases
https://github.com/MycroftAI
https://www.raspberrypi.org/downloads/raspbian
https://www.raspberrypi.org/downloads/raspbian
https://www.linuxjournal.com

114 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

but there is a workaround from andlo here. Hopefully this will be fixed soon—the AIY
forums are very voluble on the subject!

To build this kit, follow the AIY instructions to connect everything together. But, don’t
fold them all into the cardboard enclosure yet, as that hides the USB ports and the
HDMI port. Connect an external monitor, keyboard and mouse, so you can control
the system while you build it. From then on, follow these steps:

• Using the AIY image: download and build Mycroft from GitHub.

• Using the picroft image: select the AIY option during setup, which should
download and build lots of Python wheel files and libraries. While this is broken at
the time of this writing (December 2018), hopefully Google will have fixed it by
the time you read this.

Figure 2. Screenshot of Mycroft in debug mode—this shows the skills loaded at the top and
the interactions with the user at the bottom.

https://community.mycroft.ai/t/setting-up-aiy-python-wheels-protobuf-not-supported-on-armv6-1/5130/4
https://www.linuxjournal.com

115 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Running Mycroft
Once booted, you can run Mycroft from the directory mycroft-core using the
start-mycroft.sh command. This can take parameters, and the most voluble way
of seeing what’s going on is to run it in debug mode:

start-mycroft.sh debug

This brings up the curses screen shown in Figure 2.

Building Your Own Skills
Mycroft has an ever-growing list of skills that come by default. These include Pandora,
Spotify, OpenHAB and Wikipedia. But there’s always room for more! I’ve got some
smart bulbs in my house, and I’d like to control them using Mycroft.

Adding a skill means you need to know how to talk to the service you’re requesting.
Often this information isn’t publicly available and has to be reverse-engineered. Such
is the case with the Lanbon light switches, for example, but that’s another story!
One device that is okay is the Yeelight smart light. It has the advantage of having a
documented “local” API to control it, so there’s no need to tell the Yeelight server
what time you go to bed, for example. The Hue and LIFX lights offer similar privacy-
respecting APIs.

The Mycroft skills are in the /opt/mycroft/skills directory. There is one directory per
skill, and the following sub-directories and files:

• A vocab directory per language, such as vocab/en-us for US English phrases that
will trigger an intent.

• A dialog directory per language, such as dialog/de-de for German language
responses.

• The Python file __init__.py with a class for the skill and methods for each of the
intents.

https://www.linuxjournal.com

116 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

• Some additional files for non-basic features.

The __init__.py file is where all the work of the skill is done. It needs to import
required classes and define a class that inherits from MycroftSkill. This class
should have methods for each intent, which is triggered by the keywords for that
intent. This was formerly signaled by code in the constructor, but the preference now
is for an adornment on each method. The method then does what is needed, and
finally calls for a response to be sent.

The Yeelight Bulb Skill
I use the Yeelight bulbs here, as they
are relatively simple, documented,
and it’s easy enough to show how to
build a small skill—note that there are
additional expectations of a real skill
that would be distributed by Mycroft!
Mycroft has a more detailed set of
instructions at Developing a new Skill.

Yeelight makes a number of smart
bulbs that you can control through an
Android or iPhone app. Like many home
IoT devices, it communicates with a
(Yeelight) server, and to set it up, you
have to go through the usual complex
registration processes for smart-home
devices. But, it also has a REST-like API
through which you can control it with
appropriate network calls. Typically,
these would be restricted to the home
LAN unless ports are explicitly opened
on the home router (bad idea!). But
if you just want to control the lights Figure 3. Enabling LAN API of the Yeelight

https://mycroft.ai/documentation/skills/introduction-developing-skills
https://www.linuxjournal.com

117 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

from inside the house, this is a good way. The “Yeelight WiFi Light Inter-Operation
Specification” is described here.

The default is for LAN control to be disabled for each bulb. You have to enable the
“Control LAN” mode, which is found by selecting a Yeelight device, scrolling down to
the bottom of the screen and choosing the rightmost icon and then the Control LAN
icon. The rather crude screenshot from Yeelight in Figure 3 shows this.

There are a number of different Yeelight bulbs. I look only at the common feature of
on/off for each bulb in this article. The Mycroft files for such a skill are as follows:

• Yeelight/vocab/en-us/OnKeywords.voc

• Yeelight/vocab/en-us/OffKeywords.voc

• Yeelight/dialog/en-us/on.activity.dialog

• Yeelight/dialog/en-us/off.activity.dialog

• Yeelight/__init__.py

• Yeelight/requirements.txt

After enabling LAN control, the Yeelight bulb listens to multicast messages
to 239.255.255.250 on port 1982. On receiving the correct message, each
bulb responds with a packet containing information such as “Location:
yeelight://192.168.1.25:55443”. Several libraries have been developed to do this and
other Yeelight commands. I use the library by Stavros Korokithakis available here.
This can be installed by pip, but Mycroft will do it for you: the file requirements.txt
contains a list of the packages needed to run a skill, which will be loaded by Mycroft,
so here will contain the name of the Yeelight package:

yeelight

https://www.yeelight.com/download/Yeelight_Inter-Operation_Spec.pdf
https://gitlab.com/stavros/python-yeelight
https://www.linuxjournal.com

118 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

The package contains a method discover_bulbs(), which sends out the multicast
message and collects the responses as a list, each element containing the IP address
and port, and a list of the light’s capabilities. A new Bulb() can then be created using
the IP address. The simplest logic finds a list of bulbs and returns the first in the list,
along with its name:

def select_light(location):
 yeelights = yeelight.discover_bulbs()
 if len(yeelights) >= 1:
 light_info = yeelights[0]
 ip = light_info['ip']
 name = light_info['capabilities']['name']
 return light, name
 return None, None

Once a light is found, commands can be sent to it. A command is in the form of a
JSON string, which is constructed representing the command and its parameters and
sent as a TCP packet to the bulb. These are encapsulated by the Yeelight package by
methods including turn_on() and turn_off().

Finally, you can give the “on” command, which combines the decorator to register the
intent, the command itself and the response. The response contains the light’s name,
if it is available, to show that parameters can be passed to the speech dialog:

@intent_handler(IntentBuilder("OnIntent").\
 require("OnKeywords").build())
def on_activity_intent(self, message):
 """Turn on Yeelight
 """
 light, name = select_light(location)
 if light != None:
 light.turn_on()

https://www.linuxjournal.com

119 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

 if name == None:
 report = {"location": "unknown"}
 else:
 report = {"location": name}

 self.speak_dialog("on.activity", report)

The (US English) intent matcher for switching the light on is in the file Yeelight/vocab/
en-us/OnKeywords.voc:

light on

And the (US English) response is in the file Yeelight/dialog/en-us/on.activity.dialog:

turning on {{location}}

If the light’s name is, say, “bedroom”, Mycroft will say “turning on bedroom”. There
is considerably more complexity that can be built in to the intent matcher and
responses, these are just indicative.

Other Home Devices
Just considering lighting, many options exist now. Let’s look at a few of them.

LIFX An API for both LAN and WAN management of devices is documented. The
LAN interface uses UDP messages only, and the different devices are distinguished by
their MAC address rather than IP address. The WAN API sends HTTP REST commands
via the LIFX server. Several Python packages implement this, such as lifxlan for LAN
control and pifx for WAN control. There is a Mycroft skill using the WAN API.

Hue Hue lights do not live on the IP network, but on a Zigbee network. The
interaction with the LAN is via a Hue bridge: you talk IP to the bridge, it talks Zigbee
to the devices. A REST API allows you to send requests to a light by a request to

https://lan.developer.lifx.com/
https://api.developer.lifx.com/
https://developers.meethue.com/documentation/getting-started
https://www.linuxjournal.com

120 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

the bridge including the light’s ID. Many Python packages implement this, and there
already is a Mycroft skill for these lights.

IKEA Trådfr The IKEA lights also use Zigbee via a gateway. There is an API using
CoAP over UDP, and it has been implemented in a Python package called pytradfri.
Although there is no Mycroft skill for these lights, there is an OpenHAB binding and a
Mycroft skill for OpenHAB.

Eufy Lumos This is an IP bulb, but the API does not appear to have been published.
There have been several attempts to reverse-engineer the API, and there is currently a
minimal Python package lakeside.

Note: although the functions performed by each smart light are similar, there is
little consistency in their networking APIs, and there are a variety of Python and
other language implementations. Unfortunately, many vendors have not published
their APIs. This is reminiscent of the early days of device drivers for Linux, where
some vendors were good, and others stupidly thought themselves clever for hiding
specifications. A vendor of one product has told me they will give me the API if I
purchase 2,000 units at about $100 each—not on my salary!

Security
There are multiple security issues to be considered in any IoT system, and several of
them surface here.

First, there are security issues arising from switching the bulb to local access mode:
it means that anyone on your local network (such as the disgruntled teenager you’ve
just sent off early to bed) can program your lights to flash on and off just as you
get to sleep. In the case of the Yeelight, that’s a choice you get to make, as you have
to change its mode explicitly. I’m assuming, of course, that your wireless network
has security, such as WPA2 turned on, and any default router passwords have been
changed—otherwise, you are vulnerable to any external attack!

You can reduce the security risks by running these lights on their own subnet, even

https://www.linuxjournal.com

121 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

on a different SSID with an appropriate firewall. This increases network configuration
complexity as well as requiring a router that will pass multicast searches from the
Mycroft subnet to the light’s subnet. The IETF expects home networks to have
multiple IP subnets in the future (at RFC 7368: IPv6 Home Networking Architecture
Principles), so such issues will need to be addressed in user-friendly ways eventually.

Of course, you could say that this is all irrelevant, since anyone can just ask Mycroft
to turn the lights on or off. Physical presence now clashes with network security! The
Mycroft wake word recognizer cannot yet distinguish between different voices, but
that’s in the works.

