
Testing Code with
Python’s pytest

Time for Net
Giants to Pay Up

Game Review:
Lamplight City

Why Your Server Monitoring Sucks • The Evils of CloudWatch
How-To: Resource-Friendly Monitoring Solution

MONITORING

ISSUE 292 | NOVEMBER 2018
www.linuxjournal.com

Since 1994: The original magazine of the Linux community

http://www.linuxjournal.com

CONTENTS NOVEMBER 2018
ISSUE 292

2 | November 2018 | http://www.linuxjournal.com

85 Why Your Server
Monitoring (Still) Sucks
by Mike Julian
Five observations about why your server monitoring
still stinks by a monitoring specialist-turned-consultant.

96 CloudWatch Is of the Devil,
but I Must Use It
by Corey Quinn
Let’s talk about Amazon CloudWatch.

104 Bare-Bones Monitoring
with Monit and RRDtool
by Andy Carlson
How to provide robust monitoring to low-end systems.

114 How-To: Implementing a
Real-Time Syslog Shipper
for Your Terminal
by Fabien Wernli
Ever wondered how to tail -F /var/log/messages from
multiple servers at once? Read on.

130 Taking System Monitoring
to the Next Level: an Interview
with Scalyr CEO Steve Newman
by Petros Koutoupis
As computing ecosystems become more complex,
monitoring and analyzing those often disconnected
moving parts becomes increasingly challenging.

84 DEEP DIVE: Monitoring

http://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | November 2018 | http://www.linuxjournal.com

6 The Monitoring Issue
by Bryan Lunduke

10 From the Editor—Doc Searls
An Immodest Proposal for the Music Industry

19 Letters

 UPFRONT
27 What’s Your System’s Uptime

by Ricardo Fraile

33 Patreon and Linux Journal

34 Getting Started with Scilab
by Joey Bernard

43 FOSS Project Spotlight: BlueK8s
by Tom Phelan

48 Lessons in Vendor Lock-in: Shaving
by Kyle Rankin

51 Reality 2.0: a Linux Journal Podcast

52 News Briefs

 COLUMNS
55 Kyle Rankin’s Hack and /

Schedule One-Time Commands with the UNIX at Tool

59 Reuven M. Lerner’s At the Forge
Testing Your Code with Python’s pytest

68 Dave Taylor’s Work the Shell
Roman Numerals and Bash

74 Zack Brown’s diff -u
What’s New in Kernel Development

177 Glyn Moody’s Open Sauce
Time for Net Giants to Pay Fairly for the Open Source on Which They Depend

http://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: http://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at http://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
http://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-281-944-5188.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: http://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to
in-depth stories featured on http://www.linuxjournal.com.
Subscribe for free today: http://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | November 2018 | http://www.linuxjournal.com

 ARTICLES
138 Review: the Dell XPS 13 Developer Edition Laptop

by Petros Koutoupis
A look at Dell’s thin and sleek XPS 13 Developer Edition laptop that now ships with
Ubuntu 18.04 LTS pre-installed.

151 Chrome OS Stable Channel Gets Linux Apps
by Philip Raymond
How to get started with Linux Apps for Chromebooks.

158 About ncurses Colors
by Jim Hall
Why does ncurses support only eight colors?

170 Game Review: Lamplight City
by Patrick Whelan
A well lit look into Grundislav Game’s latest release.

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
http://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Aaron Chantrill, Bellingham Linux Users Group;
Lawrence D’Oliveiro, Waikato Linux Users Group; Chris Ebenezer, Silicon Corridor Linux User Group;

David Egts, Akron Linux Users Group; Michael Fox, Peterborough Linux User Group;
Braddock Gaskill, San Gabriel Valley Linux Users’ Group; Roy Lindauer, Reno Linux Users Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com

Contact: Publisher Carlie Fairchild
Phone: +1-281-944-5188

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | November 2018 | http://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://blug.org/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
http://www.linuxjournal.com/subscribe

6 | November 2018 | http://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...and
current Deputy Editor of Linux
Journal as well as host of the
(aptly named) Lunduke Show.

In 1935, Austrian physicist, Erwin Schrödinger, still flying
high after his Nobel Prize win from two years earlier, created
a simple thought experiment.

It ran something like this:

If you have a file server, you cannot know if that server
is up or down...until you check on it. Thus, until you use
it, a file server is—in a sense—both up and down. At the
same time.

This little brain teaser became known as Schrödinger’s
File Server, and it’s regarded as the first known critical
research on the intersection of Systems Administration
and Quantum Superposition. (Though, why Erwin chose,
specifically, to use a “file server” as an example remains
a bit of a mystery—as the experiment works equally well
with any type of server. It’s like, we get it, Erwin. You
have a nice NAS. Get over it.)

...

Okay, perhaps it didn’t go exactly like that. But I’m confident
it would have...you know...had good old Erwin had a nice
Network Attached Storage server instead of a cat.

THE
MONITORING
ISSUE

http://www.linuxjournal.com

7 | November 2018 | http://www.linuxjournal.com

THE MONITORING ISSUE

Regardless, the lessons from that experiment certainly hold true for servers.
If you haven’t checked on your server recently, how can you be truly sure it’s
running properly? Heck, it might not even be running at all!

Monitoring a server—to be notified when problems occur or, even better, when
problems look like they are about to occur—seems, at first blush, to be a simple
task. Write a script to ping a server, then email me when the ping times out.
Run that script every few minutes and, shazam, we’ve got a server monitoring
solution! Easy-peasy, time for lunch!

Whoah, there! Not so fast!

That server monitoring solution right there? It stinks. It’s fragile. It gives you
very little information (other than the results of a ping). Even for administering
your own home server, that’s barely enough information and monitoring to keep
things running smoothly.

Even if you have a more robust solution in place, odds are there are significant
shortcomings and problems with it. Luckily, Linux Journal has your back—
this issue is chock full of advice, tips and tricks for how to keep your servers
effectively monitored.

You know, so you’re not just guessing of the cat is still alive in there.

Mike Julian (author of O’Reilly’s Practical Monitoring) goes into detail on a
bunch of the ways your monitoring solution needs serious work in his adorably
titled “Why Your Server Monitoring (Still) Sucks” article.

We continue “telling it like it is” with Corey Quinn’s treatise on Amazon’s
CloudWatch, “CloudWatch Is of the Devil, but I Must Use It”. Seriously, Corey,
tell us how you really feel.

With our cathartic, venting session behind us, we’ve got a detailed, hands-on
walk-through of how to use Monit (an open-source process supervisor for Linux)
coupled with RRDtool (a GPL’d tool for capturing data over long periods of time,

http://www.linuxjournal.com

8 | November 2018 | http://www.linuxjournal.com

THE MONITORING ISSUE

such as from shell scripts, and graphing it) to monitor your server in a fairly
simple, and very open-source, way.

Then, get this, we’ve got a sysadmin from the Computing Centre of the National
Institute of Nuclear Physics and Particle Physics in France (Fabien Wernli) —
seriously, how cool is that?—walking us through how to create a site-wide,
low-latency (we’re talking sub-millisecond here) log infrastructure.

Round that out with an interview with Steve Newman (one of the folks who
created Writely, which you might know as Google Docs, following Google’s
acquisition in 2006) on his company, Scalyr, which handles server monitoring
and log management—and you’ve got more server monitoring information than
you can shake a stick at.

Or, you can go back to guessing if the cat is still alive. That’s fun too. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

Thanks to Sponsors Linode and Pulseway
for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

Cloud Hosting
for You.

High performance SSD Linux servers for all of your infrastructure needs.

www.linode.com

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
http://www.linode.com
http://www.pulseway.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

10 | November 2018 | http://www.linuxjournal.com

An Immodest
Proposal for the
Music Industry
How music listeners can fill the industry’s
“value gap”.

From the 1940s to the 1960s, countless millions of people
would put a dime in a jukebox to have a single piece of music
played for them, one time. If they wanted to hear it again, or
to play another song, they’d put in another dime.

In today’s music business, companies such as Spotify, Apple
and Pandora pay fractions of a penny to stream songs to

https://en.wikipedia.org/wiki/Jukebox
http://www.linuxjournal.com

11 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

listeners. While this is a big business that continues to become bigger, it fails to cover
what the music industry calls a “value gap”.

They have an idea for filling that gap. So do I. The difference is that mine can make
them more money, with a strong hint from the old jukebox business.

For background, let’s start with the graph shown in Figure 1 from the IFPI’s Global
Music Report 2018.

You can see why IFPI no longer gives its full name: International Federation of
the Phonographic Industry. That phonographic stuff is what they now call
“physical”. And you see where that’s going (or mostly gone). You also can see
that what once threatened the industry—“digital”—now accounts for most of
its rebound (Figure 2).

The graphic shown in Figure 2 is also a call-out from the first. Beside it is this text:
“Before seeing a return to growth in 2015, the global recording industry lost nearly
40% in revenues from 1999 to 2014.”

Figure 1. Global Music Report 2018

http://www.ifpi.org/downloads/GMR2018.pdf
http://www.ifpi.org/downloads/GMR2018.pdf
http://ifpi.org/
http://www.linuxjournal.com

12 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

Later, the report says:

However, significant challenges need to be overcome if the industry is going
to move to sustainable growth. The whole music sector has united in its effort
to fix the fundamental flaw in today’s music market, known as the “value gap”,
where fair revenues are not being returned to those who are creating and
investing in music.

They want to solve this by lobbying: “The value gap is now the industry’s single highest
legislative priority as it seeks to create a level playing field for the digital market and
secure the future of the industry.” This has worked before. Revenues from streaming and
performance rights owe a lot to royalty and copyright rates and regulations guided by the
industry. (In the early 2000s, I covered this like a rug in Linux Journal. See here.)

Figure 2. Global
Recorded Music
Revenues by Segment
(2016)

https://www.linuxjournal.com/search/node?keys=searls+radio
http://www.linuxjournal.com

13 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

But, there’s another way to fill that gap: on the listening side. You can see a hint in
that direction from growth in live performance revenues. According to Statista, live
music industry revenue:

...will grow from 9.28 billion U.S. dollars in 2015 to 11.99 billion in 2021. Of
the revenue generated in 2016, over two billion U.S. dollars was generated
in sponsorship, and a further 7.4 billion U.S. dollars came in ticket sales. The
industry is expected to grow further in the coming years as the compound
annual growth rate for live music ticket sales is estimated at 5.23 percent
between 2015 and 2020.

According to a July 16, 2018, post in Pollstar:

There is perhaps no better indicator of a robust 2018 live market than
Pollstar’s Mid-Year Top 50 Worldwide Tours chart. This year’s survey saw
a 12% jump in total gross from last year’s $1.97 billion to a record-setting
$2.21 billion—a $240 million increase. It’s the chart’s biggest rise since
2015–16...

Concert promoters also are raising prices. Says a July 9, 2018, report by ABC News:

The average price of a concert ticket during the first six months of the year
was $46.69—4.2 percent higher than the average cost of a ticket for the same
period last year, according to the latest figures from music industry magazine
Pollstar. That price is almost 7 percent higher than the average for all of 2000,
and an even more startling 43 percent increase over what concert tickets cost
just three years ago, according to Pollstar.

That same report says sales are going down: a market signal that the prices are too
high. But hey, people are clearly willing to pay a lot for live music and a participatory
experience. This is an important clue.

Participation requires good signaling from both sides of the marketplace. So let’s look
at the demand side, shown in Figure 3, starting with what the streaming services pay
to play us a tune.

https://www.statista.com/statistics/491884/live-music-revenue-usa
https://www.pollstar.com/article/2018-mid-year-special-features-top-tours-ticket-sales-business-analysis-135890
https://abcnews.go.com/Business/story?id=87981&page=1
http://www.linuxjournal.com

14 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

To make that clearer, the top three streamers pay between 13.4% (Pandora) and
78.3% of a penny ($.01) to play you a song.

SiriusXM pays (it says here) “19.1% of the price of all audio packages which
include music channels”. That means the $209.76 I paid last August for my SiriusXM
subscription sent $40.01 to the rights-holders of all the music played on all the
SiriusXM channels for my account over the following year, whether I listened to any
music or not. (And mostly I listen to non-music channels.)

YouTube is another special case. The 2018 IFPI report says, “From publicly available

Figure 3. What the Streaming Services Pay to Play a Tune (from Trichordist)

https://www.siriusxm.com/usmusicroyalty
https://thetrichordist.com/2018/01/15/2017-streaming-price-bible-spotify-per-stream-rates-drop-9-apple-music-gains-marketshare-of-both-plays-and-overall-revenue
http://www.linuxjournal.com

15 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

data, IFPI estimates that Spotify paid record companies US$20 per user in 2015, the
last year of available data. By contrast, it is estimated that YouTube returned less than
US$1 for each music user.” That’s a big part of the “value gap”.

Some of those rates are negotiated, others are set by regulation, and most are
informed—one way or another—by both.

In no case, however, does the music listener pay for digital music on the jukebox
model: with cash on a per-listen, per-song basis. (Note that a dime in 1960 was more
than 100x what a streamer pays for the right to play a song for somebody.)

So that’s my proposal: create an easy way for any of us to pay what we want
for the music we hear. This will give music lovers their own way to close the value
gap—and then some.

As it happens, an easy way to do this was proposed by ProjectVRM (which I run at
Harvard’s Berkman Klein Center) way back in 2009. It’s called EmanciPay, and here is
how it is described on the project wiki:

Simply put, EmanciPay makes it easy for anybody to pay (or offer to pay) —

1. as much as they like

2. however they like

3. for whatever they like

on their own terms

— or at least to start with that full set of options, and to work out differences with sellers
easily and with minimal friction.

EmanciPay turns consumers (aka users) into customers by giving them a pricing gun
(something which in the past only sellers used) and their own means to make offers, to
pay outright, and to escrow the intention to pay when price and other requirements are

https://blogs.harvard.edu/doc/2010/07/19/emancipay
http://blogs.harvard.edu/vrm
https://cyber.harvard.edu/
https://cyber.harvard.edu/projectvrm/EmanciPay
http://www.linuxjournal.com

16 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

met. Payments themselves can also be escrowed.

In slightly more technical terms, EmanciPay is a payment framework for customers
operating with full agency in the open marketplace. It operates on open protocols and
standards, so it can be used by any buyer, seller or intermediary...

So, as currently planned, EmanciPay would —

1. Provide a single and easy way that consumers of “content” can become
customers of it. In the current system—which isn’t one—every artist, every
musical group, every public radio and TV station, has his, her or its own way of
taking in contributions from those who appreciate the work. This can be arduous
and time-consuming for everybody involved. (Imagine trying to pay separately
every musical artist you like, for all your enjoyment of each artist’s work.) What
EmanciPay proposes, however, is not a replacement for existing systems, but a
new system that can supplement existing fund-raising systems—one that can soak
up much of today’s MLOTT: Money Left On The Table.

2. Provide ways for individuals to look back through their media usage histories,
inform themselves about what they have been enjoying, and to determine how
much it is worth to them. The Copyright Arbitration Royalty Panel (CARP), and
later the Copyright Royalty Board (CRB), both came up with “rates and terms
that would have been negotiated in the marketplace between a willing buyer and
a willing seller”—language that first appeared in the 1995 Digital Performance
Royalty Act (DPRA), and was tweaked in 1998 by the Digital Millennium Copyright
Act (DMCA), under which both the CARP and the CRB operated. The rates they
came up with peaked at $.0001 per “performance” (a song or recording), per
listener. EmanciPay creates the “willing buyer” that the DPRA thought wouldn’t
exist.

3. Stigmatize non-payment for worthwhile media goods. This is where “social” will
finally come to be something more than yet another tech buzzmodifier.

All these require micro-accounting, not micro-payments. In fact micro-accounting
can inform ordinary payments that can be made in clever new ways that should satisfy

http://www.linuxjournal.com

17 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

everybody with an interest in seeing artists compensated fairly for their work. An
individual listener, for example, can say “I want to pay one cent for every song I hear on
the radio”, and “I’ll send SoundExchange a lump sum of all the pennies I wish to pay for
songs I hear over the course of a year, along with an accounting of what artists and songs
I’ve listened to”—and leave dispersal of those totaled pennies up to the kind of agency
that likes, and can be trusted, to do that kind of thing.

Similar systems can also be put in place for readers of newspapers, blogs and other
journals. What’s important is that the control is in the hands of the individual, and that
the accounting and dispersal systems work the same way for everybody.

I also proposed this earlier in “EmanciPay: A Content Monetization Plan for
Newspapers”, and later in “An Easy Way to Pay for Journalism, Music and
Everything Else We Like”. In the first of those, I wrote:

Think of EmanciPay as a way to unburden sellers of the need to keep trying to control
markets that are beyond their control anyway. Think of it as a way that “free market”
can mean more than “your choice of captor”. Think of it as a way that “customer
relationships” can be worthy of the label because both sides are carrying their ends of the
relationship burden—rather than the sellers’ side carrying the whole thing.

It’ll be fun to start doing that in the music industry.

A number of developments make the opportunity ripe now:

1. The music industry is far less scattered and conflicted about its nature (digital
now) and future (gotta make up that value gap) than it ever was in the past.

2. Former enemies can be friends. For example, open source and the music industry
have both won, and many aligned incentives can be found between them.

3. Music listeners are clearly willing to pay value for value. We just need to create the
ways. And it shouldn’t be hard. (Especially for Linux Journal readers.)

4. The jukebox and live performance examples both suggest that people shouldn’t

https://www.soundexchange.com/
http://blogs.harvard.edu/vrm/2009/05/28/emancipay-a-content-monetization-plan-for-newspapers
http://blogs.harvard.edu/vrm/2009/05/28/emancipay-a-content-monetization-plan-for-newspapers
https://www.linuxjournal.com/content/easy-way-pay-journalism-music-and-everything-else-we
https://www.linuxjournal.com/content/easy-way-pay-journalism-music-and-everything-else-we
http://www.linuxjournal.com

18 | November 2018 | http://www.linuxjournal.com

FROM THE EDITOR

have a problem saying “I’ll be glad to set up a way to pay one cent every time I hear
music I like.”

5. Apple just bought Shazam, which is a way to identify music people hear. That kind
of functionality can be brought into standard ways people can pay for music they
passively hear (for example, in a restaurant or at parties) and like.

6. We’ve long needed a standards-based approach to tipping artists—or anybody—
with maximal ease and minimal friction. One can be crafted out of work on
EmanciPay.

While most of my usual appeals in Linux Journal are to the hackers among us, this
appeal is mostly to my friends (old and new) in the music industry. They have the
connections, the talent, the legal smarts, the money and the motivation required to
make this thing work.

So let’s bring the people who love music into the marketplace as willing buyers. And
let’s do it by standardizing simple ways people can, by routine or impulse, be real
customers of music and not just passive consumers (or worse, what the industry used
to call pirates). Let’s also create new ways, beyond payments alone, that artists and
music lovers can signal each other, and have all kinds of creative fun.

The time is right. Let’s not let the opportunity pass. ◾

Note: Jukebox image by Davide Cavalli [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)],
via Wikimedia Commons.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://creativecommons.org/licenses/by/3.0
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
https://creativecommons.org/licenses/by/3.0)%5D

19 | November 2018 | http://www.linuxjournal.com

LETTERS

My Project Using Project Fi Data-Only SIMs
I’ve been a Linux Journal reader for years. Thanks to Shawn Powers for his recent
article on Project Fi in the July 2018 issue. I thought he might be interested in my
project using them: https://journal.highlandsolutions.com/my-car-has-an-email-
address-b5443afc84ec.

—Mark Snyder

Shawn Powers replies: Mark, that’s a really cool idea! We keep track of each other
with a combination of Automatic and Life360, but the idea of a data-only connection
to the car is genius!

More Regex
Thanks to Shawn Powers for his article on globbing and regex in the September
2018 issue. I enjoyed reading it and learned a few things. Please do write more about
regex. Thanks again.

—Steve

Shawn Powers replies: Steve, I’ll be honest, RegEx still blows my mind. I force
myself to stay familiar with the basics so I can use it when needed, but anything more
advanced usually requires me googling and head-scratching. If you become a RegEx
superhero, perhaps consider contributing an article!

SOLID, Inrupt and PODs
I just leaned about these topics from a Fast Company article on Tim Berners-Lee and
his startup Inrupt.

Can you please publish more about this in LJ?

I’m kinda surprised that you haven’t presented anything yourself, given that my
interpretation that some of your editorials are in high alignment with the concepts put
forth of my currently cursory understanding of SOLID and POD.

https://www.linuxjournal.com/content/look-googles-project-fi
https://www.linuxjournal.com/content/look-googles-project-fi
https://journal.highlandsolutions.com/my-car-has-an-email-address-b5443afc84ec
https://journal.highlandsolutions.com/my-car-has-an-email-address-b5443afc84ec
https://www.linuxjournal.com/content/globbing-and-regex-so-similar-so-different
http://www.linuxjournal.com

20 | November 2018 | http://www.linuxjournal.com

LETTERS

I look forward to LJ contributors shining a light on this most hopeful technology
news, especially given the skewering of Democracy we’re going through at the hands
of huge corporations taking over more and more of our lives and OUR government.

—Greg

Doc Searls replies: Thanks, Greg.

As you may know, I’ve led ProjectVRM at Harvard’s Berkman Klein Center for
the past 12 years, encouraging exactly the kind of things Tim and friends hope
to make happen with Solid and Inrupt. In fact, both Solid and Inrupt are listed on
ProjectVRM’s Developments page, along with many dozens of other developers
doing very similar work.

Since I want to encourage all of those developers, I’ve gone out of my way not to
favor any of them. But I’m not the only writer here at Linux Journal, and now is a good
time for somebody to take a look at the whole list and do a summary report. So stay
tuned for that, and thanks again!

Re: Amazon Pricing
I just read Doc Searls’ article on Amazon pricing in the October 2018 issue, and I
too have noticed that the pricing seems arbitrary and seems to change at random. I
frequently will look at something and go back later to find the price has increased or
decreased slightly. I now write down the prices of items if I am going to look at them
again later. This includes books, tools, electronics and other things.

I find something else that Amazon does even more annoying. I will try searching for
something using a generic term, say “drill press”. Amazon will present me with a list
of drill presses that omits some of the leading manufacturers. The manufacturer I
want won’t even be listed in the list of manufacturers on the left side of the screen.
However, if I type in the manufacturer I want or the manufacturer’s model number,
all of a sudden, the listing will change. I have also noticed that I have to be careful to
specify the exact model number and version of something I am looking for, otherwise

http://blogs.harvard.edu/vrm
https://cyber.harvard.edu/
https://cyber.harvard.edu/projectvrm/VRM_Development_Work
https://www.linuxjournal.com/content/shall-we-study-amazons-pricing-together
http://www.linuxjournal.com

21 | November 2018 | http://www.linuxjournal.com

LETTERS

Amazon will show me something older. I was searching for something a few weeks
ago, and I knew there was a new version of the tool out, but Amazon wouldn’t
show it to me. Finally, I went to the manufacturer’s website and got the exact
model number and version for the product. When I put this into Amazon, the item
I wanted finally appeared. I’m thinking that Amazon was trying to clear out its old
inventory at my expense.

Amazon needs to start being a little more honest with its customers, or we will soon
be shopping somewhere else.

Keep up the good work!

—Phil Hegge

More Comments on Doc’s Amazon Pricing Editorial
I use amazon.com. Although I am living in Europe, I go back and forth between the US
and Europe. Generally, I read in English, so I prefer amazon.com instead of amazon.fr
for books, etc. I often look at Amazon from Europe, not only from the US.

Below are some comments that may explain, in part, why Doc Searls finds different
prices for the same item at Amazon. My comments are all related to books (including
the Kindle versions); I don’t have enough experience with non-book purchases at
Amazon to comment on those.

I have found that when I search amazon.com without logging in to Amazon,
particularly when I am in Europe, I often get one price. Then, when I log in, the
price has changed. I understand that this is because, when you are not logged
in to Amazon, Amazon uses your IP address to figure out where you are. Book
publishers/distributors have divided up the world, and, as I understand it, for
English language books sold by Amazon in my part of Europe, those books are
from British book publishers/distributors. On the other hand, when I log in to
amazon.com, I am considered to be in the US, so the English language books are
handled by US book publishers/distributors. There are clear differences in price for

http://www.linuxjournal.com

22 | November 2018 | http://www.linuxjournal.com

LETTERS

the “same” book depending on the publisher/distributor (Amazon suggests that it
is the publishers/distributors who set the prices), which may explain some of the
differences in pricing that Doc Searls has seen. I know from previous editorials
that Doc Searls travels quite a bit. Perhaps some of his test cases used different IP
addresses associated with different publishers/distributors?

Depending on whether you use a VPN, you also may see some of this because the
other end of the VPN connects to the internet in various countries. Therefore, the IP
address that Amazon sees may be different from time to time. And, as I mentioned
above, the book price may vary depending on IP address, because Amazon associates
the IP address with different publishers/distributors. Note that I do not (yet) use a
VPN, but I am hypothesizing about the effect of using a VPN vis-à-vis Amazon.

The difference between being logged in and not being logged in also affects
availability. I don’t recall the precise example, but there was one time when the
Kindle version of the book I wanted was available when I was not logged in. But
when I logged in, the Kindle version was not available. Again, a difference between
publishers/distributors.

One situation where I have seen the price change for a given book is when I am not
logged in, using the same browser, but I look at it on different days. For example, if
there is a book I might buy, I may hold it in a tab in my browser for quite some time
(even weeks). Then, when I return to this tab, perhaps ready to buy, and I click on
the “refresh” button, the screen is updated, which sometimes (not always) results in
a change in price. This change (increase or decrease) is simply a function of the date
because I am using the same browser and the same IP address.

These are some suggested explanations for why Doc Searls may have seen different
book prices with Amazon. However, I don’t mean to suggest that all of the differences
mentioned in Doc’s editorial are related to the reasons in my comments. It is quite
possible that Doc’s explanations for the differences also cover many cases.

—J.

http://www.linuxjournal.com

23 | November 2018 | http://www.linuxjournal.com

LETTERS

Doc Searls replies: Thanks, J. Yours is an interesting and fully helpful case in
point—or several points, all well made and taken.

What matters most is that Amazon remains, like so many other large and
proprietary systems we depend on, a mess of opacities, on purpose. Thus, in
spite of all the good Amazon does, one can’t help sensing we are each being
taken advantage of, in ways we’ll never know, much of the time.

I believe the only solution to this problem in the long run is to increase agency—
the power to act with full effect in the world—on the individual’s side, in ways
that are standard for all of us. In fact, aside from my work here at Linux Journal,
that’s my main mission in life.

System76
I just read Rob Hansen’s review of the System76 Onyx Pro laptop in the
October 2018 issue. I own a Meerkat desktop system from System76. It’s based
on Intel’s NUC. I’m running POP_OS after running Ubuntu.

My Linux box is a workhorse. It takes whatever I throw at it with elan. I’ve been
mostly Linux since 2004, and this version is really sweet. I’m a middle school
computer teacher, so that’s all Chromebooks. Accordingly, I have the third
iteration of the Pixelbook. It is also a workhorse. Over time, I’ve realized that the
OS doesn’t matter as long as I can do what I want to do. Linux just makes that
more probable.

—Ron Smith

Rob Hansen replies: With respect to “doing what you want to do”, I’m overjoyed
at how much things have changed since I first started using Linux in 1996. I can
honestly say that not even work has me tied to Windows anymore. It used to be that
I was dependent on Windows for Skype to talk to remote team members, Outlook
for syncing my calendar with my office, and many more. In the last five years, all of
those have migrated to web applications or desktop versions have been released. It’s

https://www.linuxjournal.com/content/review-system76-oryx-pro
http://www.linuxjournal.com

24 | November 2018 | http://www.linuxjournal.com

LETTERS

a great time to be a Linux user. The age of the Linux desktop never really arrived, but
the long dark night of Windows dependency seems to be at an end. Viva freedom,
viva choice!

From Social Media
In response to Zack Brown’s “Linus’ Behavior and the Kernel
Development Community”

From commenter Dr Richard Stallman, President, Free Software Foundation, Internet
Hall-of-Famer, MacArthur Fellow:

“Trolling” means making insincere statements to get a rise out of people. When I asked
Linux developers to use the term “GNU/Linux” to refer to the GNU system with Linux
as the kernel, I did so because I believe that is what fairness calls for. I think that the
GNU project, which started development of this system, and contributed the largest
portion, deserves equal mention.

The developers of the kernel, Linux, may have felt annoyed that I asked for fair treatment,
but that doesn’t make it “trolling”.

See https://gnu.org/gnu/linux-a... and https://gnu.org/gnu/gnu-lin..., plus the history in
https://gnu.org/gnu/the-gnu....

In response to Glyn Moody’s “Now Is the Time to Start Planning for the
Post-Android World”

From commenter Marlock:

I read the whole article expecting Purism to be mentioned, they are doing some
serious work and upstreaming it all so it doesn’t just vanish as vaporware, dies out of
an app ecosystem or agonizes for lack of trustworthy code like so many before it did
without much of a legacy.

https://www.linuxjournal.com/content/linus-behavior-and-kernel-development-community
https://www.linuxjournal.com/content/linus-behavior-and-kernel-development-community
https://www.linuxjournal.com/content/now-time-start-planning-post-android-world
https://www.linuxjournal.com/content/now-time-start-planning-post-android-world
http://www.linuxjournal.com
https://gnu.org/gnu/linux-a
https://gnu.org/gnu/gnu-lin
https://gnu.org/gnu/the-gnu

25 | November 2018 | http://www.linuxjournal.com

LETTERS

Their approach seems much more sustainable than Canonical’s Ubuntu on Android
or the Ubuntu phone did, plus it’s easily more trustworthy than Samsung’s Tizen
(Tizen is not a high standard), and then their PR is actually transparency, not just
PR, so to me, they are looking great for the not too distant future.

And they have other hardware sales businesses going to keep them from running out
of cash all of a sudden.

Author Glyn Moody responds:

It actually was supposed to be mentioned, but the sentence was left out somehow. It’s
now been added back.

From commenter Gwen Lynn:

I like eelo’s approach to bringing a de-Googled mobile environment to the market.
They provide both the smartphone ROM and web services, without any piece of
Google inside!

The project has started only nine months ago with a successful yet modest
Kickstarter campaign, but they already have a first beta available for 20 devices, with
online drive (and automatic syncing from the ROM), calendar, email, etc. All this
with a single eelo identity and the promise that in further versions, you can self-host
your data.

Of course they are doing all the work by forking existing software (lineageos,
nextcloud...), but they are doing really a great and credible job on the UI
consistency, and they provide everything as a 100% open-source solution that could
eventually go to the mass market in my opinion.

What’s still missing though is an application installer because they are not ready yet
with it, but at least it seems they won’t make the same error as FirefoxOS or other
“pure” platforms where you cannot install existing Android apps.

https://e.foundation/
http://www.linuxjournal.com

26 | November 2018 | http://www.linuxjournal.com

LETTERS

I’m super excited about this project, really.

In response to Kyle Rankin’s “Raspberry Pi Alternatives”

Nick Danger @niqdanger:

i now have 3 odroids and 2 raspis as my home network. I blame @kylerankin for this.
At least they are all quiet!

SEND LJ A LETTER We’d love to hear your feedback on the magazine and

specific articles. Please write us here or send email to ljeditor@linuxjournal.com.

PHOTOS Send your Linux-related photos to ljeditor@linuxjournal.com, and we’ll

publish the best ones here.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.linuxjournal.com/content/raspberry-pi-alternatives
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com
mailto:ljeditor@linuxjournal.com

27 | November 2018 | http://www.linuxjournal.com

UPFRONTUPFRONT

What’s Your
System’s Uptime?
Keep track of your system’s uptime and downtime with the
tuptime tool.

Finding your system’s uptime is easy if the “beginning” means the last startup; the
historical uptime command reports that information. But what happens if by
“beginning” you mean the first startup ever of the system? Or the last 365 days? Or
the last month?

Is there any way to have an accumulated uptime—or even better, a look at the
whole system’s life? For example, cars have odometers, and you can see the miles/
kilometers since the first day. For computers, a tool was developed exactly for this
task: tuptime.

tuptime reports the historical and statistical running and stopped time of your
system, keeping track between restarts. Its main goals are:

• Count system startups.

• Register the first boot time (since installation).

• Count intended and accidental shutdowns.

• Show the uptime and downtime percentage since the first boot time.

• Show the accumulated system uptime, downtime and total.

http://www.linuxjournal.com

28 | November 2018 | http://www.linuxjournal.com

UPFRONT

• Show the longest, shortest and average uptime and downtime.

• Show the current uptime.

• Print a formatted table or list with most of the previous values.

• Register used kernels.

• Create reports since and/or until a given startup or timestamp.

• Create reports in CSV format.

It works very simply. tuptime falls to the init manager for execution at startup
and shutdown, and then into a cron task that launches regular executions in the
meantime—there isn’t any dæmon to worry about. Internally, it looks at the btime
value (available in /proc/stat) and the uptime value (from /proc/uptime), and that’s
basically it.

The installation process is easy in Debian, Ubuntu and derivative distributions,

Figure 1. Example tuptime Execution after Installation

http://www.linuxjournal.com

29 | November 2018 | http://www.linuxjournal.com

UPFRONT

using their respective package managers, and it should be available in all the official
repositories. As prerequisites, it needs Python 3 and the SQLite library, which usually
are included in core packages by default.

Once it’s available on your system, you can get the information. It has three output
formats: the default is a summary, and there also are table and list outputs to print
the registered behavior.

The first execution reports the time since the system was booted, and the lines are
self-explanatory (note that the date format is based on the system’s locale settings):

$ tuptime
System startups: 1 since 22:21:49 02/02/18
System shutdowns: 0 ok - 0 bad
System uptime: 100.0 % - 40 minutes and 22 seconds
System downtime: 0.0 % - 0 seconds
System life: 40 minutes and 22 seconds

Largest uptime: 40 minutes and 22 seconds from
 ↪22:21:49 02/02/18
Shortest uptime: 40 minutes and 22 seconds from
 ↪22:21:49 02/02/18
Average uptime: 40 minutes and 22 seconds

Largest downtime: 0 seconds
Shortest downtime: 0 seconds
Average downtime: 0 seconds

Current uptime: 40 minutes and 22 seconds since
 ↪22:21:49 02/02/18

http://www.linuxjournal.com

30 | November 2018 | http://www.linuxjournal.com

UPFRONT

When getting this report from an older system (see below), the information becomes
more interesting. Apart from the fact that the counts increase, there also are more
facts about the behavior. For example, the System shutdowns line has 11 “bads”,
reflecting that the shutdown process wasn’t executed correctly, maybe due to power
failure or system hangs. The percentage of uptime and downtime reflects that this
report is from a lightly used system:

$ tuptime
System startups: 688 since 22:21:49 09/10/15
System shutdowns: 676 ok <- 11 bad
System uptime: 4.6 % - 40 days, 7 hours, 7 minutes
 ↪and 48 seconds
System downtime: 95.4 % - 2 years, 105 days, 17 hours,
 ↪19 minutes and 25 seconds
System life: 2 years, 146 days, 0 hours, 27 minutes
 ↪and 13 seconds

Largest uptime: 12 hours, 51 minutes and 48 seconds from
 ↪09:29:18 02/03/16
Shortest uptime: 5 seconds from 22:20:54 12/02/17
Average uptime: 1 hour, 24 minutes and 21 seconds

Largest downtime: 23 days, 3 hours, 23 minutes and 30 seconds
 ↪from 13:49:42 04/12/16
Shortest downtime: 8 seconds from 17:08:00 03/01/17
Average downtime: 1 day, 5 hours, 11 minutes and 44 seconds

Current uptime: 1 hour, 50 minutes and 0 seconds since
 ↪17:37:32 02/07/18

http://www.linuxjournal.com

31 | November 2018 | http://www.linuxjournal.com

UPFRONT

You can change the report to a table format (-t) used in combination with any other
options, in this case, since the last two startups (-S -2):

$ tuptime -t -S -2
687 14:07:36 02/04/18 1 hour, 28 minutes and 22 seconds
 ↪15:35:58 02/04/18 OK 3 days, 2 hours, 1 minute
 ↪and 34 seconds
688 17:37:32 02/07/18 1 hour, 26 minutes and 13 seconds

Or you can change to the list report format (-l) and show the results until the
second startup (-U 2):

$ tuptime -l -U 2
Startup: 1 at 22:21:49 09/10/15
Uptime: 50 minutes and 44 seconds
Shutdown: OK at 23:12:33 09/10/15
Downtime: 13 seconds

Startup: 2 at 23:12:46 09/10/15
Uptime: 1 minute and 2 seconds
Shutdown: OK at 23:13:48 09/10/15
Downtime: 18 hours, 57 minutes and 18 seconds

tuptime also accepts ranges between specific dates using the tsince and
tuntil options. Both need an argument with the epoch date in seconds.
Another example is a report from the last 365 days until the present, maybe to
check your provider’s SLA.

First, get the epoch date of one year ago using the date command:

$ date --date="1 year ago" +%s
1486490845

http://www.linuxjournal.com

32 | November 2018 | http://www.linuxjournal.com

UPFRONT

Next, pass it under tsince to tuptime:

$ tuptime --tsince 1486490845

Here’s an example of a report from the first day to the last day of the previous month
in CSV format. Again, use date to get the first and last days as a timestamp and pass
both to tuptime:

$ date -d "-1 month 00:00" +%s
1514761200
$ date -d "this month -1 second 00:00" +%s
1517439599
$ tuptime --tsince 1514761200 --tuntil 1517439599 --csv

Or you can list all the entries (-l) ordered by the uptime (-o u), instead of the
startup number, in reverse order (-r), including the kernel that was running (-k):

$ tuptime -l -o u -r -k

The manual has detailed information for every option and includes some interesting
notes about sync date and time that can help in case of problems. For more
information, see https://github.com/rfrail3/tuptime.git.

—Ricardo Fraile

https://github.com/rfrail3/tuptime.git
http://www.linuxjournal.com

33 | November 2018 | http://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website. LJ
community members who pledge $20 per month or more will be featured each month in
the magazine. A very special thank you this month goes to:

• Appahost.com
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• James Mayes
• James Weatherell
• Josh Simmons
• Mostly_Linux
• NDCHost.com
• Black Baron
• Magnus Magicman
• Robert J. Hansen

https://www.patreon.com/linuxjournal
http://www.linuxjournal.com

34 | November 2018 | http://www.linuxjournal.com

UPFRONT

Getting Started
with Scilab
Scilab is meant to be an overall package for numerical science, along the lines
of Maple, Matlab or Mathematica. Although a lot of built-in functionality exists
for all sorts of scientific computations, Scilab also includes its own programming
language, which allows you to use that functionality to its utmost. If you prefer,
you instead can use this language to extend Scilab’s functionality into completely
new areas of research. Some of the functionality includes 2D and 3D visualization
and optimization tools, as well as statistical functions. Also included in Scilab is
Xcos, an editor for designing dynamical systems models.

Several options exist for installing Scilab on your system. Most package
management systems should have one or more packages available for Scilab,
which also will install several support packages. Or, you simply can download
and install a tarball that contains everything you need to be able to run Scilab
on your system.

Once it’s installed, start the GUI version of Scilab with the scilab command.
If you installed Scilab via tarball, this command will be located in the bin
subdirectory where you unpacked the tarball.

When it first starts, you should see a full workspace created for your project.

On the left-hand side is a file browser where you can see data files and Scilab
scripts. The right-hand side has several panes. The top pane is a variable browser,
where you can see what currently exists within the workspace. The middle pane
contains a list of commands within that workspace, and the bottom pane has
a news feed of Scilab-related news. The center of the workspace is the actual
Scilab console where you can interact with the execution engine.

https://www.scilab.org/
http://www.linuxjournal.com

35 | November 2018 | http://www.linuxjournal.com

UPFRONT

Let’s start with some basic mathematics—for example, division:

--> 23/7
 ans =

 3.2857143

As you can see, the command prompt is -->, where you enter the next command
to the execution engine. In the variable browser, you can see a new variable
named ans that contains the results of the calculation.

Along with basic arithmetic, there is also a number of built-in functions. One
thing to be aware of is that these function names are case-sensitive. For example,
the statement sqrt(9) gives the answer of 3, whereas the statement SQRT(9)

Figure 1. When you first start Scilab, you’ll see an empty workspace ready for you to start a new project.

http://www.linuxjournal.com

36 | November 2018 | http://www.linuxjournal.com

UPFRONT

returns an error.

There also are built-in constants for numbers like e or pi. You can use them in
statements, like this command to find the sine of pi/2:

--> sin(%pi / 2)
 ans =

 1.

If you don’t remember exactly what a function name is, but you remember how
it starts, you can use the tab-completion functionality in the Scilab console. For
example, you can see what functions start with “fa” by typing those two letters
and then pressing the tab key.

Figure 2. Use tab-completion to avoid typos while typing commands in the Scilab console.

http://www.linuxjournal.com

37 | November 2018 | http://www.linuxjournal.com

UPFRONT

You can assign variables with the “=” symbol. For example, assign your age to the
age variable with:

--> age = 47
 age =

 47.

You then can access this variable directly:

--> age
 age =

 47.

The variable also will be visible in the variable browser pane. Accessing variables
this way basically executes the variable, which is also why you can get extra output.
If you want to see only the value, use the disp() function, which provides output
like the following:

--> disp(age)

 47.

Before moving onto more complex ideas, you’ll need to move out of the console. The
advantage of the console is that statements are executed immediately. But, that’s also
its disadvantage. To write larger pieces of code, you’ll want to use the included editor.
Click the Applications→SciNotes menu item to open a new window where you can
enter larger programs.

Once you’ve finished writing your code, you can run it either by clicking the run
icon on the toolbar or selecting one of the options under the Execute menu
item. When you do this, SciNotes will ask you to save your code to a file, with

http://www.linuxjournal.com

38 | November 2018 | http://www.linuxjournal.com

UPFRONT

the file ending “.sce”, before running. Then, it gets the console to run this file
with the following command:

exec('/home/jbernard/temp/scilab-6.0.1/bin/test1.sce', -1)

If you create or receive a Scilab file outside of Scilab, you can run it yourself using a

Figure 3. The SciNotes application lets you write larger programs and then run them within Scilab as a
single unit.

http://www.linuxjournal.com

39 | November 2018 | http://www.linuxjournal.com

UPFRONT

similar command.

To build more complex calculations, you also need a way to make comparisons and
loop over several calculations. Comparisons can be done with either:

if then
 stmts
end

or:

if then
 stmts
else
 stmts
end

or:

if then
 stmts
elseif then
 stmts
else
 stmts
end

As you can see, the if and elseif lines need to end with then. You can have as
many elseif sections as you need for your particular case. Also, note that the
entire comparison block needs to end with the end statement.

There also are two types of looping commands: for loops and while loops.
As an example, you could use the following to find the square roots of the first

http://www.linuxjournal.com

40 | November 2018 | http://www.linuxjournal.com

UPFRONT

100 numbers:

for i=1:100
 a = sqrt(i) disp(a)
end

The for loop takes a sequence of numbers, defined by start:end, and each
value is iteratively assigned to the dummy variable i. Then you have your code
block within the for loop and close it with the statement end.

The while loop is similar, except it uses a comparison statement to decide when
to exit the loop.

The last quick item I want to cover is the graphing functionality available within
Scilab. You can create both 2D and 3D graphs, and you can plot data files or
the results of functions. For example, the following plots the sine function from
0 to pi*4:

t = linspace(0, 4 * %pi, 100) plot(t, sin(t))

You can use the linspace command to generate the list of values over which the
function will be executed. The plot function opens a new window to display the
resultant graph. Use the commands under the Edit menu item to change the plot’s
details before saving the results to an image file.

You can do 3D graphs just as simply. The following plots a parametric curve over 0
to 4*pi:

t=linspace(0,4*%pi,100); param3d(cos(t),sin(t),t)

This also opens a new plotting window to display the results. If the default view isn’t
appropriate, click Tools→2D/3D Rotation, and with this selected, right-click on the
graph and rotate it around for a better view of the result.

http://www.linuxjournal.com

41 | November 2018 | http://www.linuxjournal.com

UPFRONT

Scilab is a very powerful tool for many types of computational science. Since it’s
available on Linux, macOS and Windows, it’s a great option if you’re collaborating
with other people across multiple operating systems. It might also prove to be
a effective tool to use in teaching environments, giving students access to a

Figure 4. Calling the plot function opens a new viewing window where you can see the generated graphs.

http://www.linuxjournal.com

42 | November 2018 | http://www.linuxjournal.com

UPFRONT

powerful computational platform for no cost, no matter what type of computer
they are using. I hope this short article has provided some ideas of how it might be
useful to you. I’ve barely covered the many capabilities available with Scilab, so be
sure to visit the main website for a number of good tutorials.

Figure 5. Generating 3D graphs is as easy as generating 2D plots, as this parametric curve example shows.

https://www.scilab.org/
http://www.linuxjournal.com

43 | November 2018 | http://www.linuxjournal.com

UPFRONT

FOSS Project
Spotlight: BlueK8s
Deploying and managing complex stateful applications
on Kubernetes.

Kubernetes (aka K8s) is now the de facto container orchestration framework.
Like other popular open-source technologies, Kubernetes has amassed a
considerable ecosystem of complementary tools to address everything from
storage to security. And although it was first created for running stateless
applications, more and more organizations are interested in using Kubernetes
for stateful applications.

However, while Kubernetes has advanced significantly in many areas during the
past couple years, there still are considerable gaps when it comes to running
complex stateful applications. It remains challenging to deploy and manage
distributed stateful applications consisting of a multitude of co-operating
services (such as for use cases with large-scale analytics and machine learning)
with Kubernetes.

I’ve been focused on this space for the past several years as a co-founder
of BlueData. During that time, I’ve worked with many teams at Global 2000
enterprises in several industries to deploy distributed stateful services
successfully, such as Hadoop, Spark, Kafka, Cassandra, TensorFlow and other
analytics, data science, machine learning (ML) and deep learning (DL) tools in
containerized environments.