What’s Next?
Mycroft will continue to support the open-source version, and it’s building up
the skill sets. The company also makes its own hardware version, and version 2
will be released soon. This will have its own FPGA, which will allow more AI-style
processing to be done onboard. So Linux hackers can play around to their hearts’

Resources
• Abraham Kang, “Understanding the Differences Between Alexa, API.ai,

WIT.ai, and LUIS/Cortana”

• Fox News “Google is recording everything you say to a bot—right now”

• Steve Penrod, “Why We’re moving to DeepSpeech on March 31 | Privacy,
Speech to Text & Balance”

• Mycroft.ai, Mimic

• Mycroft.ai, Mycroft AI Open Source Voice Assistant

• Google AIY Voice Kit

https://tools.ietf.org/html/rfc7368
https://tools.ietf.org/html/rfc7368
https://medium.com/@abraham.kang/understanding-the-differences-between-alexa-api-ai-wit-ai-and-luis-cortana-2404ece0977
https://medium.com/@abraham.kang/understanding-the-differences-between-alexa-api-ai-wit-ai-and-luis-cortana-2404ece0977
https://www.foxnews.com/tech/google-is-recording-everything-you-say-to-a-bot-right-now
https://mycroft.ai/blog/mycroft-speech-to-text-and-balance
https://mycroft.ai/blog/mycroft-speech-to-text-and-balance
https://mycroft.ai/documentation/mimic
https://mycroft.ai/
https://aiyprojects.withgoogle.com/voice
https://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

content, and privacy-concerned individuals and companies can purchase an
off-the-shelf version.

The main downside is the lack of specifications and stability for services and IoT
devices. This is shown by Logitech in December 2018 turning off an undocumented
LAN mode for the Harmony Hub due to security issues with its XMPP code. It caused
an outcry from those relying on it for their home automation systems, and Logitech is
now reconsidering its position—at least the company is listening; others are not! ◾

Disclaimer: the author recently purchased shares in Mycroft.

Jan Newmarch has written several articles for the Linux Journal in the past, as well as more than 80 papers and
six books. He is Professor of IoT at Box Hill Institute, and also Adjunct Professor at the University of Canberra and
Adjunct Lecturer at Charles Sturt University. He expects to retire soon to a life of leisure, hacking and, of course,
more Linux. His LinkedIn handle is https://www.linkedin.com/in/jannewmarch.

122 | March 2019 | https://www.linuxjournal.com

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.linkedin.com/in/jannewmarch
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

123 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Oracle Linux
on Btrfs for the
Raspberry Pi

Enterprise comes to the micro server.

By Charles Fisher

Oracle Linux 7 has been released for the Raspberry Pi 3. The release packages
Btrfs as the root filesystem on the UEK-branded Linux 4.14 Long Term Support

http://www.oracle.com/technetwork/server-storage/linux/downloads/oracle-linux-arm-4072846.html
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.oracle.com/technetwork/server-storage/linux/technologies/btrfs-overview-1898045.html
https://www.linuxjournal.com

124 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

(LTS) kernel. A bootable disk image with a minimal install is provided along with a
standard ISO installer.

CentOS appears to support only the “Mustang” Applied Micro X-Gene for AArch64,
and it provides the older AArch32 environment for all models of the Raspberry Pi.
Oracle Linux is a compelling option among RPM distributions in supporting AArch64
for the Pi Model 3.

This is not to say that Oracle AArch64 Linux is without flaw, as Oracle warns that
this is “a preview release and for development purposes only; Oracle suggests these
not be used in production.” The non-functional WiFi device is missing firmware and
documentation, which Oracle admits was overlooked. No X11 graphics are included
in the image, although you can install them. The eponymous database client (and
server) are absent. Oracle has provided a previous example of orphaned software
with its Linux for SPARC project, which was abandoned after two minor releases.
There’s no guarantee that this ARM version will not suffer the same fate, although
Oracle has responded that “our eventual target is server class platforms”. One
possible hardware target is the Fujitsu A64FX, a new server processor that bundles 48
addressable AArch64 cores and 32GB of RAM on one die, asserted to be the “fastest
server processor” that exists.

AArch64 on the Pi
You’ll need a Raspberry Pi Model 3 to run Oracle Linux. The 3B+ is the best available
device, and you should choose that over the predecessor Model 3B and all other
previous models. Both Model 3 boards retain the (constraining) 1GB of RAM—a
SODIMM socket would be far more practical. The newer board has a CPU that is
200MHz faster and a Gigabit-compatible Ethernet port (that is limited to 300Mbit due
to the USB2 linkage that connects it). A Model A also exists, but it lacks many of the
ports on the 3B. More important, the Model 3 platform introduces a 64-bit CPU.

ARM was very tardy to 64-bit addressing capabilities compared to other well known
microprocessor families, announcing this extension in 2011. Intel’s first attempt to
migrate the x86 market to the abortive Itanium 64-bit architecture shipped in 2001,

https://wiki.centos.org/SpecialInterestGroup/AltArch/AArch64
https://www.oracle.com/technetwork/server-storage/linux/downloads/oracle-linux-sparc-3665558.html
https://www.nextplatform.com/2018/08/24/fujitsus-a64fx-arm-chip-waves-the-hpc-banner-high
https://www.linuxjournal.com

125 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

ultimately yielding to AMD64, which debuted in 2003. MIPS and SPARC made this
transition much, much earlier (1991 and 1995, respectively).

Despite the late arrival, the ARM AArch64 CPU architecture is now the dominant
mobile platform. All supported iPhones are now required to run it, and most modern
Android devices have migrated to it. ARM has guarded a competitive edge in power
efficiency, as vast changes in its instruction set ideology and implementation have
allowed ARM to maintain its market leadership in mobile.

The Acorn/Advanced RISC Machine (ARM) began with the retroactively named
AArch32 assembly and machine language that was designed by Furber and Wilson
for the Archimedes desktop computer, where tremendous power efficiency “was
a complete accident”. Desktop performance remained an architectural focus for a
decade after the birth of ARM.

Apple’s decision to base the (failed) Newton on ARM opened a new market of
mobile device applications that prompted a new instruction set for ultra-compact
assembly—Thumb 1 and 2. These are distinct from AArch32 and AArch64, and they
focus on code density and minimal footprint for mobile devices. Thumb 2 is a 16-/32-
bit variable length instruction set, which is dynamically translated to AArch32. Many
other ARM extensions exist, but Thumb appears to have both great flexibility and
persistence across ARM implementations.

When mobile devices neared the 4Gb RAM limit of 32-bit ARM, the designers decided
to break from the past. The primary mistakes in AArch32 have long been known:

Design errors, like having r15 as the program counter or making every
instruction conditional, are problems for CPU architects rather than
programmers, and it’s no surprise that they disappeared in the 64-bit version
of the ARM architecture. They must have made it awfully hard to implement
superscalar, out-of-order execution.

The changes in AArch64 bring it much closer to the spirit of MIPS, the most notable

https://en.wikipedia.org/wiki/R4000
https://en.wikipedia.org/wiki/R4000
https://www.theregister.co.uk/2012/05/03/unsung_heroes_of_tech_arm_creators_sophie_wilson_and_steve_furber
https://en.wikipedia.org/wiki/Acorn_Archimedes
https://en.wikipedia.org/wiki/Apple_Newton
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://www.jwhitham.org/2016/02/risc-instruction-sets-i-have-known-and.html
https://www.linuxjournal.com

126 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

of which are:

• Conditional Execution has been removed, facilitating out-of-order processing
in multiple pipelines.

• The R15/PC register can now be manipulated only by a small number of
jumping and branching instructions, vastly simplifying branch prediction.

These performance improvements, along with the increase of pointer sizes to 64-bits,
come at the cost of code density—programs compiled for native AArch64 will be
larger than the equivalent for AArch32. Despite these enhancements, the majority of
Intel desktop processors of the last decade easily will beat the Pi in most benchmarks
(but they will not do so with a 10-Watt power supply). I examine the code density
impact of AArch64 in greater detail below.

Installation
Most Raspberry Pi users rely on flash memory, which comes in two grades. Multi-
Level Cell (MLC) media is cheap and offers large amounts of storage, but it can decay
very quickly (cells typically are destroyed after 5,000 write operations). Most retail
flash media (SD cards, USB flash drives) are MLC, and will not have a long lifetime
under high I/O usage, despite the “wear-leveling” electronics that attempt to distribute
writes over the whole device evenly. Single-Level Cell (SLC) media is more expensive
and offers smaller amounts of storage, but it drastically increases the number of write
operations until cell failure (100,000). Both types of memory can be “rehabilitated”
by heating them, but this is not feasible for memory in most plastic packaging. If you
anticipate large amounts of I/O, plan to purchase the correct grade of flash.

One great benefit of the new Model 3 is the ability to boot from USB. A standard
hard disk drive is now a boot option. SLC media is also more plentiful and inexpensive
in the USB flash format than as microSD cards. Choose the format that fits your
expected I/O usage.

Once you have selected and obtained your media, you’re ready to download and

https://en.wikipedia.org/wiki/ARM_architecture#Conditional_execution
https://en.wikipedia.org/wiki/ARM_architecture#Registers
https://en.wikipedia.org/wiki/Flash_memory#Write_endurance
https://hexus.net/tech/news/storage/48893-making-flash-memory-reliable-800c-heat-pulses
http://www.oracle.com/technetwork/server-storage/linux/downloads/oracle-linux-arm-4072846.html
https://www.linuxjournal.com

127 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

uncompress the following file:

$ xz -dkv rpi3-ol7.6-image-20181116.img.xz
rpi3-ol7.6-image-20181116.img.xz (1/1)
 100 % 266.4 MiB / 5120.0 MiB = 0.052 55 MiB/s 1:32

The full size of the boot image is 5GB—your boot media must be at least this size:

$ ll rpi3-ol7.6-image-20181116.img*
-rw-r--r-- 1 root root 5368709120 Jan 13 18:52
rpi3-ol7.6-image-20181116.img
-rw-r--r-- 1 root root 279309592 Jan 13 18:52
rpi3-ol7.6-image-20181116.img.xz

Insert your boot media and ensure that it is detected, but not mounted:

dmesg | tail -3
[378.540649] mmc0: new high speed SDHC card at address 0002
[378.544104] mmcblk0: mmc0:0002 00000 7.83 GiB
[378.548395] mmcblk0: p1

Finally, write the image to the raw media:

dd if=rpi3-ol7.6-image-20181116.img of=/dev/mmcblk0 bs=4M

Assuming there are no write errors, the media is now prepared to boot the Raspberry
Pi Model 3.

Operation
Load the media into the Pi, connect an HDMI cable to a monitor, and attach an
ethernet cable. After the power supply is connected, the Pi will boot (there is no
power switch).

https://docs.oracle.com/cd/E52668_01/F10134/html/ol7-install-pi.html
https://www.linuxjournal.com

128 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

The Pi might fail to boot with older USB peripherals. When a well-worn IBM 89P8800
USB 1.1 keyboard was attached, the firmware issued the message Timeout poll on
interrupt endpoint and refused to boot. Trying a slightly newer Lenovo 41A5248
keyboard, the boot proceeded but was greatly delayed. Both keyboards worked
without error once the OS was running. It might be wise to boot initially without any
non-essential USB hardware.