In that time, I’ve learned what it takes to deploy complex stateful applications
like these with containers while ensuring enterprise-grade security, reliability

http://www.linuxjournal.com

44 | November 2018 | http://www.linuxjournal.com

UPFRONT

and performance. Together with my colleagues at BlueData, we’ve broken new
ground in using Docker containers for big data analytics, data science and ML/
DL in highly distributed environments. We’ve developed new innovations to
address requirements in areas like storage, security, networking, performance
and lifecycle management.

Now we want to bring those innovations to the Open Source community to
ensure that these stateful services are supported in the Kubernetes ecosystem.
BlueData’s engineering team has been busy working with Kubernetes, developing
prototypes with Kubernetes in our labs and collaborating with multiple enterprise
organizations to evaluate the opportunities (and challenges) in using Kubernetes
for complex stateful applications.

To that end, we recently introduced a new Kubernetes open-source initiative:
BlueK8s. The BlueK8s initiative will be composed of several open-source projects that
each will bring enterprise-level capabilities for stateful applications to Kubernetes.

Kubernetes Director (or KubeDirector for short) is the first open-source project in
this initiative. KubeDirector is a custom controller designed to simplify and streamline
the packaging, deployment and management of complex distributed stateful
applications for big data analytics and AI/ML/DL use cases.

Of course, other existing open-source projects address various requirements for
both stateful and stateless applications. The Kubernetes Operator framework,
for instance, manages the lifecycle of a particular application, providing a useful
resource for building and deploying application-specific Operators. This is achieved
through the creation of a simple finite state machine, commonly known as a
reconciliation loop:

• Observe: determine the current state of the application.

• Analyze: compare the current state of the application with the expected state of
the application.

http://www.linuxjournal.com

45 | November 2018 | http://www.linuxjournal.com

UPFRONT

• Act: take the necessary steps to make the running state of the application match
its expected state.

It’s pretty straightforward to use a Kubernetes Operator to manage a cloud native
stateless application, but that’s not the case for all applications. Most applications for
big data analytics, data science and AI/ML/DL are not implemented in a cloud native
architecture. And, these applications often are stateful. In addition, a distributed
data pipeline generally consists of a variety of different services that all have different
characteristics and configuration requirements.

As a result, you can’t easily decompose these applications into self-sufficient
and containerizable microservices. And, these applications are often a mishmash
of tightly integrated processes with complex interdependencies, whose state is
distributed across multiple configuration files. So it’d be challenging to create, deploy
and integrate an application-specific Operator for each possible configuration.

Figure 1.
Reconciliation Loop

http://www.linuxjournal.com

46 | November 2018 | http://www.linuxjournal.com

UPFRONT

The KubeDirector project is aimed at solving this very problem. Built upon the
Kubernetes custom resource definition (CRD) framework, KubeDirector does
the following:

• It employs the native Kubernetes API extensions, design philosophy and
authentication.

• It requires a minimal learning curve for any developers that have experience
with Kubernetes.

• It is not necessary to decompose an existing application to fit microservices patterns.

• It provides native support for preserving application configuration and state.

• It follows an application-agnostic deployment pattern, reducing the time to onboard
stateful applications to Kubernetes.

• It is application-neutral, supporting many applications simultaneously via application-
specific instructions specified in YAML format configuration files.

• It supports the management of distributed data pipelines consisting of multiple
applications, such as Spark, Kafka, Hadoop, Cassandra, TensorFlow and so on,
including a variety of related tools for data science, ML/DL, business intelligence, ETL,
analytics and visualization.

KubeDirector makes it unnecessary to create and implement multiple Kubernetes
Operators in order to manage a cluster composed of multiple complex stateful
applications. You simply can use KubeDirector to manage the entire cluster. All
communication with KubeDirector is performed via kubectl commands. The
anticipated state of a cluster is submitted as a request to the API server and stored
in the Kubernetes etcd database. KubeDirector will apply the necessary application-
specific workflows to change the current state of the cluster into the expected state
of the cluster. Different workflows can be specified for each application type, as

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
http://www.linuxjournal.com

47 | November 2018 | http://www.linuxjournal.com

UPFRONT

illustrated in Figure 2, which shows a simple example (using KubeDirector to deploy
and manage containerized Hadoop and Spark application clusters).

If you’re interested, we’d love for you to join the growing community of KubeDirector
developers, contributors and adopters. The initial pre-alpha version of KubeDirector
was recently released at https://github.com/bluek8s/kubedirector. For an
architecture overview, refer to the GitHub project wiki. You can also read more
about how it works in this technical blog post on the Kubernetes site.

—Tom Phelan, co-founder and chief architect, BlueData

Figure 2. Using KubeDirector to Deploy and Manage Containerized Hadoop and Spark Application Clusters

https://github.com/bluek8s/kubedirector
https://github.com/bluek8s/kubedirector/wiki
https://kubernetes.io/blog/2018/10/03/kubedirector-the-easy-way-to-run-complex-stateful-applications-on-kubernetes
http://www.linuxjournal.com

48 | November 2018 | http://www.linuxjournal.com

UPFRONT

Lessons in Vendor
Lock-in: Shaving
Learn how to embrace open standards while you remove stubble.

Freedom is powerful. When you start using free software, a whole world opens up
to you, and you start viewing everything in a different light. You start noticing when
vendors don’t release their code or when they try to lock you in to their products with
proprietary protocols. These vendor lock-in techniques aren’t new or even unique
to software. Companies long have tried to force customer loyalty with incompatible
proprietary products that make you stay on an upgrade treadmill. Often you can apply
these free software principles outside the software world, so in this article, I describe
my own object lesson in vendor lock-in from the shaving industry.

When I first started shaving, I was pretty intimidated with the notion of a sharp blade
against my face so I picked the easiest and least-intimidating route: electric razors. Of
course, electric razors have a large up-front cost, and after some time, you have to buy
replacement blades. Still, the shaves were acceptable as far as I knew, so I didn’t mind much.

At some point in my shaving journey, Gillette released the Mach 3 disposable razor.
For some reason, this design appealed to a lot of geeks, and I ended up hearing
about it on geek-focused blogs like Slashdot back in the day. I decided to try it out,
and after I got over the initial intimidation, I realized it really wasn’t all that hard to
shave with it, and due to the multiple blades and lubricating strip along the top, I
got a much closer shave.

I was a convert. I ditched my electric razor and went all in with the Mach 3. Of course,
those disposable blades had the tendency to wear out pretty quickly, along with that
blue lubricating strip, so I’d find myself dropping a few bucks per blade to get refills
after a few shaves. Then again, Gillette was famous for the concept of giving away the

http://www.linuxjournal.com

49 | November 2018 | http://www.linuxjournal.com

UPFRONT

razor and making its money on the blade, so this wasn’t too surprising.

We’re Going to Four Blades!
The tide started turning for me a few years later when Gillette decided to deprecate
the Mach 3 in favor of a new design—this time with four blades, a lubricating strip and
a rubber strip along the bottom! Everyone was supposed to switch over to this new
and more expensive design, but I was perfectly happy with what I was using, and the
new blades were incompatible with my Mach 3 razor, so I didn’t pay it much attention.

The problem was that with this new design, replacement Mach 3 blades became
harder and harder to come by, and all of the blades started creeping up in price.
Eventually, I couldn’t buy Mach 3 blades in bulk at my local warehouse store, and
finally I gave up and bought one of the even more expensive new Gillette razors. What
else could I do?

Learn from Your Elders
The turning point came when I read an article from The Art of Manliness blog called
“Shave like your Grandpa” that described classic wet shaving techniques using big metal
double-edged safety razors. I was fed up with the upgrade treadmill from proprietary
plastic disposable razors, and I was intrigued at learning this lost art. More important, I
found out that safety razors all used the same generic razor blade design and have for
decades. As a result, you don’t have to worry about incompatibility whether you find a
safety razor in an antique store or buy one manufactured last week. Also, since every
supplier is working off of the same open standard, blades are cheap—packs of five
blades in a drug store are a dollar or two compared to three or four dollars per blade
for modern disposables, and in bulk, they are less than ten cents apiece!

I was sold. I went to a local antique store and found a safety razor for about $10.
Next I got a cheap pack of razor blades from the drug store, and I was ready to go. Of
course, there was a learning curve with this solution, just like when I switched from
Windows to Linux so many years ago. Everything was different, and many things were
more difficult to do at first. With Linux, this meant spending a lot of time reading
documentation, figuring out commands and repairing systems I broke. With shaving,

http://www.linuxjournal.com

50 | November 2018 | http://www.linuxjournal.com

UPFRONT

this meant using a styptic pen to stop the bleeding!

Of course, in both cases, before too long, I climbed the learning curve and was
getting superior results and had no intention of ever going back. If you’ve never tried
wet shaving, you may not realize what this freedom from vendor lock-in means. It
means if I see an interesting used safety razor in an antique store or if I see a nice new
one online, I can get it without having to throw away all my existing razor blades. It
also means if I find a new razor blade brand with a better price or better quality, I can
switch over to it knowing my razor is automatically compatible.

Because there’s no vendor lock-in and because the razor blade design is open,
competition flourishes, and blade prices drop as a result, even among the higher-end
vendors. I buy razor blades in packs of 100 online for less than $10 knowing that I’m
set for another two to three years. No more worrying about the constantly increasing
prices of disposable blades or planned obsolescence from manufacturers to force
me to some new design that adds a vibrating motor. Instead, I’m free to pick from
a huge array of safety razor designs from many different companies both past and
present. Just this last weekend, I was walking through an antique store and saw a
1961 Gillette “Fat Boy” adjustable safety razor that is well known and popular in safety
razor collector’s forums both for the unique design and for the great shave it can
give. I bought it knowing that after cleaning it up, I could pop in a new blade from my
collection, and it would just work.

The Legacy of Open Standards
The power of open standards extends beyond today into the future. When my son
gets old enough to shave, I can pass down one of my all-metal, decades-old antique
razors to him, and it will still work. While everyone else in a decade will have to
shave with some $20-per-blade disposable razor with three aloe strips, seven blades,
and some weird vibrating and rotating motor, he will be able to pick any razor from
my collection and find affordable replacement blades. This is the power of open
standards and the freedom to avoid vendor lock-in.

—Kyle Rankin

http://www.linuxjournal.com

51 | November 2018 | http://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
http://www.linuxjournal.com

52 | November 2018 | http://www.linuxjournal.com

UPFRONT

News Briefs
• Linus Torvalds is taking a break. In an rc4 email update, he writes about his

scheduling mix-up with the kernel summit and having a “look yourself in the
mirror moment”, and then (to summarize), he writes: “hey, I need to change
some of my behavior, and I want to apologize to the people that my personal
behavior hurt and possibly drove away from kernel development entirely. I am
going to take time off and get some assistance on how to understand people’s
emotions and respond appropriately.”

• Following Linus Torvalds’ apology for his behavior, the Linux Community
has announced it will adopt a “Code of Conduct”, which pledges to
make “participation in our project and our community a harassment-free
experience for everyone, regardless of age, body size, disability, ethnicity, sex
characteristics, gender identity and expression, level of experience, education,
socio-economic status, nationality, personal appearance, race, religion, or
sexual identity and orientation.”

• Purism launched the Librem Key, the “first and only OpenPGP smart card
providing a Heads-firmware-integrated tamper-evident boot process”. The
Librem key is the size of an average thumb drive, allows you to keep your
secret encryption keys in your pocket, and it alerts you if anyone tampers with
your kernel or BIOS while you’re away from your laptop. The key works with all
laptops but has extended features with Purism’s Librem laptop line. You can
order one from here for $59. See also Kyle Rankin’s post for more details on
the Librem key.

• Yubico announced the launch of the YubiKey 5 series, which are the first
multi-protocol security keys to support FIDO2/WebAuthn and allow you to
replace “weak password-based authentication with strong hardware-based
authentication”. You can purchase them here for $45.

Visit LinuxJournal.com for
daily news briefs.

https://lore.kernel.org/lkml/CA+55aFy+Hv9O5citAawS+mVZO+ywCKd9NQ2wxUmGsz9ZJzqgJQ@mail.gmail.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8a104f8b5867c682d994ffa7a74093c54469c11f
https://puri.sm/posts/purism-launches-librem-key-only-security-key-to-offer-tamper-evident-protection
https://puri.sm/shop/librem-key
https://puri.sm/posts/introducing-the-librem-key
https://www.yubico.com/press-releases/yubico-launches-yubikey-5-series-the-industrys-first-multi-protocol-security-keys-supporting-fido2
https://www.yubico.com/store
http://linuxjournal.com
http://www.linuxjournal.com

53 | November 2018 | http://www.linuxjournal.com

UPFRONT

• Google Chrome recently has begun automatically signing your browser in to
your Google account for you every time you log in to a Google property, such as
Gmail, without asking and without notification. See Matthew Green’s blog post
for more information on the huge privacy implications of this new practice.

• Mozilla launched Firefox Monitor, a free service that alerts you if you’ve been
part of a data breach. Enter your email at Firefox Monitor for a basic scan.

• Tim Berners-Lee, creator of the world wide web, announced his new project
Solid, “an open-source project to restore the power and agency of individuals
on the web”. He writes “Solid changes the current model where users have
to hand over personal data to digital giants in exchange for perceived value.
As we’ve all discovered, this hasn’t been in our best interests. Solid is how we
evolve the web in order to restore balance�by giving every one of us complete
control over data, personal or not, in a revolutionary way.”

• Microsoft has joined the Open Invention Network (OIN), an open-source
patent consortium. According to ZDNet, this means “Microsoft has essentially
agreed to grant a royalty-free and unrestricted license to its entire patent
portfolio to all other OIN members.” OIN’s CEO Keith Bergelt says “This is
everything Microsoft has, and it covers everything related to older open-
source technologies such as Android, the Linux kernel, and OpenStack; newer
technologies such as LF Energy and HyperLedger, and their predecessor and
successor versions.”

• The Libre Computer Project recently announced its new open-source, libre
ARM SBC called La Frite. Phoronix reports the new 512MB model will ship
for $5 USD, or you can get the 1GB version for $10 USD. In addition, “the $5
ARM SBC is said to be 10x faster than the Raspberry Pi Zero” and also includes
real HDMI, Ethernet and USB ports. La Frite, the miniature version of Le
Potato SBC supported by mainline Linux and Android 8, should be available in
November 2018. See the Kickstarter page for details.

https://blog.cryptographyengineering.com/2018/09/23/why-im-leaving-chrome
https://blog.mozilla.org/blog/2018/09/25/introducing-firefox-monitor-helping-people-take-control-after-a-data-breach
https://monitor.firefox.com/
https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085
https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085
https://www.zdnet.com/article/microsoft-open-sources-its-entire-patent-portfolio/#ftag=RSSbaffb68
https://www.phoronix.com/scan.php?page=news_item&px=Libre-ARM-SBC-La-Frite
https://www.kickstarter.com/projects/librecomputer/la-frite-open-source-fries
http://www.linuxjournal.com

54 | November 2018 | http://www.linuxjournal.com

UPFRONT

• Canonical announced that Plex has arrived in its Snap Store. You now can
download the multimedia platform as a snap for Ubuntu, KDE Neon, Debian,
Fedora, Manjaro, OpenSUSE and Zorin. For more details, see the Ubuntu Blog.

• A grey-hat hacker is breaking into MikroTik routers and patching them so
they can’t be compromised by cryptojackers or other attackers. According to
ZDNet, the hacker, who goes by Alexey, is a system administrator and claims
to have disinfected more then 100,000 MikroTik routers. He told ZDNet
that he added firewall rules to block access to the routers from outside the
local network, and then “in the comments, I wrote information about the
vulnerability and left the address of the @router_os Telegram channel, where
it was possible for them to ask questions.” Evidently, a few folks have said
“thanks”, but many are outraged.

https://snapcraft.io/plexmediaserver
https://blog.ubuntu.com/2018/10/11/plex-arrives-in-canonicals-snap-store?_ga=2.129110286.325125043.1539267891-1836157831.1536267521
https://www.zdnet.com/article/a-mysterious-grey-hat-is-patching-peoples-outdated-mikrotik-routers
https://www.zdnet.com/article/a-mysterious-grey-hat-is-patching-peoples-outdated-mikrotik-routers
http://www.linuxjournal.com

55 | November 2018 | http://www.linuxjournal.com

HACK AND /

Schedule One-Time
Commands with
the UNIX at Tool
Cron is nice and all, but don’t forget about its cousin at.

By Kyle Rankin

When I first started using Linux, it was like being tossed
into the deep end of the UNIX pool. You were expected to
use the command line heavily along with all the standard
utilities and services that came with your distribution. At
lot has changed since then, and nowadays, you can use
a standard Linux desktop without ever having to open a
terminal or use old UNIX services. Even as a sysadmin, these
days, you often are a few layers of abstraction above some
of these core services.

I say all of this to point out that for us old-timers, it’s easy
to take for granted that everyone around us innately knows
about all the command-line tools we use. Yet, even though
I’ve been using Linux for 20 years, I still learn about new
(to me) command-line tools all the time. In this “Back to
Basics” article series, I plan to cover some of the command-
line tools that those new to Linux may never have used
before. For those of you who are more advanced, I’ll spread
out this series, so you can expect future articles to be more
technical. In this article, I describe how to use the at utility
to schedule jobs to run at a later date.

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

http://www.linuxjournal.com

56 | November 2018 | http://www.linuxjournal.com

HACK AND /

at vs. Cron
at is one of those commands that isn’t discussed very much. When people talk about
scheduling commands, typically cron gets the most coverage. Cron allows you to
schedule commands to be run on a periodic basis. With cron, you can run a command
as frequently as every minute or as seldom as once a day, week, month or even year.
You also can define more sophisticated rules, so commands run, for example, every
five minutes, every weekday, every other hour and many other combinations. System
administrators sometimes will use cron to schedule a local script to collect metrics every
minute or to schedule backups.

On the other hand, although the at command also allows you to schedule
commands, it serves a completely different purpose from cron. While cron lets you
schedule commands to run periodically, at lets you schedule commands that run
only once at a particular time in the future. This means that at fills a different and
usually more immediate need from cron.

Using at
At one point, the at command came standard on most Linux distributions, but these
days, even on servers, you may find yourself having to install the at package explicitly.
Once installed, the easiest way to use at is to type it on the command line followed
by the time you want the command to run:

$ at 18:00

The at command also can accept a number of different time formats. For instance,
it understands AM and PM as well as words like “tomorrow”, so you could replace the
above command with the identical:

$ at 6pm

And, if you want to run the same command at that time tomorrow instead:

$ at 6pm tomorrow

http://www.linuxjournal.com

57 | November 2018 | http://www.linuxjournal.com

HACK AND /

Once you press enter, you’ll drop into an interactive shell:

$ at 6pm tomorrow
warning: commands will be executed using /bin/sh
at>

From the interactive shell, you can enter the command you want to run at that time.
If you want to run multiple commands, press enter after each command and type
the command on the new at> prompt. Once you’re done entering commands, press
Ctrl-D on an empty at> prompt to exit the interactive shell.

For instance, let’s say I’ve noticed that a particular server has had problems the past
two days at 5:10am for around five minutes, and so far, I’m not seeing anything in the
logs. Although I could just wake up early and log in to the server, instead I could write
a short script that collects data from ps, netstat, tcpdump and other command-line
tools for a few minutes, so when I wake up, I can go over the data it collected. Since
this is a one-off, I don’t want to schedule something with cron and risk forgetting about
it and having it run every day, so this is how I would set it up with at:

$ at 5:09am tomorrow
warning: commands will be executed using /bin/sh
at>
at> /usr/local/bin/my_monitoring_script

Then I would press Ctrl-D, and the shell would exit with this output:

at> <EOT>
job 1 at Wed Sep 26 05:09:00 2018

Managing at Jobs
Once you have scheduled at jobs, it’s useful to be able to pull up a list of all the at
jobs in the queue, so you know what’s running and when. The atq command lists the
current at queue:

http://www.linuxjournal.com

58 | November 2018 | http://www.linuxjournal.com

HACK AND /

$ atq
1 Wed Sep 26 05:09:00 2018 a kyle

The first column lists the number at assigned to each job and then lists the time the
job will be run and the user it will run as. Let’s say that in the above example I realize
I’ve made a mistake, because my script won’t be able to run as a regular user. In that
case, I would want to use the atrm command to remove job number 1:

$ atrm 1

If I were to run atq again, I would see that the job no longer exists. Then I could sudo
up to root and use the at command to schedule the job again.

at One-Liners
Although at supports an interactive mode, you also can pipe commands to it all on
one line instead. So, for instance, I could schedule the above job with:

$ echo /usr/local/bin/my_monitoring_script | at 5:09am tomorrow

Conclusion
If you didn’t know that at existed, you might find yourself coming up with all sorts
of complicated and convoluted ways to schedule a one-off job. Even worse, you
might need to set an alarm clock so you can wake up extra early and log in to a
problem server. Of course, if you don’t have an alarm clock, you could use at:

$ echo "aplay /home/kyle/alarm.wav" | at 7am tomorrow

◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

59 | November 2018 | http://www.linuxjournal.com

UPFRONT
AT THE FORGE

59 | November 2018 | http://www.linuxjournal.com

Testing Your
Code with
Python’s pytest
Don’t test your code? pytest removes any excuses.

By Reuven M. Lerner

Software developers don’t just write software; they also use
software. So, they’re the first to recognize, and understand,
that software is complex and inevitably contains bugs.

But, just because bugs are inevitable doesn’t mean that developers
can or should try to prevent them. And, thus, during the past few
decades, there’s been rapid growth in software testing. Testing is
no longer seen as an optional or “nice to have” part of software
development; it’s considered an absolute must—part of the
software development process. In many cases, the people in the
Python courses I teach at various companies aren’t developers per
se, but instead testers—people with the full-time job of writing
tests to ensure that the company’s software is robust.

I must admit that even though I’ve been writing software for
a long time, I have rarely been as good about testing as I’d
like to be. Sure, when I’m working on a large, complex app,
I’ll write tests, but it always seemed to be a bit of a burden.
I know that it’s good for me, will save tons of time in the
future, will make the software more robust and maintenance
easier, but really, if I just want to get my program out the

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

http://lerner.co.il/
http://www.linuxjournal.com

60 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

door, why test? And besides, the various test frameworks I’ve used through the
years never struck me as very impressive or easy to use.

So for the past few years, I’ve been in a bit of a holding pattern. I want to test more,
but testing is annoying, so I don’t test, which makes it seem like even more of a
burden, because it’s not part of my regular process.

All of this has changed for me recently, thanks to my discovery (long after other
people, I admit) of the pytest library for Python. pytest turns out to be easy to use,
easy to work with and easy to integrate into my work. Part of the reason for this
is that pytest abandons the Python idea of “there’s only one way to do it”, giving
developers a great degree of flexibility and freedom in choosing how to write tests.

So in this article, I provide an introduction to pytest, showing how to start integrating
it into your development process today. I plan to expand on this in my next article and
describe some more advanced pytest features that you might need to use.

Basic pytest
The idea behind pytest is that if you want to test a function, you’ll write a separate
function to test it. Actually, you’ll probably want to write more than one test function,
but that’s in addition.