Once the boot is complete, a login: prompt should be displayed. The user root
with the password oracle will allow you to select a new root password, then drop to
Bash.

The /proc/cpuinfo file will list four processor cores with the following descriptions:

[root@rpi3 ~]# cat /proc/cpuinfo
processor : 0 ... 1 ... 2 ... 3
BogoMIPS : 38.40
Features : fp asimd evtstrm crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part : 0xd03
CPU revision : 4

The root filesystem is on Btrfs, which is a change from the XFS that you normally
see on the x86_64 (AMD64) version of Oracle/Red Hat/CentOS/Scientific Linux 7.
The /boot filesystem is on EXT4, likely due to bootloader considerations:

[root@rpi3 ~]# mount | egrep 'btrfs|ext4'
/dev/mmcblk0p4 on / type btrfs
(rw,noatime,ssd,space_cache,subvolid=5,subvol=/)
/dev/mmcblk0p2 on /boot type ext4 (rw,noatime,data=ordered)

Observe also the ssd mount option above. Btrfs detected this option automatically

https://www.linuxjournal.com

129 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

and was previously unsafe with a “a negative impact on usability and lifetime”
of the flash media, but it’s now appropriate in the 4.14 kernel. Observe that the
autodetected SSD mount option was not specified in /etc/fstab (I’ve removed the
UUIDs and LABELs):

[root@rpi3 ~]# sed -r 's/^(UUID|LABEL)[^]*[]*//' /etc/fstab
#Generated by RootFS Build Factory
/boot/efi vfat noatime 0 0
/boot ext4 noatime 0 0
swap swap noatime 0 0
/ btrfs noatime 0 0
tmpfs /tmp tmpfs rw,nodev,nosuid,size=128M 0 0

The root filesystem is on the p4 partition of the SD card:

[root@rpi3 ~]# fdisk -l

Disk /dev/mmcblk0: 7948 MB, 7948206080 bytes, 15523840 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000164f6

 Device Boot Start End Blocks Id System
/dev/mmcblk0p1 2048 526335 262144 c W95 FAT32
 ↪(LBA)
/dev/mmcblk0p2 526336 1550335 512000 83 Linux
/dev/mmcblk0p3 1550336 2074623 262144 82 Linux
 ↪swap / Solaris
/dev/mmcblk0p4 2074624 10463231 4194304 83 Linux

Note above that I’m running on an 8GB SD card, but the last third of the card is

https://btrfs.wiki.kernel.org/index.php/Gotchas#ssd_mount_option
https://www.linuxjournal.com

130 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

unused, as it does not lie in a partition. You can add the unused space to the root
filesystem by first expanding the partition:

[root@rpi3 ~]# growpart /dev/mmcblk0 4
CHANGED: partition=4 start=2074624 old: size=8388608
↪end=10463232 new: size=13449183,end=15523807

And then expanding the Btrfs filesystem into the newly allocated space:

[root@rpi3 ~]# btrfs filesystem resize max /
Resize '/' of 'max'

The root filesystem now occupies the rest of the flash device:

[root@rpi3 ~]# fdisk -l

Disk /dev/mmcblk0: 7948 MB, 7948206080 bytes, 15523840 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000164f6

 Device Boot Start End Blocks Id System
/dev/mmcblk0p1 2048 526335 262144 c W95 FAT32
 ↪(LBA)
/dev/mmcblk0p2 526336 1550335 512000 83 Linux
/dev/mmcblk0p3 1550336 2074623 262144 82 Linux
 ↪swap / Solaris
/dev/mmcblk0p4 2074624 15523806 6724591+ 83 Linux

Btrfs is an extremely powerful filesystem, similar in capabilities to ZFS. It’s capable
of transparent compression, mirroring, error detection and it has self-healing

https://docs.oracle.com/cd/E52668_01/F10134/html/ol7-install-pi.html
https://www.linuxjournal.com/content/zfs-linux
https://www.linuxjournal.com

131 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

capabilities. (Watch for a future article on in-depth Btrfs coverage.) Oracle Linux
on the Raspberry Pi provides a useful learning environment for many new tools and
features, and the addition of Btrfs is chief among them.

A number of missing utilities are present in minimal installs on x86_64. In no particular
order of preference, some are ethtool, less, man and nmtui. Assuming internet
connectivity to Oracle, a yum install man will bring in less as a dependency (and
let you begin reading all the Btrfs manual pages). The yum whatprovides command
is useful for searching the contents of uninstalled packages for a particular utility.

Busybox is an alternative to some of the native Oracle AArch64 packages. Those unfamiliar
with Busybox might review my previous container article published in Linux Journal that
details its use. The 1.28.1 release offers several ARM binaries of Busybox (listed below):

[root@rpi3 ~]# for x in busybox-arm*
 do ls -l $x; file $x; ./$x | head -1; done

-rwxr-xr-x 1 root root 1132724 Jan 10 17:23 busybox-armv5l
busybox-armv5l: ELF 32-bit LSB executable, ARM, version 1
 ↪(SYSV)...
BusyBox v1.28.1 (2018-02-15 14:34:02 CET) multi-call binary.
-rwxr-xr-x 1 root root 836560 Jan 10 17:23 busybox-armv7m
busybox-armv7m: ELF 32-bit LSB shared object, ARM, version 1
 ↪(SYSV)...
BusyBox v1.28.1 (2018-02-15 14:34:02 CET) multi-call binary.
-rwxr-xr-x 1 root root 1079156 Jan 10 17:23 busybox-armv7r
busybox-armv7r: ELF 32-bit LSB executable, ARM, version 1
 ↪(SYSV)...
BusyBox v1.28.1 (2018-02-15 14:34:02 CET) multi-call binary.
-rwxr-xr-x 1 root root 1078504 Jan 10 17:23 busybox-armv8l
busybox-armv8l: ELF 32-bit LSB executable, ARM, version 1
 ↪(SYSV)...
BusyBox v1.28.1 (2018-02-15 14:34:02 CET) multi-call binary.

https://busybox.net/
https://www.linuxjournal.com/content/infinite-busybox-systemd
https://busybox.net/downloads/binaries/1.28.1-defconfig-multiarch
https://www.linuxjournal.com

132 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Notice above that the busybox-armv7m binary is substantially smaller than all
the rest. This binary is apparently composed of Thumb 2 code; the ARM 7 M and
R architectures appear to exclude both AArch32 and AArch64: “ARMv7-M... No
ARM instruction set support (Thumb only).” Thumb might explain the smaller
size, but its use may come at some cost to performance.

Oracle includes an AArch64 compiler environment, but this isn’t likely to be
capable of emitting ARMv7-M code. Oracle doesn’t provide a glibc.aarch32
or glibc.thumb2 package in the same way that it provides a glibc.i686 on
AMD64, nor are there any 32-bit libraries in /usr/ lib. ARM itself provides Thumb-
capable GNU compilers, as do other sources. Using Thumb as a compiler target
will conserve memory at the potential cost of performance. This might be a
reasonable choice for standing dæmons that are not CPU-intensive.

One glaring lack in Oracle Linux on the Raspberry Pi is the missing WiFi device. The
kernel dmesg has a clue to the problem:

brcmfmac: brcmf_fw_map_chip_to_name: using
 brcm/brcmfmac43455-sdio.bin for chip 0x004345(17221)
 ↪rev 0x000006
usbcore: registered new interface driver brcmfmac
brcmfmac mmc1:0001:1: Direct firmware load for
 brcm/brcmfmac43455-sdio.bin failed
 ↪with error -2

You can find one source of the missing firmware at this link, although you also
can find it within Raspbian. Installing the firmware will cause a wlan0 device to
appear, but all my attempts to configure it have failed. It doesn’t appear to be
functional in the current release, despite the brcmfmac kernel module:

[root@rpi3 ~]# cd /usr/lib/firmware/brcm/
[root@rpi3 ~]# ll brcmfmac43455*

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16827.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16827.html
https://docs.oracle.com/cd/E52668_01/F10134/html/ol7-features-developer.html
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://github.com/armbian/firmware/tree/master/brcm
https://www.linuxjournal.com

133 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

-rw-r--r-- 1 root root 600487 Jan 14 19:33
 ↪brcmfmac43455-sdio.bin
-rw-r--r-- 1 root root 14036 Jan 14 19:49
 ↪brcmfmac43455-sdio.clm_blob
-rw-r--r-- 1 root root 2054 Jan 14 19:41
 ↪brcmfmac43455-sdio.txt

It appears that the WiFi and Bluetooth devices on the Raspberry Pi work
through the SD card’s SDIO interface. Once those files are in place, reboot,
and the WiFi driver should appear in the dmesg. Note this will use a small
amount of additional memory:

mmc1: new high speed SDIO card at address 0001
brcmfmac: brcmf_fw_map_chip_to_name: using
 brcm/brcmfmac43455-sdio.bin for chip 0x004345(17221)
 ↪rev 0x000006
brcmfmac: brcmf_c_preinit_dcmds: Firmware version = wl0:
 Feb 27 2018 03:15:32 version 7.45.154 (r684107 CY)
 ↪FWID 01-4fbe0b04
Bluetooth: Generic Bluetooth SDIO driver ver 0.1

There is no mention at all of the WiFi hardware on the Raspberry Pi within
Oracle’s documentation on the AArch64 release, which Oracle claims was
an oversight. This also appears to be an issue in CentOS, where it is at least
discussed at some length.

Code Density
As 1GB of RAM included on the Pi is constraining, you should have some idea of
the penalty AArch64 imposes.

Below is a script that I’ve used to size all the ELF binaries in Raspbian Linux
running on the original Raspberry Pi, storing this in the file a32.txt:

https://en.wikipedia.org/wiki/Secure_Digital#SDIO_cards
https://wiki.centos.org/SpecialInterestGroup/AltArch/armhfp
https://nullr0ute.com/2018/04/the-raspberry-pi-3-b-in-fedora
https://www.linuxjournal.com

134 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

for x in /bin/*
do [-f "$x"] &&
 case "$(file "$x")" in
 ELF) stat -c %n\ %s "$x";;
 esac
done > a32.txt

Moving this file to Oracle Linux running on the Raspberry Pi Model 3 B+, I run the
following to find the size differences:

while read p s
do [-f "$p"] &&
 case "$(file "$p")" in
 ELF) echo $p $s $(stat -c %s "$p");;
 esac
done < a32.txt | awk '
 {a+=$2; b+=$3; print $1,$2,$3,$3/$2}
END {print a,b,b/a}' > a64.txt

For this small sample of 66 files, I found the results shown in Table 1.