For example, let’s assume you have the following function that sums numbers:

def mysum(numbers):
 output = 0
 for one_number in numbers:
 output += one_number
 return output

How can you test this function? (And yes, I’m ignoring the “test-driven development”
mode of testing, in which you first write the tests and then write the code. You
certainly can do TDD with pytest, but that isn’t my point right now.)

http://www.linuxjournal.com

61 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

I put this function definition in mysum.py. I next can create a file called
test_mysum.py in the same directory. Then, when I run pytest in the current
directory, it’ll run all of the files starting with test_. How might test_mysum.py
look? Let’s start with something simple:

from mysum import mysum

def test_sum_integers():
 assert mysum([0,1,2,3,4]) == 10

As you can see, my test file test_mysum.py is fairly short. But it contains an actual
test, and it also points to how tests can and will be written.

First, you have to import the file that you want to test. This can be a simple
“import XYZ” statement, or you can import names selectively from the module
with “from X import Y”. Either way, you’ll need to import the functions and classes
you’ll be testing.

The tests themselves are written as Python functions whose names begin with test_.
(Yes, this means that tests are written in files whose names begin with test_, and
then with functions in those files whose names begin with test_.)

In simple cases, these test functions take no parameters. The functions are called by
pytest, and the key to the tests is the assert statement. Normally, the assert
statement in Python evaluates an expression. If the expression returns True, the
assertion is recorded as a success, but otherwise ignored.

So in the case of these example test functions, I’m basically saying “if I call the function with
one argument, the list [0,1,2,3,4], I’m expecting to get the integer 10 back as a result”.

How do I run my test? I go into the directory where my files are located, and I type:

pytest

http://www.linuxjournal.com

62 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

Sure enough, pytest notices that there’s a file matching the “test_*” pattern, which
it runs. After some initial boilerplate indicating my system’s configuration, I get the
following output:

collected 1 item

test_mysum.py . [100%]

================1 passed in 0.02 seconds=====================

In other words, there was one file (test_mysum.py). It contained a single test
function, represented by a dot (.). And, 100% of those tests ran successfully—
meaning, what I asserted is indeed what was actually returned.

But of course, it’s not enough to test with this sort of thing. I should probably call it
with an empty list to make sure I get a 0 value back. So, let’s add another test. Now
test_mysum.py looks like this:

from mysum import mysum

def test_sum_integers():
 assert mysum([0,1,2,3,4]) == 10

def test_sum_nothing():
 assert mysum([]) == 0

And when I run the tests, I get:

collected 2 items

test_mysum.py .. [100%]

================= 2 passed in 0.10 seconds ==================

http://www.linuxjournal.com

63 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

Let’s add another test to see what happens if I invoke it with some floating-point numbers:

from mysum import mysum

def test_sum_integers():
 assert mysum([0,1,2,3,4]) == 10

def test_sum_floats():
 assert mysum([0.1,1.2,2.3,3.4,4.5]) == 11.5

def test_sum_nothing():
 assert mysum([]) == 0

And now, when I test things, I get:

collected 3 items

test_mysum.py ... [100%]

=================== 3 passed in 0.06 seconds ================

Sure enough, I’ve done a great job of testing so far.

I should note that while I’ve used only a single assert statement in each function
here, you definitely can have more than one. I prefer to keep each test function as
focused as possible, and thus, I use as few assert statements as I can.

Failing Tests
What if a test fails? Let’s give it a shot by deliberately introducing a test that will fail. In
test_mysum.py, I’ve added:

def test_one_and_one_are_three():
 assert mysum([1,1]) == 3

http://www.linuxjournal.com

64 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

When I run the tests, I get the following output:

test_mysum.py ...F [100%]

========================== FAILURES ==========================
____________________ test_one_and_one_are_three ____________

 def test_one_and_one_are_three():
> assert mysum([1,1]) == 3
E assert 2 == 3
E + where 2 = mysum([1, 1])

test_mysum.py:15: AssertionError
================== 1 failed, 3 passed in 0.30 seconds ========

First, you can see that four test ran in test_mysum.py. The first three ran successfully
and were represented by dots. The fourth test failed though. “Failure” in this case
means that the assert statement claimed that there would be one answer (3), but
that running the function produced a different answer (2). pytest not only indicates
that there was a failure, but it also indicates in which test function the error occurred
and the line where it took place. This allows you to figure out where the problem lies.

In the case of failure, of course, there are two possibilities: the original code is wrong, or
your test is wrong. Don’t forget that tests are code, which means that they can be prone
to problems too! However, if you write your tests cleanly and clearly (and before or as
you write the code), I’ve found that most tests will be simple and straightforward, making
it less likely that the tests have problems and easier to identify the location of bugs.

You even can get more detailed output from pytest with the -v option:

test_mysum.py::test_sum_integers PASSED [25%]
test_mysum.py::test_sum_floats PASSED [50%]
test_mysum.py::test_sum_nothing PASSED [75%]

http://www.linuxjournal.com

65 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

test_mysum.py::test_one_and_one_are_three FAILED [100%]

============================= FAILURES =======================
_______________________ test_one_and_one_are_three ___________

 def test_one_and_one_are_three():
> assert mysum([1,1]) == 3
E assert 2 == 3
E + where 2 = mysum([1, 1])

test_mysum.py:15: AssertionError
================== 1 failed, 3 passed in 0.22 seconds =======

Now you can see precisely which tests passed and failed, as well as where the failures
took place.

Parametrized Tests
The successful tests created so far (test_sum_nothing, test_sum_integers
and test_sum_floats) are all great and useful. But if you’re like me, you might
be wondering why you need three separate test functions just to check those three
similar, but not identical, invocations. The pytest people agree, and they suggest the
use of “parametrized tests”. The idea here is that you define the test a single time, but
tell pytest which inputs and outputs to provide.

You can do this by applying a Python decorator to the test function. The decorator
will take two arguments: a string with comma-separated names representing the
parameters you want to pass to the test and a list of two-element tuples describing
the inputs and outputs. For example, given all of these tests:

def test_sum_integers():
 assert mysum([0,1,2,3,4]) == 10

def test_sum_floats():

http://www.linuxjournal.com

66 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

 assert mysum([0.1,1.2,2.3,3.4,4.5]) == 11.5

def test_sum_nothing():
 assert mysum([]) == 0

You can replace them all with a single test:

import pytest
@pytest.mark.parametrize('numbers,output', [
 ([], 0),
 ([10, 20, 30], 60),
 ([0.1, 1.2, 2.3, 3.4, 4.5], 11.5)])
def test_mysum(numbers, output):
 assert mysum(numbers) == output

While this does the same thing as before, it definitely looks a bit more complex. Let’s
break it down:

• First, you need to import pytest, so that you’ll have access to the decorator.

• Then you use @pytest.mark.parametrize as the decorator. Note that if
you are like me and prefer to spell it “parameterize”, you’ll get an error message
scolding you for misspelling it.

• The first decorator argument is a string containing the comma-separated names
of the variables you want to pass. You’ll always need at least two: one for the input
and one for the output. If your function takes two inputs, you’ll need to define
three parameters (two input and one output).

• The second argument is a list of two-element tuples. Each tuple describes a test
run. Each tuple element will be assigned to a test function parameter.

• Finally, the test function now needs to take two parameters, with the same names

http://www.linuxjournal.com

67 | November 2018 | http://www.linuxjournal.com

AT THE FORGE

as defined in the decorator argument.

With this in place, you can now run your tests, and you’ll get the following output:

test_mysum.py::test_mysum[numbers0-0] PASSED [33%]
test_mysum.py::test_mysum[numbers1-60] PASSED [66%]
test_mysum.py::test_mysum[numbers2-11.5] PASSED [100%]

======================== 3 passed in 0.12 seconds ============

If you’re thinking, “wow, that looks a lot like the output from the three separate
tests”—well, that’s exactly right.

Summary
There’s much more to say about pytest, but what I’ve written here covers most of
the cases you’ll encounter in your day-to-day work. Next time, I plan to cover a few
other topics, including how to deal with exceptions, user input and output, and
checking the code coverage. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
The pytest website is at https://docs.pytest.org/en/latest.

An excellent book on the subject is Brian Okken’s Python Testing with pytest,
published by Pragmatic Programmers. He also has many other resources, about
pytest and code testing in general, here.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://docs.pytest.org/en/latest
http://pythontesting.net/
http://www.linuxjournal.com

68 | November 2018 | http://www.linuxjournal.com

UPFRONT

68 | November 2018 | http://www.linuxjournal.com

Roman
Numerals
and Bash
Fun with retro-coding a Roman numeral
converter—I head back to my college years and
solve me homework anew!

By Dave Taylor

I earned a bachelor’s degree in computer science back in the
dawn of computing. Well, maybe it wasn’t quite that long ago,
but we did talk about Ada and FORTRAN in class. As a UCSD
alumnus, however, it’s no surprise that UCSD Pascal was the
programming language of choice. Don’t worry; no punch cards
and no paper tape were involved in my educational endeavors.

As with modern computer science study, we spent a lot of
time coding algorithms and solving problems and puzzles.
I’m a board-gamer, so I was quite happy to try to solve the
“dining philosophers problem”, the “four color problem” or the
“traveling salesman problem”. You might well have tried to solve
the same darn problems.

One coding problem that has stuck with me is a Roman numeral
conversion program. As part of my first programming class, I recall
it being a pretty tricky problem, but we didn’t have the internet or
GitHub to scrounge around for smart solutions or inspiration.

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.askdavetaylor.com/
http://www.linuxjournal.com

69 | November 2018 | http://www.linuxjournal.com

WORK THE SHELL

So, in the spirit of retro-coding, let’s build a script that can convert Roman numerals
into regular decimal equivalent values.

Roman Numerals
I know, you’re saying “um, remind me, what are Roman numerals?”, even though you
see them all the time in movies and books. You just ignore the MCMLXIII that shows
up as a copyright notice. What’s funny is that the general industry consensus is that
studios use those Roman numerals instead of the more understandable “Copyright
1963” to obfuscate the age of the film (by the way, MCMLXIII = 1963).

It turns out that Roman numerals are interesting because they are essentially grouped
into logical segments. At its most basic, each letter has a specific decimal value, so
let’s start there (see Table 1 for the values).

Table 1. Roman Numerals and Their Values

Symbol I V X L C D M

Value 1 5 10 50 100 500 1000

If you wanted to write the value 60 as Roman numerals, that’s easy: LX. Reverse the
two values, however, and it’s a completely different value: XL = 40. Why? Because
when a lower value symbol appears before a higher value symbol, it’s considered a
reduction of that value. The fancy name for this is subtractive notation.

In other words, LX = 50 + 10, but XL = L – X = 50 – 10.

Now you can see how the earlier value breaks into clusters of values based on whether
a subsequent value is higher or lower than the current value. Here’s the logic:

MCMLXIII = M + CM + L + X + III = 1000 + 900 + 50 + 10 + 3

The general rule involves a single character look-ahead. That is, the value 4 is

http://www.linuxjournal.com

70 | November 2018 | http://www.linuxjournal.com

WORK THE SHELL

represented as IV (literally 5 – 1), so while 8 is VIII, the value 9 is IX. Fortunately, 8 will
never be IIX because that violates the single value subtraction, and the values always
are adjacent so you won’t see IM or VC.

Got it? It’s pretty easy, really, once you know the letter values and the subtractive notation.

Writing a Roman Numeral Converter
Let’s get to some coding.

The first challenge is to figure out how to convert individual Roman numeral values to
their decimal equivalent. We humans can just glance at the table presented earlier and
remember that L = 50, but we’ve got to teach the shell that trick too.

This would be a perfect use for a two-dimensional array where the primary index
would be a character value, and the equivalent secondary value would be the
corresponding decimal value. Alas, one of the weaknesses of Bash is that it doesn’t
support multi-dimensional arrays.

I’m going to be lazy and just utilize a function with a case statement. This also lets me
support both uppercase and lowercase values:

mapit() {
case $1 in
I|i) equiv=1 ;;
V|v) equiv=5 ;;
X|x) equiv=10 ;;
L|l) equiv=50 ;;
C|c) equiv=100 ;;
D|d) equiv=500 ;;
M|m) equiv=1000 ;;
*) echo "Error: Value $1 unknown" >&2 ; exit 2 ;;
esac
}

http://www.linuxjournal.com

71 | November 2018 | http://www.linuxjournal.com

WORK THE SHELL

Recall that in Bash you can’t have a function return a value, but you can send
parameters to the function. They are then accessible within the function as positional
parameters $1, $2, $3 and so on. Ergo $1 is the letter being mapped to a decimal
value. The return value is the global variable $equiv. It’s a bit clumsy versus a more
elegant language, but...so it goes.

Let’s put that snippet of code aside for a moment and look at the common question
of how to parse a string one character at a time. There are a ton of different ways
to figure out exactly how that should be done, but I’m going to tap the nifty Bash
function seq.

The seq command generates a sequence of values from the starting to ending
value—most easily at the command line:

$ seq 3 7
3
4
5
6
7

This is where the Bash string functions are going to be really helpful! Let’s utilize two
of them. First, ${#string} returns the number of characters in the string. Then the
more complex reference of ${string:start:num} returns the substring starting at
start for num characters from the variable string.

Put these three things together, and you have an elegant way to step through a string,
character by character. If the user-specified value is known as romanvalue (so as to
be maximally mnemonic, of course), this simple for loop breaks down the string:

for index in $(seq 1 ${#romanvalue}) ; do
echo "Letter $index is ${romanvalue:index-1:1}"
done

http://www.linuxjournal.com

72 | November 2018 | http://www.linuxjournal.com

WORK THE SHELL

Now you can integrate that with the function mapit presented earlier. Combined, you
get this script:

for index in $(seq 1 ${#romanvalue}) ; do
mapit ${romanvalue:index-1:1}
echo "${romanvalue:index-1:1} = $equiv"
done

The result? Let’s decompose the earlier sequence:

$ sh roman.sh MCMLXIII
converting MCMLXIII
M = 1000
C = 100
M = 1000
L = 50
X = 10
I = 1
I = 1

It’s pretty easy to sum it up:

sum=$(($sum + $equiv))

Without compensating for the subtractive notation, you’ll find that—incorrectly!—
MCMLXII sums up to 2163. It makes sense: the CM ended up as 1100 instead of
900, so it’s exactly 200 off the correct value.

Obviously, there’s a whole ‘nother section of smarts needed in this program—an
algorithm that basically says, “If the next value is greater than the current, subtract
the current value from the next. If not, add the current to the next value and add
that to the sum total.”

http://www.linuxjournal.com

73 | November 2018 | http://www.linuxjournal.com

WORK THE SHELL

The problem is that this means there’s a fairly substantial change in the code,
because you can’t just say “look up value, add it to sum”, but you need to
implement a look-ahead concept.

And, that’s exactly what I plan to cover in my next article, when I finish this script
and look at the reverse—one that lets you get the Roman numeral equivalent of
a decimal value. The latter is particularly interesting, because there’s no Roman
numeral greater than 1000, so given the notational conventions, the max value is
going to be 3*1000+999.

Or is it? You tell me. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

74 | November 2018 | http://www.linuxjournal.com

What’s New
in Kernel
Development
By Zack Brown

Warning: this article contains profanity.

Linus’ Behavior and the Kernel
Development Community
On September 16, 2018, Linus Torvalds released the 4.19-rc4
version of the kernel, and he also announced he was taking a
break from Linux development in order to consider his own
behavior and to come up with a better approach to kernel
development. This was partly inspired by his realization that
he wasn’t looking forward to the Kernel Summit event, and
he said that “it wasn’t actually funny or a good sign that I was
hoping to just skip the yearly kernel summit entirely.”

He also wrote that it was partly inspired when:

...people in our community confronted me about my lifetime
of not understanding emotions. My flippant attacks in emails
have been both unprofessional and uncalled for. Especially
at times when I made it personal. In my quest for a better
patch, this made sense to me. I know now this was not OK
and I am truly sorry.

So he said, “I am going to take time off and get some

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends’n’family.

http://www.linuxjournal.com

75 | November 2018 | http://www.linuxjournal.com

diff -u

assistance on how to understand people’s emotions and respond appropriately.”

He compared the situation to the kind of “pain points” the Linux kernel project has
experienced on a technical level in the past, like moving from tarballs to BitKeeper,
and from BitKeeper to git. And he remarked that “We haven’t had that kind of pain-
point in about a decade. But this week felt like that kind of pain point to me.”

He also added, by way of clarification, that “This is not some kind of ‘I’m burnt out, I
need to just go away’ break. I’m not feeling like I don’t want to continue maintaining
Linux. Quite the reverse. I very much *do* want to continue to do this project that
I’ve been working on for almost three decades.”

That was the last post Linus sent to the mailing list, up to the time of this writing.
However, he and several other kernel developers signed off on a patch to the kernel
tree, incorporating a new Code of Conduct policy. It’s fairly boilerplate—basically,
don’t be mean, don’t discriminate, violations will be investigated, and appropriate
measures taken.

It’s not a new idea. Long ago, Richard Stallman used to troll the mailing list trying
to start an argument about “Linux” vs. “GNU/Linux”, until the mailing list maintainers
threatened to ban him if he kept it up. They phrased it as a general rule, not unlike a
code of conduct.

There’s been a wide range of responses to Linus’ announcement and to the Code
of Conduct itself. Some felt that Linus’ earlier behavior had been community-
strengthening, encouraging people to respond as equals and duke it out with Linus on
the issues they cared about.

Some felt that Linus was taking a really wonderful step, seeking feedback and
reflecting on the issues, and they in turn offered their own insights and assistance.

Some, on the other hand, felt that it was wrong to start welcoming political agendas
in software projects. They felt that adopting codes of conduct was a way for certain

http://www.linuxjournal.com

76 | November 2018 | http://www.linuxjournal.com

diff -u

interests to gain other forms of control over software projects.

Some people felt that the Code of Conduct had not been properly discussed in
a public forum, as other patches were, and should not go directly into the kernel
without that kind of process.

Some felt that the “Code of Conflict”, which had been in the kernel source tree since
2015, was plenty good enough and did not need to be revised into this new Code
of Conduct. The two are very similar—both call for investigations to be conducted
by the Linux Foundation’s Technical Advisory Board (TAB)—but the Code
of Conduct is more explicit about the types of communications that would be
considered violations. Some people felt that the added specificity was not needed
and shouldn’t be adopted.

Michael Woods made a particularly impassioned case against a code of conduct:

Whomever convinced you to add the Code of Conduct was convincing you to give
control over to a social justice initiative that has no interest in the kernel’s core function
or reason for existence.

Codes of conduct are tools used by the incompetent to wrest control away from the
people who own the project, so they can feed on the corpse and wear the skin of the
project as a fetish play.

Examples of these people trying to introduce codes of conduct, with commentary on the
emotions and motivations driving CoC introduction:

• LLVM: http://voxday.blogspot.com/2018/05/the-costs-of-code-of-conduct.html

• PHP: http://voxday.blogspot.com/2016/01/initial-sjw-attack-defeated.html

• PHP 2: http://voxday.blogspot.com/2016/01/a-second-sjw-attack-on-php.html

http://voxday.blogspot.com/2018/05/the-costs-of-code-of-conduct.html
http://voxday.blogspot.com/2016/01/initial-sjw-attack-defeated.html
http://voxday.blogspot.com/2016/01/a-second-sjw-attack-on-php.html
http://www.linuxjournal.com

77 | November 2018 | http://www.linuxjournal.com

diff -u

• Ruby: http://voxday.blogspot.com/2016/01/more-sjw-attacks-in-tech.html

• Ruby 2: http://voxday.blogspot.com/2016/01/the-sjw-war-on-ruby-continues.html

• Node.js: http://voxday.blogspot.com/2017/08/how-sjws-react-to-defeat.html

• Awesome-Django: http://voxday.blogspot.com/2015/10/exposing-true-face-of-sjw.html

• Go: http://voxday.blogspot.com/2015/06/you-cant-run-you-cant-hide.html

Pavel Snajdr replied to Michael’s argument by saying, “how about if we viewed the
new Code of Conduct as about the same thing as BitKeeper was for the development
process? It was not perfect, but was *something* for a start. And I believe that Linus
will probably come back with a Git of CoC, or something in that fasion.”

Meanwhile, Luke Kenneth Casson Leighton objected to the Code of Conduct
perhaps even more forcefully than Michael, saying directly to Linus:

this is beginning to remind me of dr who films, the comedy film “the world’s end”, and
various other b-movie horror shows where people were taken over through mind-
control or replaced.

so i apologise, i’m going to stop pussy-footing around and ask HAVE YOU FUCKING
LOST IT, GET YOUR HEAD OUT YOUR ARSE, STOP FEELING SORRY FOR YOURSELF AND
GET BACK TO BEING AN ENGINEER, YOU ARE ON A CHEARRRRGEUUH YOU SORRY
LITTLE PROGRAMMERRRRR

cough. enough NLP-esque shock tactics with a bit of comedy thrown in to take the
sting out of it...allow me to return to rational insights.

(1) you apologised for your behaviour, and it’s fantastic that you recognised that
there was a problem and asked for help. however, you *may* be feeling a little guilty,
and it’s clearly knocked your confidence, and that unfortunately has allowed political

http://voxday.blogspot.com/2016/01/more-sjw-attacks-in-tech.html
http://voxday.blogspot.com/2016/01/the-sjw-war-on-ruby-continues.html
http://voxday.blogspot.com/2017/08/how-sjws-react-to-defeat.html
http://voxday.blogspot.com/2015/10/exposing-true-face-of-sjw.html
http://www.linuxjournal.com
http://voxday.blogspot.com/2015/06/you-cant-run-you-cant-hide.html

diff -u

78 | November 2018 | http://www.linuxjournal.com

correctness to “creep in” where we know it never, ever belongs: in engineering.

the next thing you know, the fucking guilt-ridden morons who want the words “master”
and “slave” erased from the history books will be telling you that we have to change SPI’s
“MOSI” and “MISO” to...god...i dunno...”ROWI and RIWO” - “requestor” and “worker” or
something incredibly stupid:

Requestor: “i’m awfully sorry, if you wouldn’t mind, if it’s not too much trouble mr
worker, when you have the time and you’re not on your union-mandated break, could
you deal with this bit-change for me?”

(2) more and more people are raising the fact that the change was made without
consultation. this *is* going to bite everyone. i strongly, strongly suggest reverting it: i
made the point very clear that it wasn’t the actual CoC that was the problem, it was that
you, yourself, were not really obeying it (so nobody else could, either).

(3) let’s look at what toxic documents named “codes of conduct” look like from an
engineering perspective:

#define BEHAVIOUR_GOOD() ((~BEHAVIOUR_BAD) == 0)
#define BEHAVIOUR_BAD BEHAVIOUR_SEXIST | BEHAVIOUR_RACIST |
 BEHAVIOUR_NAZI |
BEHAVIOUR_UNPLEASANT |
 BEHAVIOUR_RELIGIOUS_EXTREMIST
....
#define BEHAVIOUR_RELIGIOUS_EXTREMIST \
 BEHAVIOUR_ANTI_CHRISTIAN \
 BEHAVIOUR_ANTI_MUSLIM \
 ...
....
....
#define BEHAVIOUR_ANTI_MUSLIM 0x1
#define BEHAVIOUR_ANTI_CHRISTIAN 0x2

http://www.linuxjournal.com

79 | November 2018 | http://www.linuxjournal.com

diff -u

...

...

...
// oops fuck we're gonna run out of bits extremely quickly....

do you see where that’s going? do you get the point already? if an engineer proposed
the above patch to create the toxic CoC document that insidiously crept in recently, you
and pretty much everyone would think that the submitter had a fucking screw loose and
needed psychiatric help.

these toxic documents do not have to spell it out, but they *imply* that there are (deep
breath...) [insert list of racist names here] and their mothers too all trying to ATTACK
the project, and we’d better make sure that they’re all excluded, otherwise we’re all in
trouble, eh?

i apologise for using these words: if you are a decent human being you should by now
be feeling physically sick to your stomach at having read that paragraph, that those
words were even used...yet they’re not actually *in* that toxic document, but they don’t
have to be: people are still thinking them. like the “don’t think of a pink elephant” our
subconscious mind cannot help by strip out the “don’t”.

bottom line: the *entire linux kernel project* has now been *completely poisoned* by
that document.

put another way: an engineer would go, “wtf??” and would say “we don’t need to fill
every single bit in the bitfield and then invert it for god’s sake! just say ‘good behaviour is
expected’ and be done with it!!”

so why not say, instead of that absolute god-awful list, “everyone is welcome;
everyone belongs”. you see the difference? you see how simple and empowering that
is? it’s INVITING people to participate, and it’s pretty obvious that if someone feels
*UN*welcome, the rules have been broken and they can raise it as an issue. rather than
absolutely terrifying and sickening absolutely everybody.

79 | November 2018 | http://www.linuxjournal.com

http://www.linuxjournal.com

80 | November 2018 | http://www.linuxjournal.com

diff -u

the analogy is the story of mother theresa being invited to an “anti-war” rally. she
declined...and said, “if ever you hold a PEACE rally, i’d be delighted to attend”.

so come on, linus: wake up, man. just because this is outside of your area of expertise
does not mean that you have to let go of the reins. *get a grip*. use your engineering
expertise, apply it to the problem, work with *EVERYONE* and work out an
ACCEPTABLE solution.

This particular topic was more about everyone responding to Linus’ announcement,
than about discussing the issues among themselves. In general, some people were in
favor of the new Code of Conduct, and some were opposed.

For myself, I hope Pavel Snajdr is right—that the Code of Conduct is the “BitKeeper”
of this particular issue. The last time Linus took a break from kernel development,
he came out with git, a transformative tool that completely changed the way people
developed software all over the world.

But it may not be very realistic to expect Linus to pull something like that out of his
butt in this case. This isn’t just a technical issue. It’s a political issue, with strong,
uncompromising feelings on all sides of it—not to mention powerful entities with
a vested financial interest in seeing Linux itself fall to ruin. If Linus returns to kernel
development with anything like the “git” of community relations, maybe we should
then ask him to take a longer break from kernel development and address the issues
of race, poverty, global warming and the rise of fascism.

Virtualizing the Clock
Dmitry Safonov wanted to implement a namespace for time information. The
twisted and bizarre thing about virtual machines is that they get more virtual all
the time. There’s always some new element of the host system that can be given
its own namespace and enter the realm of the virtual machine. But as that process
rolls forward, virtual systems have to share aspects of themselves with other virtual
systems and the host system itself—for example, the date and time.

http://www.linuxjournal.com

81 | November 2018 | http://www.linuxjournal.com

diff -u

Dmitry’s idea is that users should be able to set the day and time on their virtual
systems, without worrying about other systems being given the same day and time.
This is actually useful, beyond the desire to live in the past or future. Being able to
set the time in a container is apparently one of the crucial elements of being able to
migrate containers from one physical host to another, as Dmitry pointed out in his
post.

As he put it:

The kernel provides access to several clocks: CLOCK_REALTIME, CLOCK_MONOTONIC,
CLOCK_BOOTTIME. Last two clocks are monotonous, but the start points for them are
not defined and are different for each running system. When a container is migrated from
one node to another, all clocks have to be restored into consistent states; in other words,
they have to continue running from the same points where they have been dumped.

Dmitry’s patch wasn’t feature-complete. There were various questions still to
consider. For example, how should a virtual machine interpret the time changing on
the host hardware? Should the virtual time change by the same offset? Or continue
unchanged? Should file creation and modification times reflect the virtual machine’s
time or the host machine’s time?

Eric W. Biederman supported this project overall and liked the code in the
patch, but he did feel that the patch could do more. He thought it was a little too
lightweight. He wanted users to be able to set up new time namespaces at the drop
of a hat, so they could test things like leap seconds before they actually occurred and
see how their own projects’ code worked under those various conditions.

To do that, he felt there should be a whole “struct timekeeper” data structure for
each namespace. Then pointers to those structures could be passed around, and the
times of virtual machines would be just as manipulable and useful as times on the host
system.

In terms of timestamps for filesystems, however, Eric felt that it might be best to limit

http://www.linuxjournal.com

82 | November 2018 | http://www.linuxjournal.com

diff -u

the feature set a little bit. If users could create files with timestamps in the past, it
could introduce some nasty security problems. He felt it would be sufficient simply to
“do what distributed filesystems do when dealing with hosts with different clocks”.

The two went back and forth on the technical implementation details. At one point,
Eric remarked, in defense of his preference:

My experience with namespaces is that if we don’t get the advanced features working
there is little to no interest from the core developers of the code, and the namespaces
don’t solve additional problems. Which makes the namespace a hard sell. Especially when
it does not solve problems the developers of the subsystem have.

At one point, Thomas Gleixner came into the conversation to remind Eric
that the time code needed to stay fast. Virtualization was good, he said, but
“timekeeping_update() is already heavy and walking through a gazillion of
namespaces will just make it horrible.”

He reminded Eric and Dmitry that:

It’s not only timekeeping, i.e. reading time, this is also affecting all timers which are armed
from a namespace.

That gets really ugly because when you do settimeofday() or adjtimex() for a particular
namespace, then you have to search for all armed timers of that namespace and adjust
them.

The original posix timer code had the same issue because it mapped the clock realtime
timers to the timer wheel so any setting of the clock caused a full walk of all armed
timers, disarming, adjusting and requeing them. That’s horrible not only performance
wise, it’s also a locking nightmare of all sorts.

Add time skew via NTP/PTP into the picture and you might have to adjust timers as well,
because you need to guarantee that they are not expiring early.

http://www.linuxjournal.com

83 | November 2018 | http://www.linuxjournal.com

diff -u

So, there clearly are many nuances to consider. The discussion ended there, but this
is a good example of the trouble with extending Linux to create virtual machines. It’s
almost never the case that a whole feature can be fully virtualized and isolated from
the host system. Security concerns, speed concerns, and even code complexity and
maintainability come into the picture. Even really elegant solutions can be shot down
by, for example, the possibility of hostile users creating files with unnaturally old
timestamps.

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com, and we’ll run it in the
next Letters section and post it on the website as an addendum to the original article.

Disclaimer
The views and opinions expressed in this article are those of the author and do not
necessarily reflect those of Linux Journal. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

84 | November 2018 | http://www.linuxjournal.com

DEEP DIVE
MONITORING

http://www.linuxjournal.com

85 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

Why Your Server
Monitoring (Still)
Sucks
Five observations about why your server monitoring still stinks by a
monitoring specialist-turned-consultant.

By Mike Julian

Early in my career, I was responsible for managing a large fleet of printers across a
large campus. We’re talking several hundred networked printers. It often required a
10- or 15-minute walk to get to some of those printers physically, and many were used
only sporadically. I didn’t always know what was happening until I arrived, so it was
anyone’s guess as to the problem. Simple paper jam? Driver issue? Printer currently
on fire? I found out only after the long walk. Making this even more frustrating for
everyone was that, thanks to the infrequent use of some of them, a printer with a
problem might go unnoticed for weeks, making itself known only when someone tried
to print with it.

Finally, it occurred to me: wouldn’t it be nice if I knew about the problem and the
cause before someone called me? I found my first monitoring tool that day, and I was
absolutely hooked.

Since then, I’ve helped numerous people overhaul their monitoring systems. In doing
so, I noticed the same challenges repeat themselves regularly. If you’re responsible for
managing the systems at your organization, read on; I have much advice to dispense.

http://www.linuxjournal.com

So, without further ado, here are my top five reasons why your monitoring is crap and
what you can do about it.

1. You’re Using Antiquated Tools
By far, the most common reason for monitoring being screwed up is a reliance
on antiquated tools. You know that’s your issue when you spend too much time
working around the warts of your monitoring tools or when you’ve got a bunch of
custom code to get around some major missing functionality. But the bottom line
is that you spend more time trying to fix the almost-working tools than just getting
on with your job.

The problem with using antiquated tools and methodologies is that you’re just making
it harder for yourself. I suppose it’s certainly possible to dig a hole with a rusty spoon,
but wouldn’t you prefer to use a shovel?

Great tools are invisible. They make you more effective, and the job is easier to
accomplish. When you have great tools, you don’t even notice them.

Maybe you don’t describe your monitoring tools as “easy to use” or “invisible”. The
words you might opt to use would make my editor break out a red pen.

This checklist can help you determine if you’re screwing yourself.

• Are you using Nagios or a Nagios derivative to monitor elastic/ephemeral
infrastructure?

• Is there a manual step in your deployment process for a human to “Add $thing to
monitoring”?

• How many post-mortems contained an action item such as, “We weren’t
monitoring $thing”?

• Do you have a cron job that tails a log file and sends an email via sendmail?

DEEP
DIVE

86 | November 2018 | http://www.linuxjournal.com

87 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

• Do you have a syslog server to which all your systems forward their logs...never to
be seen again?

• Do you collect system metrics only every five metrics (or even less often)?

If you answered yes to any of those, you are relying on bad, old-school tooling. My
condolences.

The good news is your situation isn’t permanent. With a little work, you can fix it.

If you’re ready to change, that is.

It is somewhat amusing (or depressing?) that we in Ops so readily replace entire
stacks, redesign deployments over a week, replace configuration management tools
and introduce modern technologies, such as Docker and serverless—all without any
significant vetting period.

Yet, changing a monitoring platform is verboten. What gives?

I think the answer lies in the reality of the state of monitoring at many companies.
Things are pretty bad. They’re messy, inconsistent in configuration, lack a coherent
strategy, have inadequate automation...but it’s all built on the tools we know. We
know their failure modes; we know their warts.

For example, the industry has spent years and a staggering amount of development
hours bolting things onto Nagios to make it more palatable (such as nagios-herald,
NagiosQL, OMD), instead of asking, “Are we throwing good money after bad?”

The answer is yes. Yes we are.

Not to pick on Nagios—okay, yes, I’m going to pick on Nagios. Every change to
the Nagios config, such as adding or removing a host, requires a config reload.
In an infrastructure relying on ephemeral systems, such as containers, the entire

http://www.linuxjournal.com

88 | November 2018 | http://www.linuxjournal.com

infrastructure may turn over every few minutes. If you have two-dozen containers
churning every 15 minutes, it’s possible that Nagios is reloading its config more than
once a minute. That’s insane.

And what about your metrics? The old way to decide whether something was
broken was to check the current value of a check output against a threshold.
That clearly results in some false alarms, so we added the ability to fire an alert
only if N number of consecutive checks violated the threshold. That has a pretty
glaring problem too. If you get your data every minute, you may not know of a
problem until 3–5 minutes after it’s happened. If you’re getting your data every
five minutes, it’s even worse.

And while I’m on my soapbox, let’s talk about automation. I remember back when
I was responsible for a dozen servers. It was a big day when I spun up server #13.
These sorts of things happened only every few months. Adding my new server to my
monitoring tools was, of course, on my checklist, and it certainly took more than a
few minutes to do.

But the world of tech isn’t like that anymore. Just this morning, a client’s
infrastructure spun up a dozen new instances and spun down half of them an hour
later. I knew it happened only after the fact. The monitoring systems knew about the
events within seconds, and they adjusted accordingly.

The tech world has changed dramatically in the past five years. Our beloved tools
of choice haven’t quite kept pace. Monitoring must be 100% automated, both in
registering new instances and services, and in de-registering them all when they go
away. Gone are the days when you can deal with a 5 (or 15!) minute delay in knowing
something went wrong; many of the top companies know within seconds that
something isn’t right.

Continuing to rely on methodologies and tools from the old days, no matter how
much you enjoy them and know their travails, is holding you back from giant leaps
forward in your monitoring.

DEEP
DIVE

http://www.linuxjournal.com

89 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

The bad old days of trying to pick between three equally terrible monitoring tools
are long over. You owe it to yourself and your company at least to consider modern
tooling—whether it’s SaaS or self-hosted solutions.

2. You’re Chasing “the New Hotness”
At the other end of the spectrum is an affinity for new-and-exciting tools. Companies
like Netflix and Facebook publish some really cool stuff, sure. But that doesn’t
necessarily mean you should be using it.

Here’s the problem: you are (probably) not Facebook, Netflix, Google or any of
the other huge tech companies everyone looks up to. Cargo culting never made
anything better.

Adopting someone else’s tools or strategy because they’re successful with them
misses the crucial reasons of why it works for them.

The tools don’t make an organization successful. The organization is successful
because of how its members think. Its approaches, beliefs, people and strategy led the
organization to create those tools. Its success stems from something much deeper
than, “We wrote our own monitoring platform.”

To approach the same sort of success the industry titans are having, you have to go
deeper. What do they do know that you don’t? What are they doing, thinking, saying,
believing that you aren’t?

Having been on the inside of many of those companies, I’ll let you in on the secret:
they’re good at the fundamentals. Really good. Mind-blowingly good.

At first glance, this seems unrelated, but allow me to quote John Gall, famed
systems theorist:

A complex system that works is invariably found to have evolved from a simple
system that worked. A complex system designed from scratch never works and

https://www.scientificamerican.com/article/1959-cargo-cults-melanesia
http://www.linuxjournal.com

90 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

cannot be patched up to make it work. You have to start over, beginning with a
working simple system.

Dr. Gall quite astutely points out the futility of adopting other people’s tools
wholesale. Those tools evolved from simple systems to suit the needs of that
organization and culture. Dropping such a complex system into another organization
or culture may not yield favorable results, simply because you’re attempting to
shortcut the hard work of evolving a simple system.

So, you want the same success as the veritable titans of industry? The answer is
straightforward: start simple. Improve over time. Be patient.

3. You’re Unnecessarily Afraid of “Vendor Lock-in”
If there’s one argument I wish would die, it’s the one where people opine about
wanting to “avoid vendor lock-in”. That argument is utter hogwash.

What is “vendor lock-in”, anyway? It’s the notion that if you were to go all-in on a
particular vendor’s product, it would become prohibitively difficult or expensive
to change. Keurig ’s K-cups are a famous example of vendor lock-in. They can be
used only with a Keurig coffee machine, and a Keurig coffee machine accepts
only the proprietary Keurig K-cups. By buying a Keurig, you’re locked in to the
Keurig ecosystem.

Thus, if I were worried about being locked in to the Keurig ecosystem, I’d just avoid
buying a Keurig machine. Easy.

If I’m worried about vendor lock-in with, say, my server infrastructure, what do I do?
Roll out both Dell and HP servers together? That seems like a really dumb idea. It
makes my job way more difficult. I’d have to build to the lowest common denominator
of each product and ignore any product-specific features, including the innovations
that make a product appealing. This ostensibly would allow me to avoid being locked
in to one vendor and keep any switching costs low, but it also means I’ve got a
solution that only half works and is a nightmare to manage at any sort of scale. (Have

http://www.linuxjournal.com

91 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

you ever tried to build tools to manage and automate both iDRAC and IPMI? You really
don’t want to.)

In particular, you don’t get to take advantage of a product’s unique features.
By trying to avoid vendor lock-in, you end up with a “solution” that ignores any
advanced functionality.

When it comes to monitoring products, this is even worse. Composability and
interoperability are a core tenet of most products available to you. The state of
monitoring solutions today favors a high degree of interoperability and open APIs.
Yes, a single vendor may have all of your data, but it’s often trivial to move that same
data to another vendor without a major loss of functionality.

One particular problem with this whole vendor lock-in argument is that it’s often used
as an excuse not to buy SaaS or commercial, proprietary applications. The perception
is that by using only self-hosted, open-source products, you gain more freedom.

That assumption is wrong. You haven’t gained more freedom or avoided vendor lock-
in at all. You’ve traded one vendor for another.

By opting to do it all yourself (usually poorly), you effectively become your own
vendor—a less experienced, more overworked vendor. The chances you would design,
build, maintain and improve a monitoring platform better—on top of your regular
duties—than a monitoring vendor? They round to zero. Is tool-building really the
business you want to be in?

In addition, switching costs from in-house solutions are astronomically higher than
from one commercial solution to another, because of the interoperability that
commercial vendors have these days. Can the same be said of your in-house solution?

4. You’re Monitoring the Wrong Stuff
Many years ago, at one of my first jobs, I checked out a database server and noticed it
had high CPU utilization. I figured I would let my boss know.

http://www.linuxjournal.com

92 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

“Who complained about it?”, my boss asked.

“Well, no one”, I replied.

My boss’ response has stuck with me. It taught me a valuable lesson: “if it’s not
impacting anyone, is there really a problem?”

My lesson is this: data without context isn’t useful. In monitoring, a metric matters
only in the context of users. If low free memory is a condition you notice but it’s not
impacting users, it’s not worth firing an alert.

In all my years of operations and system administration, I’ve not once seen an OS
metric directly indicate active user impact. A metric sometimes can be an indirect
indicator, but I’ve never seen it directly indicate an issue.

Which brings me to the next point. With all of these metrics and logs from the
infrastructure, why is your monitoring not better off? The reason is because Ops can solve
only half the problem. While monitoring nginx workers, Tomcat garbage collection or
Redis key evictions are all important metrics for understanding infrastructure performance,
none of them help you understand the software your business runs. The biggest value of
monitoring comes from instrumenting the applications on which your users rely. (Unless,
of course, your business provides infrastructure as a service—then, by all means, carry on.)

Nowhere is this more clear than in a SaaS company, so let’s consider that as an example.

Let’s say you have an application that is a standard three-tier web app: nginx on the
front end, Rails application servers and PostgreSQL on the back end. Every action on
the site hits the PostgreSQL database.

You have all the standard data: access and error logs, nginx metrics, Rails logs,
Postgres metrics. All of that is great.

You know what’s even better? Knowing how long it takes for a user to log in.

http://www.linuxjournal.com

93 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Or how many logins occur per minute. Or even better: how many login failures
occur per minute.

The reason this information is so valuable is that it tells you about the user experience
directly. If login failures rose during the past five minutes, you know you have a
problem on your hands.

But, you can’t see this sort of information from the infrastructure perspective alone. If
I were to pay attention only to the nginx/Rails/Postgres performance, I would miss this
incident entirely. I would miss something like a recent code deployment that changed
some login-related code, which caused logins to fail.

To solve this, become closer friends with your engineering team. Help them identify
useful instrumentation points in the code and implement more metrics and logging.
I’m a big fan of the statsd protocol for this sort of thing; most every monitoring
vendor supports it (or their own implementation of it).

5. You Are the Only One Who Cares
If you’re the only one who cares about monitoring, system performance and useful
metrics will never meaningfully improve. You can’t do this alone. You can’t even do
this if only your team cares. I can’t begin to count how many times I’ve seen Ops
teams put in the effort to make improvements, only to realize no one outside the
team paid attention or thought it mattered.

Improving monitoring requires company-wide buy-in. Everyone from the receptionist
to the CEO has to believe in the value of what you’re doing. Everyone in the company
knows the business needs to make a profit. Similarly, it requires a company-wide
understanding that improving monitoring improves the bottom line and protects the
company’s profit.

Ask yourself: why do you care about monitoring?

Is it because it helps you catch and resolve incidents faster? Why is that important

http://www.linuxjournal.com

94 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

to you?

Why should that be important to your manager? To your manager’s manager? Why
should the CEO care?

You need to answer those questions. When you do so, you can start making
compelling business arguments for the investments required (including in the best
new tools).

Need a starting point? Here are a few ideas why the business might care about
improving monitoring:

• The business can manage and mitigate the risk of incidents and failures.

• The business can spot areas for performance improvements, leading to a better
customer experience and increased revenue.

• The business can resolve incidents faster (often before they become critical),
leading to more user goodwill and enhanced reputation.

• The business avoids incidents going from bad to worse, which protects against loss
of revenue and potential SLA penalty payments.

• The business better controls infrastructure costs through capacity planning and
forecasting, leading to improved profits and lower expenses.

I recommend having a candid conversation with your team on why they care
about monitoring. Be sure to involve management as well. Once you’ve had those
conversations, repeat them again with your engineering team. And your product
management team. And marketing. And sales. And customer support.

Monitoring impacts the entire company, and often in different ways. By the time you
find yourself in a conversation with executives to request an investment in monitoring,

http://www.linuxjournal.com

95 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

you will be able to speak their language. Go forth and fix your monitoring. I hope you
found at least a few ideas to improve your monitoring. Becoming world-class in this
is a long, hard, expensive road, but the good news is that you don’t really need to be
among the best to see massive benefits. A few straightforward changes, added over
time, can radically improve your company’s monitoring.

To recap:

1. Use better tools. Replace them as better tools become available.

2. But, don’t fixate on the tools. The tools are there to help you solve a problem—
they aren’t the end goal.

3. Don’t worry about vendor lock-in. Pick products you like and go all-in on them.

4. Be careful about what you collect and on what you issue alerts. The best data tells
you about things that have a direct user impact.

5. Learn why your company cares about monitoring and express it in business
outcomes. Only then can you really get the investment you want.

Good luck, and happy monitoring. ◾

Mike Julian is the Editor of the Monitoring Weekly newsletter, author of O’Reilly’s Practical Monitoring, and an independent monitoring
consultant at AsterLabs.io. Before embarking off as a consultant, he worked as an Ops Engineer for Taos Consulting, Peak Hosting and Oak
Ridge National Laboratory, and others. You can follow him on Twitter at @mike_julian.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

DEEP
DIVE

96 | November 2018 | http://www.linuxjournal.com

CloudWatch Is
of the Devil, but
I Must Use It
Let’s talk about Amazon CloudWatch.

By Corey Quinn

For those fortunate enough to not be stuck in the weeds of Amazon Web Services
(AWS), CloudWatch is, and I quote from the official AWS description, “a monitoring
and management service built for developers, system operators, site reliability
engineers (SRE), and IT managers.” This is all well and good, except for the part
where there isn’t a single named constituency who enjoys working with the product.
Allow me to dispense some monitoring heresy.

Better, let me describe this in the context of the 14 Amazon Leadership Principles
that reportedly guide every decision Amazon makes. When you take a hard look at
CloudWatch’s complete failure across all 14 Leadership Principles, you wonder how
this product ever made it out the door in its current state.