Table 1. Results of Size Differences of 66 Files

Program Raspbian OL7.6 % increase
/bin/bash 912712 971728 1.06466
/bin/cat 30560 70408 2.30393

/bin/chgrp 51084 70944 1.38877
/bin/chmod 46956 70840 1.50865
/bin/chown 51092 71000 1.38965

/bin/cp 104592 204296 1.95327
/bin/cpio 118460 141752 1.19662
/bin/date 83868 70368 0.839033

https://www.linuxjournal.com

135 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

/bin/dd 63424 136456 2.15149
/bin/df 67876 137848 2.03088
/bin/dir 108804 138240 1.27054

/bin/dmesg 59484 78296 1.31625
/bin/echo 26404 69904 2.64748
/bin/false 22304 69880 3.13307

/bin/findmnt 52144 71992 1.38064
/bin/grep 173656 204048 1.17501
/bin/gzip 80476 137400 1.70734

/bin/hostname 13964 69048 4.94471
/bin/journalctl 63204 538448 8.51921

/bin/kill 22020 70432 3.19855
/bin/kmod 128560 203960 1.5865
/bin/less 151392 219472 1.44969

/bin/lessecho 9688 68752 7.09661
/bin/lesskey 14460 70320 4.86307

/bin/ln 46976 70848 1.50817
/bin/login 39112 70032 1.79055

/bin/loginctl 42732 538280 12.5966
/bin/ls 108804 138240 1.27054

/bin/lsblk 67756 138336 2.04168
/bin/mkdir 63472 137080 2.15969

/bin/mknod 55248 71272 1.29004
/bin/mktemp 34668 70288 2.02746

/bin/more 34708 69824 2.01176
/bin/mount 34872 68840 1.97408

/bin/mountpoint 9896 68944 6.96686
/bin/mv 100504 138480 1.37786

/bin/netstat 106676 211912 1.9865
/bin/ping 55720 70208 1.26001
/bin/ps 83624 137000 1.63829

/bin/pwd 26452 70056 2.64842

https://www.linuxjournal.com

136 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

/bin/readlink 34628 70448 2.03442
/bin/rm 51076 71056 1.39118

/bin/rmdir 34628 70072 2.02356
/bin/sed 84100 71904 0.854982

/bin/sleep 26416 69984 2.6493
/bin/stty 59240 70240 1.18569
/bin/su 31016 69008 2.22492

/bin/sync 26424 69912 2.64578
/bin/systemctl 161680 738032 4.56477

/bin/systemd-ask-
password

9948 70000 7.03659

/bin/systemd-
escape

9936 69816 7.02657

/bin/systemd-hwdb 67520 136520 2.02192
/bin/systemd-inhibit 14040 337728 24.0547

/bin/systemd-
machine-id-setup

18128 69912 3.85658

/bin/systemd-notify 9936 69728 7.01771
/bin/systemd-

tmpfiles
50988 202912 3.9796

/bin/systemd-tty-
ask-password-agent

26324 135920 5.16335

/bin/tailf 22288 69488 3.11773
/bin/tar 327644 350288 1.06911

/bin/touch 71584 70640 0.986813
/bin/true 22304 69880 3.13307

/bin/udevadm 395336 469248 1.18696
/bin/umount 22436 68856 3.069
/bin/uname 26416 69928 2.64718

/bin/vdir 108804 138240 1.27054
/bin/wdctl 26408 70256 2.66041

5107652 9795488 1.91781

https://www.linuxjournal.com

137 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

These programs take nearly twice the space in Oracle Linux as they do in Raspbian.
This somewhat explains the CentOS decision to remain on AArch32 with smaller
32-bit binaries. Oracle’s pursuit of AArch64 is likely due to similar platforms that it
supports or may support in the future.

Should Oracle elect to provide a Thumb2 development environment in the same
way that it supports 32-bit x86, then Oracle could produce even smaller binaries
than are found in Raspbian while still running a 64-bit kernel, at some cost to
performance. This assumes that all target platforms support Thumb2; by all
appearances, the Fujitsu A64FX does not.

It might be useful to examine commonly run server dæmons, system libraries and
extract the text/data/bss segment sizes within all of these programs to see greater
detail on the AArch64 penalty paid here. Those with large ARM deployments are
encouraged to do so.

Conclusion
It’s refreshing to have a new Linux distribution where legacy support is slashed
in a way that never would be tolerated within Intel/AMD64 environments. There
is substantial complexity and inertia in the maintenance of the systems of
decades past.

Still, the relative silence in the documentation on questions of (the overlooked
WiFi) hardware support and the legacy Thumb and AArch32 instruction sets is
unsettling. Operating system vendors should be clear on what their products
can and cannot do with the target hardware. While there are issues with
Oracle AArch64 Linux where that clarity is lacking, it must be conceded that
this is a pre-production release, and the desired clarity and supported server-
grade AArch64 target platforms may not yet exist. To reiterate, one possible
hardware target is the Fujitsu A64FX, which designers are asserting as the fastest
processor in the world. Amazon also recently began running ARM workloads
in its EC2 cloud with its Graviton processor, but Gravitons are not expected to
outperform the Fujitsu A64FX, and the relationship between Amazon and Oracle

https://www.youtube.com/watch?v=fHb_L8Ht-hU
https://www.youtube.com/watch?v=fHb_L8Ht-hU
https://www.theregister.co.uk/2018/11/27/amazon_aws_graviton_specs
https://www.linuxjournal.com

138 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

is not warm. Oracle also may be developing its own AArch64 specifically tuned
for Oracle’s database. Oracle previously has maintained SPARC in this capacity,
and continues to dominate the TPC benchmark with it; the company also may
decide to do this with its own ARM processor.

On the subject of the Oracle Database, the absence of any discussion or mention
of it also is a cause for substantial concern on the longevity of the platform.

In any case, Oracle AArch64 Linux likely will be used by many pursuing low-
power, large memory applications. The Raspberry Pi may be able to provide a
development environment for those larger systems. It’s encouraging to see ARM
move into the enterprise space, and the prospect of a legacy-free computing
environment without all the problems (Meltdown), scandals (ME/PSP) and
firmware concerns of Intel is quite refreshing. ◾

Charles Fisher has an electrical engineering degree from the University of Iowa and works as a systems and database administrator for
a Fortune 500 mining and manufacturing corporation.

Resources
• Oracle Linux for ARM Downloads

• Raspberry Pi (Wikipedia)

• Btrfs—the Next Generation Filesystem for Linux

• CentOS and AArch64

• Oracle Linux for Sparc Downloads

• “Fujitsu’s A64FX ARM Chip Waves The HPC Banner High” by Timothy
Prickett Morgan

http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=110120201
https://www.oracle.com/technetwork/server-storage/linux/downloads/oracle-linux-arm-4072846.html
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.oracle.com/technetwork/server-storage/linux/technologies/btrfs-overview-1898045.html
https://wiki.centos.org/SpecialInterestGroup/AltArch/AArch64
https://www.oracle.com/technetwork/server-storage/linux/downloads/oracle-linux-sparc-3665558.html
https://www.nextplatform.com/2018/08/24/fujitsus-a64fx-arm-chip-waves-the-hpc-banner-high
https://www.nextplatform.com/2018/08/24/fujitsus-a64fx-arm-chip-waves-the-hpc-banner-high
https://www.linuxjournal.com

139 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

• R4000 Microprocessor from 1991 (Wikipedia)

• UltraSPARC Microprocessor from 1995 (Wikipedia)

• “ARM Creators Sophie Wilson and Steve Furber, Part Two:
the accidental chip” by Chris Bidmead, The Register

• Acorn Archimedes (Wikipedia)

• Apple Newton (Wikipedia)

• Thumb and Thumb-2 (Wikipedia)

• “RISC instruction sets I have known and disliked” by Jack Whitham

• Conditional Execution (Wikipedia)

• R15/PC register (Wikipedia)

• Types of Flash Memory (Wikipedia)

• “Making flash memory more reliable with 800°C heat pulses”
by Mark Tyson

• Installation of Raspberry Pi 3 Image—Release Notes for Oracle Linux 7
Update 6 (aarch64)

• Btrfs Gotchas

• “ZFS for Linux” by Charles Fisher, LJ, March 2018

• BusyBox

• “Infinite BusyBox with systemd” by Charles Fisher, LJ, March 2015

• BusyBox 1.28.1 Release

• What are the differences between ARMv7-A, ARMv7-R and ARMv7-M?
(arm Developer)

• GNU ARM Embedded Toolchain Downloads (arm Developer)

• armbian firmware

https://en.wikipedia.org/wiki/R4000
https://en.wikipedia.org/wiki/UltraSPARC
https://www.theregister.co.uk/2012/05/03/unsung_heroes_of_tech_arm_creators_sophie_wilson_and_steve_furber
https://www.theregister.co.uk/2012/05/03/unsung_heroes_of_tech_arm_creators_sophie_wilson_and_steve_furber
https://en.wikipedia.org/wiki/Acorn_Archimedes
https://en.wikipedia.org/wiki/Apple_Newton
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://www.jwhitham.org/2016/02/risc-instruction-sets-i-have-known-and.html
https://en.wikipedia.org/wiki/ARM_architecture#Conditional_execution
https://en.wikipedia.org/wiki/ARM_architecture#Registers
https://en.wikipedia.org/wiki/Flash_memory#Write_endurance
https://hexus.net/tech/news/storage/48893-making-flash-memory-reliable-800c-heat-pulses
https://hexus.net/tech/news/storage/48893-making-flash-memory-reliable-800c-heat-pulses
https://docs.oracle.com/cd/E52668_01/F10134/html/ol7-install-pi.html
https://docs.oracle.com/cd/E52668_01/F10134/html/ol7-install-pi.html
https://btrfs.wiki.kernel.org/index.php/Gotchas#ssd_mount_option
https://www.linuxjournal.com/content/zfs-linux
https://busybox.net/
https://www.linuxjournal.com/content/infinite-busybox-systemd
https://busybox.net/downloads/binaries/1.28.1-defconfig-multiarch
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16827.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16827.html
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://github.com/armbian/firmware/tree/master/brcm
https://www.linuxjournal.com

140 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

• SDIO cards (Wikipedia)

• CentOS on ARMv7hl boards

• The Raspberry Pi 3 B+ in Fedora (nullr0ute’s blog)

• Fujitsu A64FX Post-K Supercomputer: World’s Fastest ARM Processor
(YouTube)

• “Amazon’s homegrown 2.3GHz 64-bit Graviton processor was very
nearly an AMD Arm CPU” by Chris Williams, The Register

• SPARC SuperCluster with T3-4 Servers

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://en.wikipedia.org/wiki/Secure_Digital#SDIO_cards
https://wiki.centos.org/SpecialInterestGroup/AltArch/armhfp
https://nullr0ute.com/2018/04/the-raspberry-pi-3-b-in-fedora
https://www.youtube.com/watch?v=fHb_L8Ht-hU
https://www.youtube.com/watch?v=fHb_L8Ht-hU
https://www.theregister.co.uk/2018/11/27/amazon_aws_graviton_specs
https://www.theregister.co.uk/2018/11/27/amazon_aws_graviton_specs
http://www.tpc.org/tpcc/results/tpcc_result_detail.asp?id=110120201
https://www.linuxjournal.com

141 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

PiBox: an Embedded
Systems Journey
Raspberry Pi development with off-the-shelf software is easy by
design. But, how would you use it to build a custom distribution
with cross-compiled applications targeted for distributed media
playback? Michael J. Hammel shares his experience in doing just
that with his PiBox project.

By Michael J. Hammel

About 12 years ago, I started work on a system that was significantly different
from the typical desktop/server systems I’d worked on previously. It was an
embedded quad-core MIPS-based platform developed for general-purpose
in-flight computational processing of radar data. That platform never saw
the light of day, but it started me down a path that I’m still on today: building
systems from scratch. And when I say systems, I mean the entire software stack
from compiler toolchains through distributed end-user applications and into
enclosures and production hardware.

That early work led to a project I started in early 2011 called BeagleBox.
BeagleBox is a custom build system aimed at the BeagleBoard low-cost
TI-based SoC board. The build system focus is on generating a cross-compiler
toolchain that is used to compile bootloaders, the Linux kernel and an initial
root filesystem. For a variety of non-technical reasons, the project switched in
November 2012 to the Raspberry Pi, and the project is now known as PiBox.

PiBox is a generic name that currently encompasses three platforms. The PiBox
Development Platform is the core distribution. It aims to be an easily extendable

https://www.linuxjournal.com

142 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

platform for purpose-driven applications using opkg package management.
The development platform boots into a standard X desktop using Blackbox.
Beyond the UI and network configuration, there is little functionality. The
development platform is just a starting point, but it easily can be extended using
the PiBox build environment.

A collection of packages convert the Development Platform into a prototype
consumer device called the PiBox Media Server. This device provides a simple
UI for navigation to services such as video playback. However, the device also
provides services to distributed PiBox Media Players. The Players are software-
identical to the Server, but they are used specifically to play remote video
sources. Long term, you’ll see the Media Server provide a cental hub for home
automation via the IronMan project and form the platform for a DIY phone based
on the Pi Zero. Components of the the Media Server have been used to create a
kiosk picture and video player running on a Pi Touchscreen.

Figure 1. The default UI for the PiBox developement platform is based on Blackbox.

https://www.linuxjournal.com

143 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

There are three primary goals for PiBox:

1. Be a tool for learning not just the embedded development process but full systems
development.

2. Be easily extensible for purpose-driven applications.

3. Be a prototype consumer device.

Ancillary goals now include learning how to design and produce consumer-grade
enclosures, power management and other hardware-related issues, parts supply and
costing and production issues.

PiBox met these goals with the current release, and the project continues to
evolve by addressing what consumer devices really encompass. This includes
support for intergration of mobile devices, voice command and control and
distributed sensor networks. If you think of Linux as Linus’ answer to freely
available UNIX and Minix, then PiBox would be the answer to building distributed
IoT infrastructure from the ground up.

Media Server and Media Player
The Media Server and Media Player are extensions of the Development Platform.
The goal of the Media systems is to provide distributed media playback in a
closed network, specifically in my family’s travel trailer. We replaced the
TV/DVD with the Media Server, plugging in USB sticks filled with videos. The
server distributes the videos to mobile devices, such as our Android and iOS
tablets, but also to a Media Player. The player holds a Raspberry Pi connected
to a pico projector, all enclosed in a box with audio port exposed. We plug in
an audio splitter to headphones, point the player at the side of our trailer and
watch movies at night while camping.

The server, at the time of this writing, has limited support for Bluetooth devices,
but it will eventually support an array of Bluetooth and BLE (Bluetouth low energy)

https://www.linuxjournal.com

144 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

devices for monitoring sensors. There are many other long term goals for the server,
including voice control, remote management and better support for a wider array of
video formats.

Hardware
The Media Player is a self-contained box intended to run on battery power only.
A Raspberry Pi is connected via HDMI to a handheld projector, a power switch
and a battery. The Media Server contains a Pi connected to a 7-port UUGear USB
hub, each powered through a single power switch connected to an external power
supply. The Server exposes both the HDMI and audio ports, but the HDMI defaults
to audio over HDMI. The HDMI doesn’t have to be connected for the server to
function. The server USB ports are extended from the hub to the case to make
them easy to access.

Figure 2. The Media Server and Media Player have specific hardware specifications.

https://www.linuxjournal.com

145 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

The design for both Server and Player specifies a single power-on switch. The current Player
prototype requires powering the Pi and the projector separately, since the projector is an
off-the-shelf model that would require modification to make it integrate cleanly.

Figure 3. Media Server hardware includes enclosures with exposed USB ports.

https://www.linuxjournal.com

146 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

The Build System
At the root of PiBox is the core build system. There are many build systems for
embedded systems. Many are based on bitbake, a Python-based metabuild system.
Others embrace traditional GNU Make. Metabuilds are simply build systems that wrap
other software builds. A metabuild system might include a toolchain, the Linux kernel
and various pieces of a root filesystem.

PiBox is a metabuild system that wraps four primary components: a cross toolchain
for a chosen hardware platform, a bootloader, the Linux kernel and a root filesystem.
The design goal of the metabuild system is to permit easy modification of the primary
components, extend the primary components or change them to use different tools
and provide a consistent set of targets for building them.

The cross toolchain is built based on Crosstool-NG. For the Raspberry Pi, this includes
the use of a custom glibc from Linaro, the ARM division devoted to improving software
support for ARM devices. It also includes a custom GCC built with hard float support,
allowing applications to take full advantage of the Broadcom processors they support.

PiBox wraps Buildroot and BusyBox to generate a root filesystem. A small number
of custom packages are added, including a standalone network configuration tool
(PiBox Network Config and its associated libpnc library). The root filesystem is
designed to work with both wired Ethernet and WiFi out of the box. The core
build system allows for easy rebuilds when changing the Buildroot configuration or
testing Buildroot packages.

The design of the build system is flexible enough to support the use of a bootloader,
such as Das U-Boot. However, the Raspberry Pi is used with a binary bootloader, also
referred to in this case as firmware, provided through a GitHub repository. PiBox
downloads and unpacks this firmware during the bootloader phase of the build.
However, it easily could be modified to use a bootloader that required compilation.

The top-level Makefile includes files suffixed with .cfg and .mk from the config directory.
The .cfg files provide configuration options that allow changing upstream repositories

https://www.linuxjournal.com

147 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

and build options without having to modify build targets in the .mk files. The goal of the
.mk files is to provide a consistent interface, so that all components are built using the
same set of targets: -get, -unpack, -patch, -config, -pkg and so forth. Most important,
all core components of the build offer -menuconfig targets that allow changing the
underlying tool configuration. All builds are done out of tree to keep build artifacts
seperate from the build system. A -saveconfig target allows saving the changes to
any component into the PiBox source tree. This makes it easier to commit to a local
or upstream repository. A built-in help target explains all available component targets.
Editing and saving a modified Buildroot configuration looks like this:

make buildroot-menuconfig
make buildroot-saveconfig
make buildroot-clobber
make buildroot

PiBox does more than just build each component. The cross toolchain is relocatable.
It can be packaged as an RPM that installs under /opt/rpiTC. The target components
(bootloader, kernel and root filesystem) also are packaged along with scripts for
formatting and populating an SD card. The SD card is used to boot the Raspberry Pi.

The key advantage to the packaging is that the combination of the toolchain and a
staging archive allow cross compiling of applications without having to build the core
development platform. A project with multiple developers deploys the cross build
environment to developer systems. Developers focus on app development instead
of building the core development platform. Template build systems are available
for autoconf projects and for downloading and compiling/packaging third-party
applications to extend the core root filesystem.

Like many Raspberry Pi distributions, PiBox comes with a set of scripts to ease
installation to an SD card. The public releases of the binary distribution includes
these scripts and all files needed by end users wanting to try PiBox without
compiling anything.

https://www.linuxjournal.com

148 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Software Stack
The PiBox Development Platform is a base on which purpose-driven systems can be
built. For the PiBox Media Server and PiBox Media Player, I’ve developed a UI based on
Matchbox, a stacked window manager running on X.org over the framebuffer. Apps
are managed by a dæmon (appmgr) that handles communications between them
and a back-end set of dæmons (piboxd, for example) for system services. A newly
developed API layer (libpibox and libpnc) provides custom interfaces for handling

Figure 4. A small but growing set of library APIs was recently added to the software stack.

https://www.linuxjournal.com

149 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

common tasks, such as network configuration and media sharing.

The Media systems are created from the Development Platform using a collection of
opkg-formatted packages. The packages are built from source repositories using a
cross-compiler environment that relies on the cross toolchain and staging tree from
the Development Platform.

PiBox applications are written in C using GTK+ 2.x and Cairo. They install a
configuration file announcing their presence to the app manager. The app manager
chooses which apps to show and in what order, then displays them on the navigation
page scaled to fit the display. Current apps include a themed analog clock, video
playback, webcam, XMRadio and network configuration, among others.

The Media systems are designed to be used from the primary console. However,
additional functionality is available from a web UI, including a webcam stream and
complete network configuration. The web UI provides user authentication and via
client-side JavaScript mixed with a PHP back end that speaks a custom network-
oriented protocol to PiBox dæmons. This UI recently received the initial stubs of a
RESTful interface allowing a custom-designed Android keyboard to be used to control
the console UI. Android support is still in early development as is a migration to a
node.js REST API for IoT control and home automation.