“Frugality”
I’ll start with billing. Normally left for the tail end of articles like this, the
CloudWatch billing paradigm is so terrible, I’m leading with it instead. You get
billed per metric, per month. You get billed per thousand metrics you request
to view via the API. You get billed per dashboard per month. You get billed per
alarm per month. You get charged for logs based upon data volume ingested,
data volume stored and “vended logs” that get published natively by AWS

https://aws.amazon.com/cloudwatch
https://www.amazon.jobs/principles
http://www.linuxjournal.com

97 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

services on behalf of the customer. And, you get billed per custom event. All
of this can be summed up best as “nobody on the planet understands how
your CloudWatch metrics and logs get billed”, and it leads to scenarios where
monitoring vendors can inadvertently cost you thousands of dollars by polling
CloudWatch too frequently. When the AWS charges are larger than what you’re
paying your monitoring vendor, it’s not a wonderful feeling.

“Invent and Simplify”
CloudWatch Logs, CloudWatch Events, Custom Metrics, Vended Logs and Custom
Dashboards all mean different things internally to CloudWatch from what you’d
expect, compared to metrics solutions that actually make some fathomable level of
sense. There are, thus, multiple services that do very different things, all operating
under the “CloudWatch” moniker. For example, it’s not particularly intuitive to
most people that scheduling a Lambda function to invoke once an hour requires a
custom CloudWatch Event. It feels overly complicated, incredibly confusing, and
very quickly, you find yourself in a situation where you’re having to build complex
relationships to monitor things that are themselves far simpler.

“Think Big”
All business people, when asked what they want from a monitoring platform, will
respond with something that resembles “a dashboard” or “a single pane of glass
view”. CloudWatch offers minutia up the wazoo, but it categorically offers no
global view, no green/yellow/red status indicator that gives you even a glimmer of
the overall health of your site. Want a graph of each core in your instance’s CPU
for the past 30 seconds? Easy! Want to know if your entire company should be
putting out the burning fire that is the current production state of your website?
Keep looking—CloudWatch has nothing to offer you.

“Insist on the Highest Standards”
By its very nature, CloudWatch feels like small thinking. The entire experience,
start to finish, smacks of “what’s the absolute least we could do and get away
with it?” They built their MVP, and then just sorta...stopped, frozen in amber.
They created a set of building blocks, except they didn’t solve the problem of

http://www.linuxjournal.com

98 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

“how do I monitor my AWS resources?” Instead, it feels like the entire team
phoned it in and let a large market of monitoring vendors develop as a result.
None of those vendors have the level of access to the raw data that CloudWatch
does; all of them have built better products. You’d think the CloudWatch team
would take a clue from the innovation that’s rapidly happening in this space, but
that’d require someone to Learn and Be Curious.

“Are Right, a Lot”
Recent data is “eventually consistent”, so you always get graphs like the one shown
in Figure 1.

Here in reality, that would be a terrifying thing to see on an accurate
dashboard—something is obviously very wrong with your site! For better or
worse, the “accurate” description doesn’t apply to CloudWatch, and that’s just
how your graphs always look. “Your metrics will be eventually consistent” is very
nearly the last thing you want to hear about your monitoring platform, second
only to “what metrics?” This ties directly to...

“Earn Trust”
Let me be very clear here—the real issue isn’t the ingestion problem. Absolutely
every vendor on the planet has the same issue—you can’t display data you don’t
have. Where CloudWatch drops the ball is in exposing this behavior to the end user
without explanation as to what’s going on. Thus, until you grow accustomed to
it, you have a heart-stopping moment of “what the hell just happened to the site”
whenever you glance at a dashboard. This conditions you to be entirely too calm
when looking at sensible dashboards when a disaster just happened. If you trust
what the CloudWatch dashboards show you, you’re making a terrible mistake.

“Dive Deep”
If you’re using Lambda or Fargate, you have no choice but to use CloudWatch Logs,
wherein searching for everything is absolutely terrible. If you’re using CloudWatch
Logs to diagnose anything, congratulations: you’re diving so deep, you may drown
before making it back to the surface. For example, if I have a Lambda function that

http://www.linuxjournal.com

99 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

throws an error, in order to diagnose the problem, I must:

• Find the fact that it encountered an error in the first place by looking at the
invocation error CloudWatch dashboard. I also could set up a filter to run a
continuous query on the logs and alert when something shows up, except that isn’t
natively supported—I need a third-party tool for that (such as PagerDuty).

• Go diving into a variety of CloudWatch log groups and find the one named after

Figure 1. Example
CloudWatch Graph

http://www.linuxjournal.com

100 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

the specific erroring function.

• Scroll manually through the many, many, many pages of log groups to find the
specific invocation that threw an error.

• Realize that the JSON object that’s retained isn’t enough to troubleshoot with, cry
in despair, and go write an article just like this one.

• Do some quick math and realize I’m paying an uncomfortable percentage of my
AWS bill for a service that’s only of somewhat marginal utility at best.

“Deliver Results”
All of your metrics, all of your logs—they’re locked away inside CloudWatch’s
various components. You’re not going to find a “page me when this threshold is
exceeded” option in CloudWatch; your options are relegated to “design an alert
delivery pipeline with baling wire and SNS” or pay a non-AWS vendor for another
monitoring product.

“Customer Obsession”
CloudWatch keeps all of your metrics. It keeps your logs. It lets you build
custom dashboards to view your metrics all in one place. The building blocks
of a great service are already here—it’s the expression of that utility that falls
short, sometimes drastically. The fact that large monitoring vendors are premier
sponsors of AWS events would be laughable if CloudWatch ever were to get
its act together. You’d not need a third party to make sense of a pure AWS
environment, and many of them would starve to death as they grow too weak
to interrupt your conversation to ask if they can scan your badge. Choosing to
use CloudWatch vs. literally anything else is like buying a car. “Why yes, I would
like to buy the Yugo instead of the Honda. After all, it checks all the boxes of
technically being a car, so it’s fine, right?”

“Disagree and Commit”
It may very well be that the root cause of many of CloudWatch’s failings comes

http://www.linuxjournal.com

101 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

from the product engineers who built it misunderstanding this (admittedly
slippery!) Leadership Principle. It’s envisioned as passionately expressing your
reservations about a decision, but once it’s reached that, you commit to the
decision that was made. Unfortunately, it appears that the engineering teams
responsible for CloudWatch decided to “Disagree in Commits” and inflict their
arguments upon the world in the form of the product.

“Ownership”
If I were to go on the internet and post about how terrible virtually any other AWS
service was, people would rally to that service’s defense. It’s the internet; people will
do that. But when these and many more similar comments about CloudWatch appear,
and nobody from AWS pipes in to say “wow, I’m sorry, why do you feel that way?”,
it’s abundantly clear that if any people on the CloudWatch team really care about the
product, they’ve been locked in a malfunctioning bathroom stall for the better part
of a decade. These comments go back at least that far, but Amazon is totally on it,
rocking the company’s “Bias for Action” principle.

“Hire and Develop the Best”
The people who build CloudWatch aren’t terrible at their jobs; I genuinely believe they
don’t quite grasp how their product is perceived. Given that it’s poor form to write
a rant like this and not offer suggestions for positive improvement, here are some
product enhancements I’d like to see:

• Give me the option to rate-limit API calls at arbitrary levels rather than being
surprised at month end by a bill that’s approximately Zanzibar’s GDP.

• “Here’s an error that your Lambda function threw, here’s the log output from that
specific function” should be at most two clicks away—not 30.

• If your dog has a litter of 14 puppies, perhaps you don’t need to name all
of them subtle variations of the term “CloudWatch”. The proliferation of
services and companies that all start with the word “Cloud” is the subject of
a completely separate rant.

https://twitter.com/shinzui/status/788939026996744192
https://news.ycombinator.com/item?id=12235003
https://www.reddit.com/r/devops/comments/8n3fpz/is_cloudwatch_logs_really_terrible_or_am_i_just/dzsz8qg
https://www.reddit.com/r/devops/comments/4zhgtl/how_do_you_feel_about_aws_cloudwatch_how_do_you
https://twitter.com/guisim/status/248394260704014336
https://twitter.com/calebhailey/status/1032800895203864576
https://news.ycombinator.com/item?id=14604644
http://www.linuxjournal.com

102 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Please don’t misunderstand me. I use, enjoy and promote AWS services, and I’m
considered to be “an authentic voice” largely because in addition to praising things
that are wonderful, I’ll call out things that aren’t, as I’ve just done. I’ve built my career
and business on working within that ecosystem. I find AWS employees to be intelligent
and well-intentioned, and most of their services quite good. CloudWatch could get
there with some work, but it’s got a number of very painful usability issues that keep it
from being good, let alone great. ◾

Corey Quinn is a Cloud Economist at the Quinn Advisory Group. He has a history as an engineering director, public speaker and
cloud architect. Corey specializes in helping companies address horrifying AWS bills and curates LastWeekinAWS.com, a weekly
newsletter summarizing the latest in AWS news, blogs and tips, sprinkled with snark. He has never worked at Amazon, for reasons
that should be obvious.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://lastweekinaws.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

http://handshake.org/signup

104 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Bare-Bones
Monitoring with
Monit and RRDtool
How to provide robust monitoring to low-end systems.

By Andy Carlson

When running a critical system, it’s necessary to know what resources the
system is consuming, to be alerted when resource utilization reaches a specific
level and to trend long-term performance. Zabbix and Nagios are two large-
scale solutions that monitor, alert and trend system performance, and they
each provide a rich user interface. Due to the requirements of those solutions,
however, dedicated hardware/VM resources typically are required to host the
monitoring solution. For smaller server implementations, options exist for
providing basic monitoring, alerting and trending functionality. This article
shows how to accomplish basic and custom monitoring and alerting using
Monit. It also covers how to monitor long-term trending of system performance
with RRDtool.

Initial Monit Configuration
On many popular Linux distros, you can install Monit from the associated
software repository. Once installed, you can handle all the configuration with the
monitrc configuration file. That file generally is located within the /etc directory
structure, but the exact location varies based on your distribution.

The config file has two sections: Global and Services. The Global section
allows for custom configuration of the Monit application. The Monit service

http://www.linuxjournal.com

105 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

contains a web-based front end that is fully configurable through the config
file. Although the section is commented out by default, you can uncomment
items selectively for granular customization. The web configuration block
looks like this:

set httpd port 2812 and
 use address localhost
 allow localhost
 allow admin:monit

The first line sets the port number where you can access Monit via web
browser. The second line sets the hostname (the HTTP host header) that’s
used to access Monit. The third line sets the host from which the Monit
application can be accessed. Note that you also can do this using a local firewall
access restriction if a firewall is currently in place. The fourth line allows the
configuration of a user name/password pair for use when accessing Monit.
There’s also a section that allows SSL options for encrypted connections to
Monit. Although enabling SSL is recommended when passing authentication
data, you also could reverse-proxy Monit through an existing web server, such
as nginx or Apache, provided SSL is already configured on the web server. For
more information on reverse-proxying Monit through Apache, see the Resources
section at the end of this article.

The next items you need to enable deal with configuring email alerts. To set up
the email server through which email will be relayed to the recipient, add or
enable the following line:

set mailserver mailserver.company.com

Note that if there’s a local SMTP server running, the server name of
mailserver.company.com in this example may be replaced with localhost.

The next block to enable sets the contents of the email alert messages that will be

http://www.linuxjournal.com

106 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

sent and will look similar to this:

set mail-format {
 from: Monit <monit@$HOST>
 subject: Monit alert -- $EVENT $SERVICE
 message: $EVENT Service $SERVICE
 Date: $DATE
 Action: $ACTION
 Host: $HOST
 Description: $DESCRIPTION

 Your faithful employee,
 Monit
}

Within this block, different predefined variables are used to provide alert-specific
information (denoted by the $ sign). You can modify text within the from,
subject or message fields, and you also can add additional data to the message
field as desired.

To finish the alerting functionality, you can configure an email address that will
receive all email alerts from Monit by adding the following line:

set alert user@domain.com

At this point, the specified email address will receive all alerts generated by Monit.
However, so far, no alerts are configured. To begin configuring alerts, let’s first
look at the Services section mentioned earlier. That section provides some basic
monitoring functionality for the local machine, including CPU, memory, swap,
filesystem and basic network monitoring. Each of those configuration items
provides for the definition of thresholds. After the thresholds are met, actions can
be taken, including sending an alert. As an example, the out-of-the-box alert for
CPU/memory/swap monitoring looks like this:

http://www.linuxjournal.com

107 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

check system $HOST
 if loadavg (1min) > 4 then alert
 if loadavg (5min) > 2 then alert
 if cpu usage > 95% for 10 cycles then alert
 if memory usage > 75% then alert
 if swap usage > 25% then alert

Again, note the use of variables to define the host to be monitored. While
all of the triggers defined here result in an alert, other actions also can be taken.
For more information on these settings, consult the Monit documentation
(see Resources).

Custom Configuration of Monit
Once initial configuration is complete, you can define custom alerts. It’s best to
define the custom alerts outside the monitrc file. You do this by defining an include
directory in the monitrc file as follows:

include /opt/monit-custom/*

This line includes all configuration files located in the /opt/monit-custom folder.

Next, let’s look at two types of monitoring: host checks and program checks. Host
checks allow for the monitoring of TCP-based services running on remote hosts.
Although you can do basic TCP port connection testing for simpler services, Monit
also provides the ability to do HTTP-based content checks to a specific URL. Consider
the following example:

check host linuxjournal-website with address www.linuxjournal.com
 if failed
 port 443 protocol https
 with request / with content = "Become a Patron"
 then alert

http://www.linuxjournal.com

108 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

The first line of the host check defines the identifier within Monit for this
host (linuxjournal-website) and the address with which the host will be
accessed (www.linuxjournal.com). In this example, the trigger within the
host definition contains multiple conditions: it must be accessed via port 443
using the https protocol, and when accessed at the root URL, the text “Become a
Patron” shows up in the response body. This check could be reconfigured to use
port 80 and the http protocol.

Along with host monitoring, Monit allows the definition of script-based monitors,
which is called a program check. Once a script is configured within Monit, the
script will be executed periodically, and based on the script’s exit code, action
may be taken.

Here’s an example of a script that alerts when an SSL certificate expiration date is
within a specified number of days:

#!/bin/bash

domainexpiredate() {
 openssl x509 -text -in <(echo -n | \
 openssl s_client -connect $1:$2 2>/dev/null | \
 sed -n '/-*BEGIN/,/-*END/p') 2>/dev/null | sed -n 's/
 ↪*Not After : *//p'
}

daysleft() {
 echo "((($(date -d "$(domainexpiredate $1 $2)" +%s)-$(date
 ↪+%s))/24)/60)/60" | bc
}

defaultport() {
 if [-z "$1"]; then
 echo "443"

http://www.linuxjournal.com

109 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

 else
 echo "$1"
 fi
}

[[$(daysleft $2 $(defaultport $3)) -le $1]] && exit 1 ||
 ↪exit 0

This script is executed with two arguments: minimum number of days until
expiration and the hostname of the server, with an optional third parameter for
port number. Here’s an example execution of the script:

$ checkcertexpire.sh 31 www.linuxjournal.com
$ echo $?
0

When the script is executed with the two required arguments, there is no console
output. After the execution, if the return code is echoed (identified as $?),
the value is 0, which indicates that the domain does not expire within 31 days.
Configuring this item within Monit requires the following:

check program linuxjournal-ssl with path
 ↪"/etc/monit/scripts/checkcertexpire.sh 31 www.linuxjournal.com"
 if status != 0 then alert

In the same way as the host check, the program check has an identifier within
Monit (linuxjournal-ssl, in this case). In the first line of the program check,
along with the identifier, is the script to be executed along with the command-line
arguments. Note that the trigger indicates that if the exit code is not 0, an alert
should be sent.

Collecting Data with RRDtool
RRDtool is a very robust tool that lets you collect data over a long period of time.

http://www.linuxjournal.com

110 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Named after its database format (round-robin database), RRDtool saves time-based
data to its database and then lets you retrieve and graph the data. RRDtool can graph
any data that you can present through a command to a shell script.

Before capturing data, you must initialize the database. For this example, let’s create
a database to capture the five-minute load average. Here’s the command to initialize
this specific database:

rrdtool create loadavg_db.rrd --step 60
 ↪DS:loadavg:GAUGE:120:0:10000 RRA:MAX:0.5:1:1500

The first two arguments indicate that a database named loadavg_db.rrd is
being created. The --step argument defines the expected time gap between data
samplings. In this case, 60 seconds are expected between samplings.

Let’s look at two more arguments separately. The first of the two arguments begins
with DS and defines a data set named loadavg. Note that the options for this data
set are separated by colons. The GAUGE keyword says that when the data is read, it
will be written to the database as is (unaltered). The 120 is the timeout in seconds
to wait for data to be written to the database. If the data isn’t written to the database
within that window, zeros will be written to the database to indicate an error in
the data feed. The 0 and 10000 are the minimum and maximum values that can be
written to the database. The argument beginning with RRA defines the round-robin
archive value. This defines how many values can be stored in the database and how
long they’ll be stored. The MAX indicates that the variable contains one value and
shouldn’t be modified in any way. The 0.5 indicates the initial resolution value. This
is a standard value and shouldn’t be changed. The 1 identifies how many steps should
be averaged when storing a final value. In this case, there is one step value per value
stored in the database. The final argument, 1440, is how many steps will be stored in
the database. Since the step length is 60 seconds, this configuration will provide 25
hours of data to be stored in the database.

Now that the data is initialized, you can capture and store it in the database. To

http://www.linuxjournal.com

111 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

maintain accurate periodic data collection, it’s best to create a crontab entry and
have the data be collected at a desired interval. For this example, you would have
the cron job run every minute. To collect data and put it in the database, use the
following command:

rrdtool update loadavg_db.rrd --template loadavg N:$(cat
 ↪/proc/loadavg | sed 's/^\([0-9\.]\+\) .*$/\1/g')

To perform the data collection, the update argument along with the database
name was used. The --template argument allows you to specify the variable
name to populate with data. This is the same loadavg variable that was defined
when the database was initialized. The N argument defines the data to be put into
the loadavg variable. In this case, the result of the command substitution will be
put into the database, which will be the five-minute load average. This command
could be placed in the crontab for minute-by-minute execution. The crotab entry
would look like this:

* * * * * /path/to/rrdtool-script.sh

Since all of the time fields contain asterisks, the specified script will run every
minute. Once the database has been populated, you can render a graph with the
following command:

rrdtool graph loadavg_graph-$(date +"%m-%d-%Y").png \
-w 785 -h 120 -a PNG \
--slope-mode \
--start -86400 --end now \
--font DEFAULT:7: \
--title "5-minute load average" \
--watermark "'date'" \
--vertical-label "load average" \
--lower-limit 0 \
--right-axis 1:0 \

http://www.linuxjournal.com

112 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

--x-grid MINUTE:10:HOUR:1:MINUTE:120:0:%R \
--alt-y-grid --rigid \
DEF:loadaverage=loadavg_db.rrd:loadavg:MAX \
LINE1:loadaverage#0000FF:"load" \
GPRINT:loadaverage:LAST:"Cur\: %5.2lf" \
GPRINT:loadaverage:AVERAGE:"Avg\: %5.2lf" \
GPRINT:loadaverage:MAX:"Max\: %5.2lf" \
GPRINT:loadaverage:MIN:"Min\: %5.2lf\t\t\t"

The first line calls the RRDtool graph function along with the filename of the image
to create. In this instance, the image filename will contain the current date. All of the
arguments beginning with -- set up the look and feel of the graph, including labels,
axis configuration, image format and the time frame from which to pull the data. For
detailed information on these arguments, see the RRDtool documentation.

The line beginning with DEF:loadaverage defines a graph variable named
loadaverage, which will have the values from the loadavg variable you created in
the database. The line beginning with LINE specifies the color of the graph line and
the label to use in the legend. The GPRINT lines indicate various statistic details to
be printed at the bottom of the graph. In this case, the last recorded value and the
average, minimum and maximum values during the time frame will be displayed. Note
that the %5.2lf specifies the value to be printed as a floating-point number with up
to five digits to the left of the decimal point and two digits to the right.

For ease of capturing daily graphs, you also could add this command to the crontab
to run daily with the following entry:

0 0 * * * /path/to/rrdtool-graph.sh

This will run the graph script every day at midnight. The images may now be
placed in a folder that is accessible via a browser for easy viewing.

Although many monitoring solutions exist that provide robust graphical UIs,

http://www.linuxjournal.com

113 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

these solutions provide basic monitoring and trending functionality while using a
minimum of system resources and providing a basic framework for disseminating
the data collected. ◾

Andy Carlson has worked in IT for the past 15 years doing networking and server administration along with occasional coding. He is
thankful to have chosen a career that he loves, grows in and learns from. He currently resides in Cincinnati, Ohio, with his wife, three
daughters and his son. His family is currently in the process of adopting two children internationally. He enjoys playing the guitar,
coding, and spending time with family and friends.

Resources
• Monit Documentation

• Monit Apache Integration

• RRDtool Graph Function Reference

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://mmonit.com/monit/documentation/monit.html
http://git.andydoestech.com/git/scripts/.git/tree/config/monit.conf
https://oss.oetiker.ch/rrdtool/doc/rrdgraph.en.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

114 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

How-To:
Implementing
a Real-Time
Syslog Shipper
for Your Terminal
Ever wondered how to tail -F /var/log/messages from
multiple servers at once? Read on.

By Fabien Wernli

Troubleshooting Linux systems can be challenging, especially at times when the
tools available to system administrators are constantly evolving. But, it’s hard to
avoid using some classic utilities on a daily basis. One of them can be summarized
by the following command:

tail -F /var/log/messages

Reviewing logs is indeed a key player of the “Utilization Saturation and Errors”
(USE) method. While storing historic logs from many servers in a centralized storage
engine like Elasticsearch has become quite common nowadays, it’s sometimes
important to have a low-latency view of what’s happening right now in your
infrastructure. Unfortunately, there is no standard out-of-the-box tool to view logs in
real time simultaneously on all hosts of a data center.

http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html
http://elastic.co/products/elasticsearch
http://www.linuxjournal.com

115 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Here are some use cases where low-latency treatment makes sense, along with an
example for each:

• Security incidents: account Y is compromised; trigger an alert for each successful
connection attempt site-wide.

• Change management: committed a new change to configuration management;
show each hosts’ resource status as it changes.

• Real-time data mining: show all nodes on which application Z is currently serving
more than N requests per second.

This article shows how to set up a site-wide low-latency (sub-millisecond) log
shipping infrastructure. I’ll do this with minimal intrusion and demonstrate its usage in
the command-line interface, just like good-old tail -f /var/log/messages.

As your mileage may vary, let’s stick to a simple scenario that you can adapt to your
own use case. Most instructions given here are for recent Debian-based GNU/Linux
distributions, but they easily can be adapted to other environments.

Scenario
Let’s assume a number of Linux or UNIX servers, and that you’d like to be able to
subscribe to all or a subset of their logs in real time, using a terminal. Let’s refer
to these servers as the clients.

Let’s further assume that they all have a running syslog collection dæmon, which
you’ll configure to forward the logs to a remote server that will serve as the log
subscription hub.

Finally, you’ll use a control node that will serve as the login host. This will be
the human-machine interface. The control node can be the same machine as
the hub, or you can use your workstation or laptop, provided the firewalls are
set up accordingly.

http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

Software
Although no extra software is required on the clients, you’ll need the following
on the hub:

• syslog-ng >= 3.6.1 (or earlier with syslog-ng-incubator).

• riemann = 0.3.0.

On the control node, you’ll need to install the following:

• A websocket (WS) client or a server-side-event (SSE) client:
python websocket-client = 0.47.0 or nodejs wscat = 2.1.1.

• riemann-dash = 0.2.14 (optional).

How It Works
Before getting your hands dirty modifying configuration files, let’s get a glimpse
of the big picture. See Figure 1 for a diagram of the overall architecture and
event flow.

This diagram shows the following:

1. An application “app” on the client calls syslog() to log a message about
an event.

2. The local syslog dæmon captures the event and sends it to the remote hub
using the syslog protocol.

3. The syslog-ng dæmon on the hub forwards the event to the riemann dæmon
using protocol buffers.

4. The control node issues a subscription request to the hub using either
WS or SSE.

116 | November 2018 | http://www.linuxjournal.com

https://developers.google.com/protocol-buffers
http://www.linuxjournal.com

117 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

5. The riemann dæmon on the hub parses the query and starts forwarding
matching events to the control node.

6. The control node parses incoming events and displays them on your terminal
in real time.

The whole process, from step 1 to 6, usually takes less than a tenth of a millisecond
(three sigma), even if tens of thousands of events happen per second.

From the user’s perspective, the workflow steps are the following:

1. ssh to the control node.

2. Run the CLI with query as argument.

3. Read messages on the terminal.

Figure 1. Architecture Diagram

http://www.linuxjournal.com

118 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE
DEEP
DIVE

118 | November 2018 | http://www.linuxjournal.com

Syslog-ng acts as a syslog-forwarder to riemann. Riemann acts as a real-time synchronous
event publisher and subscription manager. It can push events matching a certain query
using a websocket, for instance, to a command-line client or web browser.

Riemann Queries in a Nutshell
The query must be in riemann’s domain-specific language, which is very simple
but quite strict. Basically, you have to remember that riemann events have
tags and attributes. You can query tags using the tagged "foo" pragma and
attributes with key = "value". You can combine conditions using and and or
operators, and use the special wild-card character “%” in attribute expressions in
the following form:

MESSAGE =~ "%quick brown fox%"

You can learn more about queries on the Riemann website. You could, for instance,
subscribe to all events having a syslog priority of “warning”:

PRIORITY = "warning"

Or subscribe to all events:

true

Or match events from a given IP address:

HOST_FROM = "172.18.0.1"

Setup
Clients:

On the clients, you’ll need to configure the local syslog dæmon to forward all events
to the hub.

http://riemann.io/
http://www.linuxjournal.com

119 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

The precise method depends on the syslog application you use on the client.
If you are using legacy syslogd or rsyslog, add the following line to your
(r)syslog.conf file:

* @hub.example.com

If you are using syslog-ng, add the following lines to your syslog-ng.conf file:

destination d_hub {
 network(
 'hub.example.com',
 transport(udp),
 port(514),
 flags(syslog-protocol)
);
};

And, don’t forget to add the new destination to your existing log path
(see the Configuration section for an example).

hub:

On the hub, you have more work to do, as you’ll be installing and configuring
both syslog-ng and riemann. Make sure to download and install at least the
versions listed earlier.

Installation
The procedure to install syslog-ng highly depends on the operating system you
are using. On recent Debian-based GNU/Linux distributions, chances are the
distribution packages will contain a recent enough version:

apt install syslog-ng-mod-riemann

http://www.linuxjournal.com

120 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

If your distribution doesn’t provide the required version, the syslog-ng project’s
home page has pointers to download packages for various platforms. Last but
not least, there’s always the option of building your own binaries using the
source code available on GitHub. If you decide to go down that path, make sure
to enable the riemann destination in the compilation options.

Installing riemann is just a matter of downloading the package from its website
and grabbing a copy of a Java Runtime Environment (JRE). On Debian, the
most straightforward option is to install openjdk-8-jre-headless. You
can also build riemann from source (see instructions on its GitHub page). On
Debian/Stretch, you could do the following:

apt install openjdk-8-jre-headless
wget https://github.com/riemann/riemann/releases/download/
↪0.3.0/riemann_0.3.0_all.deb
dpkg -i riemann_0.3.0_all.deb

Configuration
The syslog-ng configuration given here is the minimum required for the
task at hand. It doesn’t technically conflict with the existing syslog-daemon
implementation, unless it’s already listening on the UDP port 514. However, on
Debian-based distributions, installing syslog-ng will uninstall rsyslog, because the
packages conflict with one another.

In this light, you’ll add a drop-in file, /etc/syslog-ng/syslog-ng.conf.d/riemann.conf, that
syslog-ng will include in the main configuration file. That way, it won’t interfere with
the configuration file provided in the distribution:

syslog listener definition on *:514/udp
source s_syslog {
 network(
 ip('0.0.0.0')
 transport(udp)

https://syslog-ng.com/open-source-log-management
https://syslog-ng.com/open-source-log-management
https://github.com/balabit/syslog-ng
https://github.com/riemann/riemann
http://www.linuxjournal.com

121 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

 port(514)
 flags(syslog-protocol)
);
};
riemann destination definition
destination d_riemann {
 riemann(
 server('127.0.0.1')
 port(5555)
 type('tcp')
 ttl('300')
 state("${state:-ok}")
 attributes(
 scope(all-nv-pairs rfc5424)
)
 tags('syslog')
);
};
log path
log {
 source(s_syslog);
 destination(d_riemann);
};

Ensure that the /etc/syslog-ng/syslog-ng.conf file includes the following line;
otherwise, syslog-ng will ignore the /etc/syslog-ng/syslog-ng.conf.d/riemann.conf file:

@include "/etc/syslog-ng/conf.d/*.conf"

The above configuration defines a syslog listener on standard UDP port 514, a
riemann destination and a log path connecting the two. Refer to the syslog-ng
documentation for any details on the syntax used here.

https://syslog-ng.com/documentation
https://syslog-ng.com/documentation
http://www.linuxjournal.com

122 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

The riemann configuration is given in its entirety. You simply can replace the shipped
/etc/riemann/riemann.config with the following:

; Configure logging
(logging/init {:file "/var/log/riemann/riemann.log"})

; Disable riemann's internal instrumentation
(instrumentation {:enabled? false})

; Listen on the local interface over TCP (5555), websockets
; (5556), and server-side-events (5558)
(let [host "0.0.0.0"]
 (tcp-server {:host host :port 5555})
 (ws-server {:host host :port 5556})
 (sse-server {:host host :port 5558}))

; Expire old events from the index every 5 seconds.
(periodically-expire 5)

; Index all events with a default time-to-live of 60 seconds
(let [index (index)]
 (streams
 (default :ttl 60
 index)))

This configuration sets up three listeners:

1. Port 5555 will receive events from syslog-ng in protobuf format.

2. Port 5556 will listen for websocket subscriptions.

3. Port 5558 will listen for server-side-event subscriptions.

http://www.linuxjournal.com

123 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

It also disables riemann’s instrumentation service, so you’re not confused with internal
messages and can focus only on syslog.

Refer to riemann’s resources on the website—especially the how-to section for details
on the configuration syntax.

Now that both syslog-ng and riemann are configured to your needs, check the
configurations for errors:

syslog-ng -f /etc/syslog-ng/syslog-ng.conf -s
riemann test /etc/riemann/riemann.config

If both return without errors, (re)start the services:

service riemann start
service syslog-ng restart

Control Node
The last thing you need to connect all the dots is the command-line interface that will
let you tail -F all logs from all the clients. There are a number of options here:
the CLI you need should support either websockets or server-side-events. Both are
technologies borrowed from the web that allow the web server (Riemann in this case)
to push data to the client, instead of the client pulling.

You’ll be using websockets, as existing software tends to be more generally
available. There is a convenient Python package that works right out of the box:

pip install websocket-client

Alternatively, you also can use a Node.js implementation:

npm install -g wscat

https://pypi.python.org/pypi/websocket-client
https://blog.grandcentrix.net/a-command-line-websocket-client
http://www.linuxjournal.com

124 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Now, subscribe to the syslog flow:

subscribe to all events (query 'true')
wscat --connect 'ws://hub.example.com:5556/index?subscribe=
↪true&query=true'
or
wsdump.py -r 'ws://hub.example.com:5556/index?subscribe=
↪true&query=true'

Note that you may have to URL-encode the query:

subscribe to events matching the query 'PRIORITY = "warning"'
wsdump.py -r 'ws://hub.example.com:5556/index?subscribe=
↪true&query=PRIORITY+%3D+%22warning%22'

Let’s push some events to it by crafting a syslog message from another shell:

logger -d -n hub.example.com -p 4 -t foo bar baz

On the WS CLI, you immediately should see:

{"host":"172.18.0.1","service":"test","state":"ok",
↪"description":null,"metric":null,"tags":["syslog"],"time":
↪"2018-04-10T13:36:04.787Z","ttl":300.0,"DATE":"Apr 10
↪15:36:04","HOST":"172.18.0.1","FACILITY":"user","MESSAGE":
↪"bar baz",".SDATA.timeQuality.isSynced":"0","HOST_FROM":
↪"172.18.0.1","SOURCE":"s_syslog",".SDATA.timeQuality.tzKnown":
↪"1","PRIORITY":"warning","PROGRAM":"foo"}

If you want to see a more traditional representation of the message (as in
/var/ log /messages), you can pipe the client’s output through the jq utility in
the following way:

https://stedolan.github.io/jq
http://www.linuxjournal.com

125 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

wsdump.py -r [...] | jq -r '"\(.time) \(.HOST) \(.PROGRAM)
 ↪\(.MESSAGE)"'

In which case, you’ll see:

2018-04-10T14:04:53.489Z 172.18.0.1 foo bar baz

Troubleshooting
To troubleshoot syslog-ng, run it in the foreground in debug mode:

syslog-ng -Fdv

Although very verbose, the parser and debug messages are extremely valuable
when tracking configuration or payload issues.

If needed, feel free to subscribe to the very friendly official mailing list, where
many users and also the core developers are active.

Debugging riemann configuration problems can be challenging, especially if
you’ve never programmed in Clojure before. If there is a syntax error, like a
missing parenthesis, you quickly can be flooded by Java stack traces. Be patient
and try to find the relevant bits in the trace messages.

If that doesn’t suffice, there’s a very helpful community on IRC and the mailing-list.

What’s Next?
Now that you’ve got a working proof of concept (PoC), there are quite a few things
you can do to improve the system. Although I won’t go into much detail about those
things, here are a few ideas based on our experience at CCIN2P3.

Security
First off, you might want to add a bit of security to the setup. You actually
made things quite worse while moving from ssh+tail -f messages to the

https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://riemann.io/support.html
https://cc.in2p3.fr/
http://www.linuxjournal.com

126 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

websocket solution. Anyone on the network now can subscribe to the whole
site’s syslog, without any authentication. Luckily, there’s a simple solution to this:
set up a reverse proxy in front of riemann’s websocket listener. As authentication
is very site-specific, I won’t cover it extensively here. However, here’s a simple
example using the Caddy web server and basic authentication:

/etc/Caddyfile
hub.example.com:5559 {
 tls self_signed
 basicauth / user pass
 proxy / localhost:5556 {
 websocket
 }
}

This configuration will listen to the external port 5559 and proxy the traffic to
local port 5556 if the user provided correct credentials. This only makes sense if
riemann is reconfigured to listen on the local network interface.

On the control node, you now can connect to the proxy using basic authentication:

wsdump.py --headers 'Authorization: Basic dXNlcjpwYXNz' -r
 ↪'wss://hub.example.com:5559/index?subscribe=true&query=true' -n
or
wscat -n --auth user:pass --connect 'wss://hub.example.com:5559/
↪index?subscribe=true&query=true'

Note that the Python CLI doesn’t support supplying basic auth credentials on the
command line, so you need to pass the base64 encoded user:pass using an
HTTP header.

Another improvement could be to write a higher-level CLI that integrates with
your local organization’s central authentication mechanisms. For example, it

https://caddyserver.com/
http://www.linuxjournal.com

127 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

could leverage roles from a central identity directory and apply access control
lists. Those could be host-based or even application-based: role A can subscribe
to events matching queries X, Y and Z.

Stream Processing
Both software suites installed on the hub can be leveraged further to filter,
aggregate and even correlate syslog messages.

Although syslog-ng can do this in a more traditional fashion by using
configuration elements like filters, parsers and template functions, riemann
on the other hand gives you full control over the event flow. In fact, its
configuration file is code that will be compiled, so you can do virtually
anything. One of the most common usages in the wild for both software
packages are structuring incoming data. Although you saw that syslog
events already feature some structure in the form of key/value pairs, both
riemann and syslog-ng can help you extract or add additional features to
your events. Those will help you filter the live stream of events and answer
real questions.

Web App
There is a web interface (riemann-dash) that takes advantage of riemann’s
subscription mechanism. It can display events in textual, grid or even graphical
form, and it’s invaluable when you want to monitor changes in real time in a
distributed application.

Resiliency
Another caveat of this PoC is that this hub is a single point of failure (SPoF). You
could do the following to improve the situation:

• Install syslog-ng on all the clients.

• Configure all syslog-ng instances to send the logs to multiple riemann servers.

http://riemann.io/dashboard.html
http://www.linuxjournal.com

128 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

• Write a high-level CLI that uses load-balancing to subscribe to the riemann
servers’ streams.

Dockerfile
For your convenience, a GitHub repository containing the means to build a Docker
container for the solution described in this article is at your disposal. It includes the
steps on how to build, run and use the container. ◾

Fabien Wernli (faxm0demi/faxmodem on GitHub, Twitter and Freenode) has been administering Linux clusters at the Computing
Centre of the National Institute of Nuclear Physics and Particle Physics (CC-IN2P3) for 15 years. Among other things, he is an expert on
performance-data monitoring and infrastructure management.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://github.com/ccin2p3/docker-distributed-tail--f-messages
https://github.com/ccin2p3/docker-distributed-tail--f-messages
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

129 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Resources

• Utilization Saturation and Errors (USE) Method

• Elasticsearch

• Protocol Buffers

• Riemann Website

• syslog-ng Project’s Home Page

• syslog-ng on GitHub

• Riemann GitHub Page

• syslog-ng Documentation

• WebSocket Client for Python

• Node.js WebSocket Implementation

• jq Utility

• syslog-ng Mailing List

• Riemann Support and IRC

• Centre de Calcul de L’IN2P3

• Caddy Web Server

• riemann dash Web Interface

• Distributed tail -f /var/log/messages Docker Container

Further Reading:

• The Art of Monitoring is a fine book that covers various aspects of
monitoring. Luckily, it includes a free complete section on riemann.

• The Just enough Clojure to work with Riemann section on riemann’s website
tries to address the steep learning curve of the “configuration syntax”.

• The syslog-ng website features multiple whitepapers with various use cases,
including sections on how to parse and structure your syslogs.

http://www.brendangregg.com/usemethod.html
http://elastic.co/products/elasticsearch
https://developers.google.com/protocol-buffers
http://riemann.io/
https://syslog-ng.com/open-source-log-management
https://github.com/balabit/syslog-ng
https://github.com/riemann/riemann
https://syslog-ng.com/documentation
https://pypi.python.org/pypi/websocket-client
https://blog.grandcentrix.net/a-command-line-websocket-client
https://stedolan.github.io/jq
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://riemann.io/support.html
https://cc.in2p3.fr/
https://caddyserver.com/
http://riemann.io/dashboard.html
https://github.com/ccin2p3/docker-distributed-tail--f-messages
https://www.artofmonitoring.com/
http://riemann.io/clojure.html
https://syslog-ng.com/white-papers
http://www.linuxjournal.com

130 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Taking System
Monitoring to
the Next Level:
an Interview
with Scalyr CEO
Steve Newman
As computing ecosystems become more complex, monitoring
and analyzing those often disconnected moving parts becomes
increasingly challenging.

By Petros Koutoupis

Today’s data center has evolved from a single supplier producing and selling
all-in-one offerings, such as the days when EMC, NetApp, HP or even Sun
owned your data center and you chose a vendor and stuck with it. Those
same vendors provided you with the required tools to monitor, analyze and
troubleshoot their entire stack.

Shifting focus to the present, the landscape now appears to be quite different.
Instead, you will find environments of mixed offerings provided by an assortment

http://www.linuxjournal.com

131 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

of vendors, both large and small. Proprietary machines work side by side with
off-the-shelf commodity devices hosting software-defined software. Half of your
applications may be hosted in virtual machines over a hypervisor or just spun up in
a container. How does a modern data-center administrator or DevOps professional
manage such an environment?

An assortment of platforms and frameworks exist that provide such capabilities,
but they’re not all one and the same. In some cases, those same tools will need
to be coupled with others to produce something useful (for example, ELK:
Elasticsearch + Logstash + Kibana). Unfortunately, this arrangement just adds
to the complication and frustration when attempting to diagnose or discover
problems in your computing environment.

Putting an end to this level of complexity,
one company stands out among the
rest: Scalyr. Scalyr develops and offers
a complete suite of server monitoring,
log management, visualization and
analysis tools, which integrate with cloud
services. I recently had the pleasure of
chatting with Scalyr CEO Steve Newman.

His is not a household name, like Steve
Jobs or Bill Gates, but you will be familiar
with his work and contributions to
cloud-enabled technologies. Although
this is likely to change with Scalyr, Steve
is best known for his work with Writely,
a technology that later was acquired by
Google and relabeled as Google Docs. In
our conversation, Steve and I took the
opportunity to discuss Scalyr, its solution
and the problem it solves.Steve Newman, Scalyr CEO

http://www.linuxjournal.com

132 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

Petros Koutoupis: Tell me a bit about yourself. Who is Steve Newman?

Steve Newman: I am an engineer by both training and background and
have spent most of my career in the startup environment. This is because I
enjoy building things. I was at Google for a number of years following an
acquisition, and while the experience itself was great, the startup bug in me
drove me to Scalyr.

PK: So, now you founded a company called Scalyr. Please tell us, what
is Scalyr?

SN: Scalyr is a log management platform for engineers responsible for
software development. We collect logs from applications, services, containers
and systems, and make that data available to help engineering teams track
down problems and generally manage the complexity of modern development
and operations.

PK: And why? What problem(s) does your product solve?

SN: Traditional log management tools are complex and often very slow at scale.
This leads to a “gatekeeper” approach to log management, where only a select
few acquire the expertise (and have the patience!) to access this critical data.
Logs become a tool of last resort, hindering the team’s ability to rapidly or
proactively address issues.

My co-founder Steven Czerwinski and I first experienced this problem ourselves
at Google. We were leading an infrastructure project supporting Google Docs,
Drive, Photos and other related applications. There were a lot of moving parts,
and the engineering team spent close to half of its time simply tracking down
problems. We started Scalyr in 2011 to create the tool we wished we’d had at
Google—one that would allow us to make sense of the flood of telemetry data
and quickly understand why a complex system is misbehaving.

http://www.linuxjournal.com

133 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

PK: How does Scalyr work?

SN: We’re a fully managed SaaS solution. Logs are sent to our centrally hosted
search cluster, using our agent or an array of API integrations. Engineers then
use our web app (or APIs) to analyze, visualize and explore the logs.

The critical component is the back end. We’ve built the back-end software
stack from scratch, optimizing for the data access patterns that arise in log
management. Some interesting aspects of our approach are:

1) Unlike other log management solutions, we don’t use indexes. Keyword
indexes are optimized for finding the “best ten matches”, in a corpus comprised
of slowly evolving, human language text such as web pages or product
descriptions. Log management use cases are very different, with small units of
text (individual log messages), constantly updated, full of record IDs and other
non-words that balloon the vocabulary size. Most important, log management
queries generally visualize a complete data set, rather than stop after ten high-
ranking results. Keyword indexes don’t help much there, and they are complex,
expensive to maintain and often impose multi-minute ingestion delays.

We’ve taken a much simpler approach, building a streamlined, columnar data
store that’s optimized for log data. The basic idea is that we just store logs and
scan them, like good old-fashioned grep. We then use a lot of tricks to minimize
the amount of data that needs to be scanned; for instance, when querying
specific fields of a log, the columnar data layout means that we need to scan only
those fields.

2) We process queries one at a time, globally. This allows each customer to use
our entire search cluster, with aggregate search performance of 1.5 terabytes
per second. It’s fast enough (96% of queries complete in less than one second)
that queries almost never wait in line—we finish each query before the next one
arrives. The nice thing about this approach is that there’s an economy of scale:
as our customer base grows, performance increases.

http://www.linuxjournal.com

134 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

3) We’ve built a separate back end for repetitive queries, such as those
used in dashboards or alerting rules. This part of the system is based on a
time series database, with a custom time series for each query. The ingestion
engine automatically updates these time series as log messages arrive. This
means we don’t need to execute queries to display a dashboard or evaluate an
alerting rule—the relevant data has been precomputed in the time series. In
database terms, we’re automatically creating materialized views where needed.

PK: What makes Scalyr stand out or competitive with existing solutions?

SN: Speed, simplicity and scalability.

Speed was central to our mission from day one. Logs are a massively useful, detailed
data source, but when it takes minutes (or longer) to run a query, engineers avoid
using them. We satisfy most queries in a fraction of a second. We also ingest data in
real time: new logs are available for querying within a few seconds.

Simplicity goes hand in hand with speed, which is best measured as the time from a
question in an engineer’s head to an answer on his or her screen. The fastest back
end in the world is of little use if you spent five minutes wrestling with the query
language. We rely on our performance, as well as our ability to parse logs and
extract structured data on ingestion, to provide a set of visual exploration tools
that allows engineers to get answers without becoming query language experts.
There’s a query language, but you can dive in without knowing anything about it.

Finally, customers often choose us for our scalability. We continue to work
well not only as server count and data volume increase, but as a team grows.
Scalyr works just as quickly whether it’s three or 1,000 people looking at logs.
This helps teams move away from the gatekeeper model of traditional log
management to the concurrent, collaborative engineering model that modern
organizations are increasingly adopting.

With Scalyr, companies for the first time have a log management platform that

http://www.linuxjournal.com

135 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

does not charge ruthless licensing fees for new users, involve long ramp-up times
or require learning arcane query languages. It’s meant for teams who need to
move fast.

PK: Who would benefit from using Scalyr?

SN: Our sweet spot is organizations where the application is critical to the
business. From B2B software to online retailers, dating platforms and media
companies, every business’ competitive advantage increasingly is the technology
stack and the speed at which that stack can evolve. Scalyr is critical to enabling
that. Some of our customers include NBCUniversal, OkCupid, Zalando and
ReturnPath.

Within those organizations, the primary Scalyr user usually comes from
engineering or DevOps. But Scalyr is simple enough to use that we often
see usage spread to other roles like support, which can search logs to track
down specific client problems. Some of our customers have upwards of 1000
individuals with Scalyr logins. Typically, half the users are active on a weekly basis,
which is huge engagement compared to traditional log management platforms.

PK: How easily does Scalyr integrate into current production environments?