All repositories are developed using cdtools, a simple bash configuration tool that
allows easy context switching between projects while encouraging a common and
consistent structure for all PiBox-related build systems.

Video Playback
The primary purpose of the Media systems is for server-provided video content
distributed to players. “Players” includes both mobile devices and the custom PiBox
Media Player.

Media sources are intended to be found on USB Flash media sticks. The Raspberry
Pi has its own hardware-accelerated media player, omxplayer. PiBox integrated this

https://www.linuxjournal.com

150 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

as a back-end player to a custom front-end UI component known simply as VideoFE.
VideoFE is configurable to use other players, and it’s been used on development
desktops running xine.

VideoFE presents a list of videos and displays the poster of the current selection.
Video data comes from The Movie DB via its JASON API. The data is retrieved using a
custom Java application called VideoLib. The application runs on a desktop. It scans
a directory tree and does a lookup by filename. The lookup can be customized if the
filename isn’t a good match, and The Movie DB provides alternative options that also
can be selected. Once the directory tree is scanned correctly, the database is saved to
the top of the tree, which should be the top of the media stick.

The UI has a customizable keymap file that provides a consistent interface for all apps.
By default, the Esc key exits an application and returns the user to the navigation
page. The arrow keys move around the navigation page. The design is intended to

Figure 5. VideoFE’s video list, which is a sorted collection from multiple sources, is also searchable.

https://www.linuxjournal.com

151 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

require as few keys as possible. The actual implementation of the Media systems
makes use of a very small FAVI keyboard that is ideal for a variety of PiBox use cases.

Lessons Learned
As a learning tool, PiBox opened my eyes to a wide variety of problems. The first was
the problem of switching hardware platforms easily. Crosstool-NG makes this easy, but
wrapping this inside the PiBox build system made it easy to experiment quickly with
different configurations. This allowed me to switch originally from the BeagleBone to
the Raspberry Pi and recently aided in a quick migration to supporting the Raspberry
Pi 2, which has a slightly different processor configuration. Early versions of PiBox
toolchains also have been used for PowerPC and Intel targets.

During early development, I had to deal with device handling during boot. To
reduce overhead and speed boot times, many embedded systems use mdev instead
of udev for device handling. Decoding mdev events took some work and led to

Figure 6. The console UI is consumer-oriented, with few keystrokes required for navigation.

https://www.linuxjournal.com

152 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 7.
The WebUI supports
user authentication
and provides access
to the webcam.

https://www.linuxjournal.com

153 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

custom scripting to deal with USB device hot plug events, which were critical to
the Media systems.

A related issue invovled removing early boot messages while speeding boot times.
Boot times are still on the order of a minute or more (mostly due to network
setup), but boot messages now are handled by the use of pslplash to show boot

Figure 8. The webcam image can be flipped so the camera can be mounted from above or
below a window.

https://www.linuxjournal.com

154 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

processing. I also had to start X.org very early without starting any clients. This is due
to timing issues that prevent keyboards from operating properly. X is later stopped
and restarted. This circumvents the non-functional keyboard issues without the user
noticing the workaround.

PiBox offers both a console UI-based on GTK+/Cairo and a JavaScript-based interface
based on the Monkey web server and a PHP back end. I originally looked at building
an HTML5 interface (and would still like to in the long run), but WebKit wouldn’t
compile properly, and I didn’t want to waste too much time trying to address that
issue. So I fell back to what I already knew how to do: build a GTK+-based UI.

Cairo presented an estoric problem that proved difficult to isolate. Cairo is used by
GTK+ to paint icons in the navigation page. This code originally was tested on my
Intel-based desktop and worked fine. On the target board, the icons failed to be
displayed. After much trial and error, I discovered that Cairo was unhappy within
non-square images on the ARM board. Making them square fixed the problem. This
adds an odd requirement for app developers when creating the navigation icons
for their apps.

The web UI required me to learn more about JavaScript, a language I enjoy more
now that I understand it a better. Its interaction with back-end PHP is clean and easy
to understand, but creating UIs can require carrying client libraries around from
application to application, much like Java. It does offer the option of setting up
direct connections from the client browser to non-web-based back ends, and that’s
something I find very encouraging.

What I found less encouraging was the use of web-based media through proxies.
The only format that moves natively through http/https is motion jpeg (mjpeg),
and on the Pi, this works only at a relatively low frame rate. Note that this is a USB
webcam, not the onboard camera. I chose to use a webcam due to the relatively
short ribbon cables provided for the onboard camera. The use case for the
webcam is as a backup camera for our trailer. The idea is to allow the camera to be
physically distant from the Pi.

https://www.linuxjournal.com

155 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

Figure 9. pibox-network-config is available in the development platform (above) but takes
on a different appearance in the Media systems (below).

https://www.linuxjournal.com

156 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

PiBox Media systems are designed to reduce user-managed wires. This includes
networking, where WiFi rules. Unfortunately, not all WiFi dongles are created
equal with all versions of the Linux kernel. After many months of trial and error, I
managed to find that the Ralink RT5370 chip provided the most stable experience.
However, support was left in place for the variety of chips I tested. Handling USB
WiFi dongles is done manually, outside of mdev, with the help of USB device IDs
and a custom init script.

While researching WiFi dongles, I also improved the network configuration utility I
wrote from scratch. This GTK+ application provides support for configuring WiFi or
wired static and DHCP connections and also allows configuring the Media Server as a
wireless access point for the closed network in our travel trailer. This utility is available
in the Development Platform, but with GTK+ themes, inherits the look of the custom
UI for the Media systems. The utility comes with a WiFi scanner and also provides the
libpiboxnet library. The library is used by piboxd, a dæmon that handles many
functions including inbound requests from the web UI.

Summary
There are many other issues I covered over the years of PiBox development, including
learning enough Blender to generate a 3D design for a sample enclosure—an experiment
still in need of much refinement. But the design of the build system for the Development
Platform has proven flexible enough for a variety of platforms. Cross-compilation turns
out to be much simpler than I expected once you get a method identified. I use a
common cross.sh script in many of the packages I build to simplify this process. I also
found that the use of cdtools made it possible to create an all-encompassing metabuild
that automates the download and build process for all packages at release time.

Future development plans include integration with remote sensors. I hope to create
my own Iron Man home, with voice commands handled by my Jarvis project. Jarvis is
a proof-of-concept voice-to-text-to-action-to-speech Java project. But the hope is to
have it integrate with a back-end sensor management system, connected through a
PiBox Media Server, to handle control of devices around the home.

https://www.linuxjournal.com

157 | March 2019 | https://www.linuxjournal.com

DEEP
DIVE

This entire project has been a one-man job, and I’m very much interested in others
joining in, even if all they do is fork the project. I’d like to hear how I can improve
the build systems, the Media systems and their UIs and apps. I’ve created as much
documentation as I can on the wiki, and interested developers can follow progress
on my Redmine issue tracker. All code is released as open source and is available
from GitLab.com. ◾

Michael J. Hammel is a Software Engineer for NetApp living with his wife Brinda and two Golden Retrievers in Broomfield, Colorado.
When he isn’t working on embedded systems or other geekery, he likes to camp, walk his dogs around the park, and drink tea with his
wife and revel in the joy of his daughter’s success. He has written more than 100 articles for numerous online and print magazines, and
he’s the author of four books on GIMP, the GNU Image Manipulation Program.

Resources

• The Graphics Muse Development Wiki

• PiBox

• Cdtools

• PiBox on GitLab

• xjarvis

• Michael J. Hammel on GitLab

• “Building a Voice-Controlled Front End to IoT Devices”
by Michael J. Hammel, LJ June 2018

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.graphics-muse.org/wiki/pmwiki.php/RaspberryPi/RaspberryPi
https://www.piboxproject.com/
https://gitlab.com/cdtools/cdtools
https://gitlab.com/groups/pibox
https://gitlab.com/groups/xjarvis
https://gitlab.com/u/mjhammel
https://www.linuxjournal.com/content/building-voice-controlled-front-end-iot-devices
https://www.linuxjournal.com/content/building-voice-controlled-front-end-iot-devices
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

158 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

Text Processing
in Rust
Create handy command-line utilities in Rust.

By Mihalis Tsoukalos

This article is about text processing in Rust, but it also contains a quick introduction
to pattern matching, which can be very handy when working with text.

Strings are a huge subject in Rust, which can be easily realized by the fact that
Rust has two data types for representing strings as well as support for macros for
formatting strings. However, all of this also proves how powerful Rust is in string
and text processing.

Apart from covering some theoretical topics, this article shows how to develop some
handy yet easy-to-implement command-line utilities that let you work with plain-text
files. If you have the time, it’d be great to experiment with the Rust code presented
here, and maybe develop your own utilities.

Rust and Text
Rust supports two data types for working with strings: String and str. The String
type is for working with mutable strings that belong to you, and it has length and a
capacity property. On the other hand, the str type is for working with immutable
strings that you want to pass around. You most likely will see an str variable be used
as &str. Put simply, an str variable is accessed as a reference to some UTF-8 data.
An str variable is usually called a “string slice” or, even simpler, a “slice”. Due to its
nature, you can’t add and remove any data from an existing str variable. Moreover,
if you try to call the capacity() function on an &str variable, you’ll get an error
message similar to the following:

https://www.linuxjournal.com

159 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

error[E0599]: no method named 'capacity' found for type
 ↪'&str' in the current scope

Generally speaking, you’ll want to use an str when you want to pass a string as a
function parameter or when you want to have a read-only version of a string, and then
use a String variable when you want to have a mutable string that you want to own.

The good thing is that a function that accepts &str parameters can also accept
String parameters. (You’ll see such an example in the basicOps.rs program
presented later in this article.) Additionally, Rust supports the char type, which is for
representing single Unicode characters, as well as string literals, which are strings that
begin and end with double quotes.

Finally, Rust supports what is called a byte string. You can define a new byte
string as follows:

let a_byte_string = b"Linux Journal";

unwrap()
You almost certainly cannot write a Rust program without using the unwrap()
function, so let’s take a look at that here. Rust does not have support for null, nil
or Null, and it uses the Option type for representing a value that may or may not
exist. If you’re sure that some Option or Result variable that you want to use has a
value, you can use unwrap() and get that value from the variable.

However, if that value doesn’t exist, your program will panic. Take a look at the
following Rust program, which is saved as unwrap.rs:

use std::net::IpAddr;

fn main() {
 let my_ip = "127.0.0.1";
 let parsed_ip: IpAddr = my_ip.parse().unwrap();

https://www.linuxjournal.com

160 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 println!("{}", parsed_ip);

 let invalid_ip = "727.0.0.1";
 let try_parsed_ip: IpAddr = invalid_ip.parse().unwrap();
 println!("{}", try_parsed_ip);
}

Two main things are happening here. First, as my_ip is a valid IPv4 address,
parse().unwrap() will be successful, and parsed_ip will have a valid value
after the call to unwrap().

However, as invalid_ip is not a valid IPv4 address, the second attempt to call
parse().unwrap() will fail, the program will panic and the second println!()
macro will not be executed. Executing unwrap.rs will verify all these:

$./unwrap
127.0.0.1
thread 'main' panicked at 'called 'Result::unwrap()'
 ↪on an 'Err'
value: AddrParseError(())', libcore/result.rs:945:5
note: Run with 'RUST_BACKTRACE=1' for a backtrace.

This means you should be extra careful when using unwrap() in your Rust programs.
Unfortunately, going into more depth on unwrap() and how to avoid panic situations
is beyond the scope of this article.

The println! and format! Macros
Rust supports macros, including println! and format! that are related to strings.

A Rust macro lets you write code that writes other code, which is also known as
metaprogramming. Although macros look a lot like Rust functions, they have a
fundamental difference from Rust functions: macros can have a variable number of
parameters, whereas the signature of a Rust function must declare its parameters and

https://www.linuxjournal.com

161 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

define the exact type of each one of those function parameters.

As you might already know, the println! macro is used for printing output to the
UNIX standard output, whereas the format! macro, which works in the same way as
println!, returns a new String instead of writing any text to standard output.

The Rust code of macros.rs will try to clarify things:

macro_rules! hello_world{
 () => {
 println!("Hello World!")
 };
}

fn double(a: i32) -> i32 {
 return a + a
}

fn main() {
 // Using the format!() macro
 let my_name = "Mihalis";
 let salute = format!("Hello {}!", my_name);
 println!("{}", salute);

 // Using hello_world
 hello_world!();

 // Using the assert_eq! macro
 assert_eq!(double(12), 24);
 assert_eq!(double(12), 26);
}

What knowledge do you get from macros.rs? First, that macro definitions begin with

https://www.linuxjournal.com

162 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

macro_rules! and can contain other macros in their implementation. Note
that this is a very naïve macro that does nothing really useful. Second, you can
see that format! can be very handy when you want to create your own strings using
your own format. Third, the hello_world macro created earlier should be called as
hello_world!(). And finally, this shows that the assert_eq!() macro can help
you test the correctness of your code.

Compiling and running macros.rs produces the following output:

$./macros
Hello Mihalis!
Hello World!
thread 'main' panicked at 'assertion failed: '(left == right)'
 left: '24',
 right: '26'', macros.rs:22:5
note: Run with 'RUST_BACKTRACE=1' for a backtrace.

Additionally, you can see an advantage of the assert_eq! macro here: when an
assert_eq! macro fails, it also prints the line number and the filename of the
assertion, which can’t be done using a function.

Working with Strings
Now let’s look at how to perform basic text operations in Rust. The Rust code for this
example is saved in basicOp.rs and is the following:

fn accept(s: &str) {
 println!("{}", s);
}

fn main() {
 // Define a str
 let l_j: &str= "Linux Journal";
 // Or

https://www.linuxjournal.com

163 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 let magazine: &'static str = "magazine";
 // Use format! to create a String
 let my_str = format!("Hello {} {}!", l_j, magazine);
 println!("my_str L:{} C:{}", my_str.len(),
 ↪my_str.capacity());

 // String character by character
 for c in my_str.chars() {
 print!("{} ", c);
 }
 println!();

 for (i, c) in my_str.chars().enumerate() {
 print!("{}:{} ", c, i);
 }
 println!();

 // Convert string to number
 let n: &str = "10";
 match n.parse::<i32>() {
 Ok(n) => println!("{} is a number!", n),
 Err(e) => println!("{} is NOT a number!", e),
 }

 let n1: &str = "10.2";
 match n1.parse::<i32>() {
 Ok(n1) => println!("{} is a number!", n1),
 Err(e) => println!("{}: {}", n1, e),
 }

 // accept() works with both str and String
 let my_str = "This is str!";
 let mut my_string = String::from("This is string!");

https://www.linuxjournal.com

164 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 accept(&my_str);
 accept(&my_string);

 // my_string has capacity
 println!("my_string L:{} C:{}", my_string.len(),
 ↪my_string.capacity());
 my_string.push_str("OK?");
 println!("my_string L:{} C:{}", my_string.len(),
 ↪my_string.capacity());

 // Convert String to str
 let s_str: &str = &my_string[..];
 // Convert str to String
 let s_string: String = s_str.to_owned();
 println!("s_string: L:{} C:{}", s_string.len(),
 ↪s_string.capacity());
}

So, first you can see two ways for defining str variables and creating a String
variable using the format! macro. Then, you can see two techniques for iterating
over a string character by character. The second technique also returns an index to
the string that you process. After that, this example shows how to convert a string
into an integer, if it’s possible, with the help of parse::<i32>(). Next, you can see
that the accept() function accepts both an &str and a String parameter even
though its definition mentions an &str parameter. Following that, this shows the
capacity and the length properties of a String variable, which are two different
things. The length of a String is the size of the String, whereas the capacity of a
String is the room that is currently allocated for that String. Finally, you can see
how to convert a String to str and vice versa. Other ways for getting a String
from an &str variable include the use of .to_string(), String::from(),
String::push_str(), format!() and .into().

Executing basicOp.rs generates the following output:

https://www.linuxjournal.com

165 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

$./basicOp
my_str L:29 C:32
H e l l o L i n u x J o u r n a l m a g a z i n e !
H:0 e:1 l:2 l:3 o:4 :5 L:6 i:7 n:8 u:9 x:10 :11 J:12 o:13
 ↪u:14 r:15
n:16 a:17 l:18 :19 m:20 a:21 g:22 a:23 z:24 i:25 n:26 e:27
 ↪!:28
10 is a number!
10.2: invalid digit found in string
This is str!
This is string!
my_string L:15 C:15
my_string L:18 C:30
s_string: L:18 C:18

Finding Palindrome Strings
Now, let’s look at a small utility that checks whether a string is a palindrome.
The string is given as a command-line argument to the program. The logic of
palindrome.rs is found in the implementation of the check_palindrome()
function, which is implemented as follows:

pub fn check_palindrome(input: &str) -> bool {
 if input.len() == 0 {
 return true;
 }
 let mut last = input.len() - 1;
 let mut first = 0;

 let my_vec = input.as_bytes().to_owned();

 while first < last {
 if my_vec[first] != my_vec[last] {
 return false;

https://www.linuxjournal.com

166 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 }

 first +=1;
 last -=1;
 }
 return true;
}

The key point here is that you convert the string to a vector using a call to
as_bytes().to_owned() in order to be able to access it as an array. After that,
you keep processing the input string from both its left and its right side, one
character from each side for as long as both characters are the same or until you
pass the middle of the string. In that case, you are dealing with a palindrome, so
the function returns “true”; otherwise, the function returns “false”.

Executing palindrome.rs with various types of input generates the following
kind of output:

$./palindrome 1
1 is a palindrome!
$./palindrome
Usage: ./palindrome string
$./palindrome abccba
abccba is a palindrome!
$./palindrome abcba
abcba is a palindrome!
$./palindrome acba
acba is not a palindrome!

Pattern Matching
Pattern matching can be very handy, but you should use it with caution, because it
can create nasty bugs in your software. Pattern matching in Rust happens with the
help of the match keyword. A match statement must catch all the possible values of

https://www.linuxjournal.com

167 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

the used variable, so having a default branch at the end of the block is a very common
practice. The default branch is defined with the help of the underscore character,
which is a synonym for “catch all”. In some rare situations, such as when you examine
a condition that can be either true or false, a default branch is not needed. A pattern-
matching block can look like the following:

let salute = match a_name
{
"John" => "Hello John!",
"Jim" => "Hello Boss!",
"Jill" => "Hello Jill!",
_ => "Hello stranger!"
};

What does that block do? It matches one of the three distinct cases, if there is match, or
it goes to the match all cases, which is last. If you want to perform more complex tasks
that require the use of regular expressions, the regex crate might be more appropriate.

A Version of wc in Rust
Now let’s look at the implementation of a simplified version of the wc(1) command-
line utility. The Rust version of the utility will be saved as wc.rs, will not support any
command-line flags, will consider every command-line argument as a file, and it can
process multiple text files. The Rust version of wc.rs is the following:

use std::env;
use std::io::{BufReader, BufRead};
use std::fs::File;

fn main() {
 let mut lines = 0;
 let mut words = 0;
 let mut chars = 0;

https://docs.rs/regex/1.0.2/regex
https://www.linuxjournal.com

168 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 let args: Vec<_> = env::args().collect();
 if args.len() == 1 {
 println!("Usage: {} text_file(s)", args[0]);
 return;
 }

 let n_args = args.len();
 for x in 1..n_args {
 let mut total_lines = 0;
 let mut total_words = 0;
 let mut total_chars = 0;

 let input_path = ::std::env::args().nth(x).unwrap();
 let file = BufReader::new(File::open(&input_path)
↪.unwrap());
 for line in file.lines() {
 let my_line = line.unwrap();
 total_lines = total_lines + 1;
 total_words += my_line.split_whitespace().count();
 total_chars = total_chars + my_line.len() + 1;
 }

 println!("\t{}\t{}\t{}\t{}", total_lines, total_words,
 ↪total_chars, input_path);
 lines += total_lines;
 words += total_words;
 chars += total_chars;
 }

 if n_args-1 != 1 {
 println!("\t{}\t{}\t{}\ttotal", lines, words, chars);
 }
}

https://www.linuxjournal.com

169 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

First, you should know that wc.rs is using buffered input for processing its text files.
Apart from that, the logic of the program is found in the inner for loop that reads
each input file line by line. For each line it reads, it counts the characters and words.
Counting the characters of a line is as simple as calling the len() function. Counting
the words of a line requires splitting the line using split_whitespace() and
counting the number of elements in the generated iterator.

The other thing you should think about is resetting the total_lines, total_words
and total_chars counters after processing a file. The lines, words and chars
variables hold the total number of lines, words and characters read from all
processed text files.

Executing wc.rs generates the following kind of output:

$ rustc wc.rs
$./wc
Usage: ./wc text_file(s)
$./wc wc.rs
 40 124 1114 wc.rs
$./wc wc.rs palindrome.rs
 40 124 1114 wc.rs
 39 104 854 palindrome.rs
 79 228 1968 total
$ wc wc.rs palindrome.rs
 40 124 1114 wc.rs
 39 104 854 palindrome.rs
 79 228 1968 total

The last command executed wc(1) in order to verify the correctness of the
output of wc.rs.

As an exercise, you might try creating a separate function for counting the lines,

https://www.linuxjournal.com

170 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

words and characters of a text file.

Matching Lines That Contain a Given String
In this section, you’ll see how to show the lines of a text file that match a given
string—both the filename and the string will be given as command-line arguments to
the utility, which is named match.rs. Here’s the Rust code for match.rs:

use std::env;
use std::io::{BufReader,BufRead};
use std::fs::File;

fn main() {
let mut total_lines = 0;
 let mut matched_lines = 0;
 let args: Vec<_> = env::args().collect();

if args.len() != 3 {
 println!("{} filename string", args[0]);
 return;
 }

let input_path = ::std::env::args().nth(1).unwrap();
let string_to_match = ::std::env::args().nth(2).unwrap();
let file = BufReader::new(File::open(&input_path).unwrap());
for line in file.lines() {
total_lines += 1;
let my_line = line.unwrap();
if my_line.contains(&string_to_match) {
println!("{}", my_line);
 matched_lines += 1;
}
}

https://www.linuxjournal.com

171 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

println!("Lines processed: {}", total_lines);
println!("Lines matched: {}", matched_lines);
 }

All the dirty work is done by the contains() function that checks whether the line
that is currently being processed contains the desired string. Apart from that, the rest
of the Rust code is pretty trivial.

Building and executing match.rs generates output like this:

$./match tabSpace.rs t2s
fn t2s(input: &str, n: i32) {
 t2s(&input_path, n_space);
Lines processed: 56
Lines matched: 2
$./match tabSpace.rs doesNotExist
Lines processed: 56
Lines matched: 0

Converting between Tabs and Spaces
Next, let’s develop a command-line utility that can convert tabs to spaces in a text file
and vice versa. Each tab is replaced with four space characters and vice versa.

This utility requires at least two command-line parameters: the first one should
indicate whether you want to replace tabs with spaces or the other way around. After
that, you should give the path of at least one text file. The utility will process as many
text files as you want, just like the wc.rs utility presented earlier in this article.

You can find tabSpace.rs’s logic in the following two Rust functions:

fn t2s(input: &str) {
let file = BufReader::new(File::open(&input).unwrap());
for line in file.lines() {

https://www.linuxjournal.com

172 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

 let my_line = line.unwrap();
 let new_line = my_line.replace("\t", " ");
 println!("{}", new_line);
 }
}

fn s2t(input: &str) {
let file = BufReader::new(File::open(&input).unwrap());
for line in file.lines() {
 let my_line = line.unwrap();
 let new_line = my_line.replace(" ", "\t");
 println!("{}", new_line);
 }
}

All the work is done by replace(), which replaces every occurrence of the first
pattern with the second one. The return value of the replace() function is the
altered version of the input string, which is what’s printed on your screen.

Executing tabSpace.rs creates output like the following:

$./tabSpace -t basicOp.rs > spaces.rs
Processing basicOp.rs
$ mv spaces.rs basicOp.rs
$./tabSpace -s basicOp.rs > tabs.rs
Processing basicOp.rs
$./tabSpace -t tabs.rs > spaces.rs
Processing tabs.rs
$ diff spaces.rs basicOp.rs

The previous command verifies the correctness of tabSpace.rs. First, any tabs in
basicOp.rs are converted into spaces and saved as spaces.rs, which afterward
becomes the new basicOps.rs. Then, the spaces of basicOps.rs are converted into

https://www.linuxjournal.com

173 | March 2019 | https://www.linuxjournal.com

TEXT PROCESSING IN RUST

tabs and saved in tabs.rs. Finally, the tabs.rs file is processed, and all of its tabs are
converted into spaces (spaces.rs). The last version of spaces.rs should be exactly the
same as basicOps.rs.

It would be a very interesting exercise to add support for tabs of variable size in
tabSpace.rs. Put simply, the number of spaces of a tab should be a variable that will
be given as a command-line parameter to the utility.

Conclusion
So, is Rust good at text processing and working with text in general? Yes it is!
Additionally, it should be clear that text processing is closely related to file I/O and
(sometimes) to pattern matching and regular expressions.

The only rational way to learn more about text processing in Rust is to experiment on
your own, so don’t waste any more time, and give it a whirl. ◾

Mihalis Tsoukalos is a UNIX administrator and developer, a DBA and mathematician who enjoys technical writing. He is the author of
Go Systems Programming and Mastering Go. You can reach him at http://www.mtsoukalos.eu and @mactsouk.

Resources

• The Rust Programming Language

• Rust Documentation

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.mtsoukalos.eu/
https://www.rust-lang.org/
https://doc.rust-lang.org/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

By Jupyter—Is
This the Future
of Open Science?
Taking the scientific paper to the next level.

By Glyn Moody

In a recent article, I explained why open source is a vital part of
open science. As I pointed out, alongside a massive failure on
the part of funding bodies to make open source a key aspect
of their strategies, there’s also a similar lack of open-source
engagement with the needs and challenges of open science.
There’s not much that the Free Software world can do to
change the priorities of funders. But, a lot can be done on the
other side of things by writing good open-source code that
supports and enhances open science.

People working in science potentially can benefit from every
piece of free software code—the operating systems and apps,
and the tools and libraries—so the better those become, the
more useful they are for scientists. But there’s one open-source
project in particular that already has had a significant impact on
how scientists work—Project Jupyter:

Project Jupyter is a set of open-source software projects
that form the building blocks for interactive and exploratory
computing that is reproducible and multi-language. The main
application offered by Jupyter is the Jupyter Notebook, a

174 | March 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://www.linuxjournal.com/content/open-science-means-open-source-or-least-it-should
https://www.linuxjournal.com/content/open-science-means-open-source-or-least-it-should
https://github.com/jupyter/design/wiki/Jupyter-Logo
https://www.linuxjournal.com

175 | March 2019 | https://www.linuxjournal.com

OPEN SAUCE

web-based interactive computing platform that allows users to author documents that
combine live code, equations, narrative text, interactive dashboard and other rich media.

Project Jupyter was spun-off from IPython in 2014 by Fernando Pérez. Although
it began as an environment for programming Python, its ambitions have grown
considerably. Today, dozens of Jupyter kernels exist that allow other languages to be
used. Indeed, the project itself speaks of supporting “interactive data science and
scientific computing across all programming languages”. As well as this broad-based
support for programming languages, Jupyter is noteworthy for its power. It enables
users to create and share documents that contain live code, equations, visualizations
and narrative text. Uses include data cleaning and transformation, numerical
simulation, statistical modeling, data visualization and machine learning.

In a way, Project Jupyter is the ultimate scientific tool, since it can be used in any
discipline and for multiple purposes. As an article in the Atlantic rightly put it, it also
can be thought of as the scientific paper taken to the next level by exploiting the
possibilities of digital technology. A key aspect is that it’s interactive—readers can use
the embedded code to explore the data and carry out limitless “what ifs”. It’s such an
obvious idea, you may wonder why it hasn’t been done before. And the answer is that
it has, notably in the form of Mathematica from Wolfram Research.

Mathematica is an innovative and powerful program with one huge flaw: it’s
proprietary. As such, it suffers all the usual downsides, one of which more or less
disqualifies it for science: you can’t check the code. That means you don’t really
know why it produces the results it does; you just have to take it on trust. That’s not
science; that’s voodoo.

Its closed-source nature means that Mathematica can’t tap into the community of
users in the same way open-source projects can. Whatever advantages Mathematica
once had, it’s only a matter of time before open-source alternatives like Jupyter
surpass it. Indeed, it’s interesting that the Google Trends comparison of searches
for Mathematica and searches for Jupyter show that interest in the latter is rising,
while Google searches for the former are falling. It’s an inexact metric, of course, but

https://jupyter.org/index.html
https://ipython.org/
https://speakerdeck.com/fperez/project-jupyter
https://jupyter.org/about
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.wolfram.com/mathematica/
https://www.linuxjournal.com

176 | March 2019 | https://www.linuxjournal.com

OPEN SAUCE

the overall trends are clear: Mathematica, like Microsoft Windows, is the past, and
Jupyter, like GNU/Linux, is the future.

It’s not just about the familiar dynamics of open-source development. There’s a key
reason why Jupyter has beaten Mathematica, as the academic Paul Romer explained
in a perceptive post:

Mathematica failed, despite technical accomplishments, because the norms of its
developers clashed so obviously with the norms of its intended users. Jupyter is
succeeding because the norms of the community that is developing it are aligned with
the norms of its users.

As well as its culture, there’s another aspect of Jupyter that makes it a perfect
fit for open science. On the page listing dozens of Jupyter notebooks—all freely
accessible—there’s a section titled “Reproducible academic publications”:

This section contains academic papers that have been published in the peer-reviewed
literature or pre-print sites such as the ArXiv that include one or more notebooks that
enable (even if only partially) readers to reproduce the results of the publication.

Coupled with the transparency of the underlying code, this ability for anybody to
check the logic and results of a publication is a real breakthrough in open science. At
the moment, most academic papers can be read only superficially. In theory, anyone
could set about reproducing the final conclusions—at least, provided the relevant
datasets are freely available. Few will take the trouble to do so though, because there
are no academic incentives to expend all that time and energy. With papers published
not as static documents, but as dynamic Jupyter notebooks with full open datasets, it
is possible to check the results properly, as well as to plug in other datasets or tweak
the underlying assumptions. In this way, Jupyter notebooks are the perfect marriage
of open source, open access and open data. This is exactly how open science should
work, but until now almost never does.

The power and flexibility of the Jupyter environment make it a strong foundation

https://paulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper
https://paulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks#reproducible-academic-publications
https://www.linuxjournal.com

177 | March 2019 | https://www.linuxjournal.com

OPEN SAUCE

for open-ended experimentation of the kind the Free Software community relishes.
Moreover, coding in this domain could have a major impact on scientists using the
notebook format and on the science they produce. That combination of satisfying
intellectual challenge with real-world practical benefits makes it a perfect candidate
for open-source coders looking for new and meaningful challenges. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

Subscr ibe .L inuxJourna l . com

https://subscribe.linuxjournal.com