SN: It’s our mission to meet customers where they are, so we support many
different models. Some run their own servers or virtual servers. Some are on
Kubernetes, while others are serverless. Regardless, setup first involves retrieving
logs. The most common way of doing this is with a lightweight agent that
customers can install as a container, sidecar or whatever they need. We also have
API integrations to retrieve logs directly from the wide array of cloud services in
use today.

Once the logs are flowing in, you’re off and running, but an important further
step is to set up parsing rules. This allows us to extract structured data,
unlocking the full power of the analysis and visualization tools. To make this as

http://www.linuxjournal.com

136 | November 2018 | http://www.linuxjournal.com

DEEP
DIVE

easy as possible, we’ve built three generations of parsing engines. The current
engine is so easy to use, we’ve literally put a button in the product that tells our
support team to set up the rules for you. Of course, being engineers, many of
our customers prefer to do it themselves.

Conclusion
With today’s internet, the “app” increasingly is the business (think of Uber, Airbnb,
Amazon and so on), and getting to the bottom of downtime is crucial. This process
is made more difficult than ever as the system or code is increasingly distributed with
the use of containers, serverless and other technologies. That is where Scalyr comes
in with its log analysis platform. It is crazy fast and easy to use. To learn more about
this wonderful product, visit https://www.scalyr.com. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior platform architect at IBM for its Cloud Object Storage division (formerly
Cleversafe). He is also the creator and maintainer of the RapidDisk Project. Petros has worked in the data storage industry for well over a
decade and has helped pioneer the many technologies unleashed in the wild today.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.scalyr.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

NOV
3-4

BRISTOL, UK

PRESENTING

9AM
OPENS AT

20TH ANNIVERSARY CELEBRATION

The freenode project celebrates its 20th anniversary this year at the
second annual freenode #live conference

At We The Curious in Bristol, UK
November 3-4, 2018 9am Saturday - 6pm Sunday

Registration and call for participation is open now at

HTTPS://FREENODE.LIVE

Keynote speakers include Bradley M. Kuhn, Chris Lamb, Kyle Rankin,
Leslie Hawthorn and VM Brasseur! More to come...

https://freenode.live

138 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Review: the Dell
XPS 13 Developer
Edition Laptop
A look at Dell’s thin and sleek XPS 13 Developer Edition laptop that
now ships with Ubuntu 18.04 LTS pre-installed.

By Petros Koutoupis

http://www.linuxjournal.com

139 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Canonical recently made an official announcement on its company blog stating that
the Dell XPS 13 Developer Edition laptop (that is, Project Sputnik) now ships with
Ubuntu 18.04 LTS (Bionic Beaver) pre-installed. Upon reading this, I quickly reached
out to Dell asking to review the laptop. I’m a Linux developer, and when a developer
edition laptop is marketed with Linux pre-installed, I need to experience it for myself.
The laptop eventually arrived, and like a child on Christmas morning, I excitedly pulled
the device out of the box and powered it up for the first time.

This is a pretty rock-solid notebook. The device is very light and easy to carry—
meaning, it’s mobile (which is very important in my book), thin and sleek. Not only
does the device look good, but it also performs very well.

General Specifications
In my possession is the 7th generation of the Dell XPS 13 Developer Edition laptop.
This generation ships with an Intel Core i7 8th Gen microprocessor. It is a four-core,
eight-threaded (hyperthreaded) i7-8550U CPU operating at a 1.8GHz frequency.
With this configuration, the system itself reports eight CPUs. The system is
installed with 16GB of RAM.

First Impressions
Upon first boot, you’re greeted with a Dell welcome screen followed by a generic set
of Ubuntu-related questions (such as license agreement, keyboard layouts, timezone
and so on). Toward the end, you are given an option to create a recovery USB image,
which could be very handy one day. If you opt out of creating one, no worries, you
can go back and create one at a later time.

The first thing I did, after logging in to my user session for the very first time, was run
a software update.

Although this does not at all relate to the quality of the device, I did find it a bit
strange that the operating system was pre-installed with both Chrome and Chromium
web browsers. I’m not sure why anyone would need both, but they both were there. If
you’re a Firefox user, you’ll need to install it from the Ubuntu Software center.

http://www.linuxjournal.com

140 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Input Controls
One of the most important aspects of any computing device is its input controls
(keyboard, mice and so on). The keyboard feels comfortable—that is, with the
exception of the positioning of the PgUp/PgDn keys. Those two keys are very close
to the left and right arrow keys. I’m sure, over time, I’ll end up getting used to
it, but during the course of my review, I constantly and accidentally pressed the
PgDn key while navigating my way around in a terminal and text editor. Again, the
keyboard feels nice. It’s responsive, and the throwback from when you press the
keys down feels just about right. Although, why is there still a Windows icon for
the Super key?! I jest.

Figure 1. The Dell Recovery Media Menu

http://www.linuxjournal.com

141 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

I also do appreciate the backlit keypad. You even can toggle the backlight on and
off manually. This backlight also fades to off when the keys haven’t been pressed in
some time. Although, I don’t recall what that idle time or timeout is set to.

The touchpad is very responsive as well—maybe a bit too sensitive. I find myself
accidentally closing tabs or selecting things I never intended to select. By default,
Ubuntu enables natural scrolling among a few other touchpad-specific features.

The notebook comes with a touchscreen bonded to the display. I always find it
a bit awkward trying to make use of a touchscreen while maneuvering between a
keyboard and a trackpad, but that’s just me. However, I do see the value in it when
it comes to testing and debugging applications intended for mobile, embedded or
web use. I did notice a couple things with the touchscreen:

1. Although it’s responsive and calibrated accordingly, not all windows
are created equal. I had no issue moving GNOME native windows and
applications around the screen, so long as it was not touching the edges
of the top, bottom and sides (I thought that was weird). But for whatever
reason, regardless of where I tried to hold down to drag the window of the
Chrome web browser, it just would not budge.

2. Because the physical display extends to nearly the edges of both the top
and the sides of the lid, every time I went to adjust the angle/tilt of the
screen (from the left side), my large fingers would activate whatever was
positioned on the Dock right underneath it.

What I do find a bit frustrating is that I am not able to disable the touchscreen
from the Ubuntu Settings panel, unless it is very well hidden somewhere. The only
way that I believe this can be done is through the Xorg configuration files.

Input controls overall rating: 4/5

http://www.linuxjournal.com

142 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Display
The display is absolutely amazing, and by amazing, I mean beautiful. Everything
is very crisp and clean. As a software developer, I definitely can appreciate all of
the available screen real estate. I live in the terminal, and more specifically, I use
my preferred developer tools: vi and grep. It is a 16:9 screen scaling to a 3840 x
2160 resolution (4K). So, needless to say, there’s plenty of room for me to open
one or more terminal windows on the same screen.

The screen resolution is so large, some applications don’t necessarily
scale as well as the rest of the desktop environment. You can go to the
Settings→Devices→Displays menu and change the value of the Scale field from
the default 200% to something more, but some of the other applications may
not comply with the changes (a good example is GIMP).

Right before I dove into this area, I went to the Ubuntu Software Center and

Figure 2. The Display Configuration Menu

http://www.linuxjournal.com

143 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

installed the graphic editor. The application was loaded almost as soon as the
installation was complete, and it was immediately apparent that the icons and
options of both trays did not scale like the rest of the operating system.

Display overall rating: 5/5

Audio
I really enjoy the quality of the onboard speakers. I am streaming audio through it
while typing this review, and it sounds pretty darn good. Everything is clear and crisp,
as one would hope.

The microphone worked as expected, and the folks on the other end of my video chat
were able to hear my voice with little to no interference or background noise.

Audio overall rating: 5/5

Power Consumption
Power consumption and battery life can make or break a device intended to be
used for mobile computing. If you can’t get this right, what’s the point? Overall, I
am extremely impressed with the power consumption of this device.

To put this into perspective, I was running from battery for 30 minutes while
navigating in a browser and writing my notes for this review in Google Docs, and
95% of the battery is still remaining—not bad. Of course, if I were to increase
the workload on this machine, that number would quickly drop.

As one would expect, the backlight of the panel dims to help conserve
energy, and you also have the option to reduce the brightness or turn off the
backlight underneath the keypad. You can do other things to reduce the power
consumption as well. For example, if it isn’t being used, it may be to your
advantage to disable Bluetooth.

Fast-forward a few days: the notebook has been off of the charger for three

http://www.linuxjournal.com

144 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

days now. I’ve been routinely going back to the device (and waking it up from
hibernation) to use it for minor tasks here and there throughout the course of
those same three days. The notebook is still above 60% battery. For a four-core
device, this is really good.

As an added bonus, you can check battery state quickly without opening up the lid
and logging in to your session. The left side of the notebook has a power gauge
where by pressing a button, you are given a general and visual approximation.

Power consumption overall rating: 5/5.

Figure 3. The Visual Battery Indicator

http://www.linuxjournal.com

145 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Performance
Boot-up time was mostly reasonable. Although I didn’t exactly take a stopwatch
to it, it felt to me as if I was at the login screen for 15 seconds after I pressed the
power button. Now, I’m not entirely sure what’s going on under the hood before
the operating system begins to load, but in my personal opinion, I was expecting
something a bit faster when running off of an NVMe SSD. Either way, even 15 seconds
is not unreasonable. And unless I reboot after a system update that requires it, I’ll
never power-cycle my machines.

Waking up from a sleep or hibernate state is also very quick. Although I do not power
off my notebooks, I instead close the lid to ensure that my applications and their
states are still present when I reopen the lid and reawaken the device. Within a second
or two, I am prompted with the login screen.

To test the system’s overall performance, I decided to build three separate Linux
kernels simultaneously, all different versions:

• 4.14.67
• 4.18.5
• 4.19-rc2

What really impressed me was the speed at which the system was able to untar the
archives. For instance, the 4.19-rc2 gzip file was approximately 154M in size and took
less than four seconds to uncompress—3.961 seconds to be exact. Not bad!

When it came down to preparing and building these kernels all simultaneously, I was
surprised that the base Ubuntu image for a developer machine did not include the
developer environments for things like the C library or even the kernel. I needed to
install header files from libc-dev just to build things in C. Eh, those are minor details.

Back to building the kernels, I gave the exact same config (x86_64_defconfig) of
the kernel to all three and ran the build simultaneously. All three completed within
25 seconds. Wow! Now, when I parallelize the builds with the -j option in the make

http://www.linuxjournal.com

146 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

command, the time dropped to less than ten seconds. I mean, holy crap, wow! This is
a four-core hyperthreaded machine using NVMe. So, I would expect it to perform, and
it does just that. The 16GB of memory obviously helps a whole lot.

Wireless network performance also was good and seemed to be very responsive.

Performance overall rating: 5/5.

External Device Support and Peripherals
Now, aside from a single microSD slot and a headphones jack, everything else is
USB-C. This seems to be the trend nowadays, and it makes sense now that newer
devices to market all support the protocol. Even the power adaptor connects over
USB-C and will occupy a single USB-C port.

But, what does this mean for expandability? It means you are required to buy adaptors
and expanders to connect more devices, which includes external monitors. Dell does
provide the customer with a single USB-A to USB-C adaptor, and in most cases, that may
be enough. This way, you can connect your USB thumbdrive or that external hard drive—
or maybe even that one developer microcontroller board to communicate with its JTAG
interface over serial.

Some folks may have issues with this, but honestly, I personally don’t mind. The
protocol is much more superior than its predecessors, and it can sustain more
connections for those that require it. Truth be told, you need to give Dell some credit
here. Unlike some of its competitors, Dell is at least easing your transition from USB-A
to USB-C by providing that adaptor. Those same competitors will sell you a similar
adaptor for $60 or more on their websites.

I also am pleasantly surprised that the operating system went out to my local network
and found my print server with zero effort on my part. As soon as I went to printer
settings, it already was listed and ready to go.

The biggest problem I have is with the webcam. The webcam is oddly positioned

http://www.linuxjournal.com

147 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

beneath the display (instead of at the top, as is typical). This means that in order
to capture your face, you need to adjust the tilt of your screen, which leads to an
awkward display of your face. And if you’re on a video-conference call, everyone
else will have a nice view of your fingers typing away at the keyboard. I hope future
iterations of the XPS line will address this design issue.

External device support and peripherals overall rating: 3/5.

And the Rest
The software integration between Dell and Ubuntu seems to stand out a lot—and I
mean this in the most positive way. System updates include Dell-specific hardware/
firmware patches. This is huge.

I did experience a couple quirks or issues throughout this write-up. Let me state the
following disclaimer before getting into the details of those quirks:

Figure 4. The Odd Placement of the Webcam

http://www.linuxjournal.com

148 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

The problems I’m about to describe have nothing to do with the Dell hardware. They
are focused on the Ubuntu operating system running on that hardware. I’ve been
observing this exact same behavior in virtual machines (if applicable) and on other
non-Dell physical devices.

Applications would sometimes randomly crash. I’ve observed this with both the
Update Manager and, again, with Nautilus. I’m not sure if it’s the version of Nautilus
supported on Ubuntu 18.04, but regardless of the environment that I use with this
particular distribution and release, the Nautilus file manager application routinely
crashes and generates a “report to Canonical” message. The problem continues to
occur with the latest Ubuntu package updates.

Figure 5. The System Doing a Hardware Update after Rebooting from a Software Update

http://www.linuxjournal.com

149 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

Another quirk relates to the almost-never-resolved Linux problem: hibernate. To
clarify, by default, Ubuntu places your machine in a sleep state when it idles or if
you close the lid of your laptop. After some time, the machine transitions from
sleep to hibernate mode.

Sleep saves your current state into memory and places your peripherals into a low
power mode. In hibernate mode, the saved state will be placed to disk, and the device
will be powered down completely. Ubuntu calls this mode “suspend”.

After six attempts to wake up the device from hibernation, only five were
successful. In that one case, I was not able to bring the machine back up, and I was
greeted by a completely black screen with its backlight lit up. After spending four
minutes pressing every key and eventually pressing the power button hoping it
would do something, I gave up and held down the power button to force a system
shutdown and restarted it.

Figure 6. A Reoccurring Software Crash in the Nautilus File Manager

http://www.linuxjournal.com

150 | November 2018 | http://www.linuxjournal.com

REVIEW: THE DELL XPS 13 DEVELOPER EDITION LAPTOP

In that same one case, I did do something different. I closed the lid while plugged in.
I unplugged the device some time later and attempted to reawaken it. I wonder if I hit
some corner-case software bug handling this transition.

Anyway, you can configure or customize the operating system’s suspend settings. For
instance, you can extend the time it suspends from sleep or just disable it completely
for when the device is plugged in and/or on battery power.

Software integration overall rating: 4/5.

Final Thoughts
Overall, I had a very positive experience with the 7th generation Dell XPS 13.
It’s a powerful machine and fully capable of handling all sorts of developer
workloads. And if used in a professional environment, it’s very mobile as well.
You can carry it from conference room to conference room and resume your
work with little to no disruption. Ubuntu is well integrated with the machine, and
it shows. You can’t ask for more in a developer’s laptop. I definitely consider this
device to be well worth the investment. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior platform architect at IBM for its Cloud Object Storage division (formerly
Cleversafe). He is also the creator and maintainer of the RapidDisk Project. Petros has worked in the data storage industry for well over a
decade and has helped pioneer the many technologies unleashed in the wild today.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

151 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

Chrome OS Stable
Channel Gets Linux Apps
How to get started with Linux Apps for Chromebooks.

By Philip Raymond

After months of user testing in developer and beta channels, the Crostini project
at Google finally delivered the goods: Linux apps for most users of Chromebooks
in the stable channel—definitely worth the wait. While this still is aimed primarily at
developers using Chromebooks, I think there’s a good chance these Linux apps will be

Figure 1. Linux Apps Option

http://www.linuxjournal.com

152 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

used and enjoyed by the general public using Chromebooks as well. There’s still a bit
of a learning curve to overcome before that possibility is realized, but if you already
are a user of any Linux distro, it will feel very familiar. Here’s an overview of how to
install it and what to expect afterward.

After getting the update to version 69, go to Settings and scroll down a bit, and you’ll
see the option to turn on Linux apps. Figure 1 shows this first step. Note that this isn’t
available on all Chromebooks; if you’re using an older one, you’ll have to wait a while
before this function is available. If you don’t see the option to turn on Linux apps,
your Chromebook currently lacks that functionality. But, if you have a Chromebook
produced in the past two years, you probably will see the option.

Figure 2. Installing Linux Apps

http://www.linuxjournal.com

153 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

After it’s done installing, you’ll see the terminal appear. From here, you can do as
you would with any terminal. I chose to sudo apt-get install the GIMP, Open
Shot, Handbrake, Firefox and the GNOME Software Center, which I used to download
and install Audacity. The GNOME Software Center provides an easy-to-manage GUI
method of finding the more popular Linux apps, but if you prefer the terminal method
of using apt-get install, that works just as well and provides more app choices
than the GNOME Software Center.

One more thing to note about the GNOME Software Center is that you likely will
not see any apps in it after first installing it. You need to reboot first before the
apps appear.

Figure 3. OpenShot

http://www.linuxjournal.com

154 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

If you want to run Firefox on a Chromebook, there are actually two ways to do it.
One way is to download and install Firefox from the Google Play Store as an Android
app. Now with Linux apps via Crostini, you also can download and install it from the
terminal using apt-get install, but it needs to be the extended support release
version, Firefox-ESR.

Figures 3–5 show some of my installed apps up and running.

File management for Linux apps is available in the Files folder—on the bottom left
side below Play files, you’ll see Linux files. This folder is where all files created by a
Linux app reside. Manually adding sub-folders is necessary, since this is a blank canvas
when you start. You can copy and paste the Linux files folder to and from Chrome OS

Figure 4. The GIMP

http://www.linuxjournal.com

155 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

folders, but the reverse is more difficult. Moving files from the Linux files folder back
to Chrome OS folders involves copying to either your Google Drive or an external
drive, then moving it back to the Chromebook’s Chrome OS files folders. This is one
function that shows Crostini is still in a beta state—hopefully it’ll be corrected in
future OS releases.

The rest of my experience using Linux apps on my Chromebook has been great, with
the exception of Audacity; they all have functioned exactly as they do on my Ubuntu
Linux laptop. The Linux apps further expand the Chromebook’s functionality, which
already had gotten a substantial boost last year with the addition of Android apps.

The Chromebook is rather quickly becoming a full-service laptop/tablet experience—

Figure 5. GNOME Software Center

http://www.linuxjournal.com

156 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

one that actually involves three OS experiences under one hood, each one as easy
to access as the other. For me, the one Linux app to add a function I needed but
didn’t previously have is Audacity. Unfortunately, there is currently no audio support
in Crostini that allows Audacity to do what it is designed to do—another beta hiccup
that hopefully will be addressed sooner rather than later. Just to clarify, you will hear
audio from a video or audio file stored in Linux files, such as something transcoded
in the Handbrake Linux app, since that is actually being played by a media player in
Chrome OS, you just can’t currently create audio in Crostini. The GIMP also adds a
missing dimension for Chromebooks, providing a full photo-editing suite of tools—
who needs Photoshop when you have the GIMP? I believe the addition of Linux
apps will enhance the Chromebook’s appeal to the general public, not just for the
developers for whom Crostini was first created. And, if you are a developer, you now

Figure 6. Linux File Folder

http://www.linuxjournal.com

157 | November 2018 | http://www.linuxjournal.com

CHROME OS STABLE CHANNEL GETS LINUX APPS

have another option on which to create.

For developers considering a Chromebook for work, the best option is one of several
high-end Chromebooks—like any of the Google Pixelbooks, the Asus Flip c302 or
the HP X2. If you need to know what Crostini can and can’t do for developing before
purchasing, see the open-source Chromium project page on containers and Crostini,
which should answer all the questions you may have on this subject.

Chromebooks are now a viable option for those who wish to use open-source
apps with an added layer of security that’s hard to match. Plus, the added
exposure to open-source apps is also a good thing for the Open Source
community. Here’s to hoping Crostini progresses from beta to stable and
becomes easy to use for everyone. ◾

Philip Raymond is a Master Control Supervisor at WFLD-Fox Television in Chicago. He has used and enjoyed using Linux for 15 years and
enjoys learning about new open-source projects. You can follow Phil on Twitter @tvphil or on Facebook at www.facebook.com/tvphil.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://chromium.googlesource.com/chromiumos/docs/+/master/containers_and_vms.md
http://www.facebook.com/tvphil
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

158 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

About ncurses Colors
Why does ncurses support only eight colors?

By Jim Hall

If you’ve looked into the color palette available in curses, you may wonder why curses
supports only eight colors. The curses.h include file defines these color macros:

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

But why only eight colors, and why these particular colors? At least with the
Linux console, if you’re running on a PC, the color range’s origins are with the
PC hardware.

A Brief History of Color
Linux started as a PC operating system, so the first Linux console was a PC running
in text mode. And to understand the color palette on the PC console, you need
to go all the way back to the old CGA days. In text mode, the PC terminal had a
color palette of 16 colors, enumerated 0 (black) to 15 (white). Backgrounds were
limited to the first eight colors:

• 0. Black
• 1. Blue
• 2. Green

http://www.linuxjournal.com

159 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

• 3. Cyan
• 4. Red
• 5. Magenta
• 6. Brown
• 7. White (“Light Gray”)
• 8. Bright Black (“Gray”)
• 9. Bright Blue
• 10. Bright Green
• 11. Bright Cyan
• 12. Bright Red
• 13. Bright Magenta
• 14. Yellow
• 15. Bright White

These colors go back to CGA, IBM’s Color/Graphics Adapter from the earlier PC-
compatible computers. This was a step up from the plain monochrome displays;
as the name implies, monochrome could display only black or white. CGA could
display a limited range of colors.

CGA supports mixing red (R), green (G) and blue (B) colors. In its simplest form,
RGB is either “on” or “off”. In this case, you can mix the RGB colors in 2x2x2=8
ways. Table 1 shows the binary and decimal representations of RGB.

Table 1. Binary and Decimal Representations of RGB

000 (0) Black

001 (1) Blue

010 (2) Green

011 (3) Cyan

100 (4) Red

101 (5) Magenta

110 (6) Yellow

111 (7) White

http://www.linuxjournal.com

160 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

To double the number of colors, CGA added an extra bit called the “intensifier” bit.
With the intensifier bit set, the red, green and blue colors would be set to their
maximum values. Without the intensifier bit, each RGB value would be set to a
“midrange” intensity. Let’s represent that intensifier bit as an extra 1 or 0 in the binary
color representation, as iRGB (Table 2).

Table 2. Using the Intensifier Bit

0000 (0) Black

0001 (1) Blue

0010 (2) Green

0011 (3) Cyan

0100 (4) Red

0101 (5) Magenta

0110 (6) Yellow

0111 (7) White

1000 (8) Bright Black

1001 (9) Bright Blue

1010 (10) Bright Green

1011 (11) Bright Cyan

1100 (12) Bright Red

1101 (13) Bright Magenta

1110 (14) Bright Yellow

1111 (15) Bright White

But there’s a problem: 0000 Black and 1000 Black are the same color. There’s no
red, green or blue color to intensify, so black is black whether or not the “intensifier”
bit is set. To get around this limitation, CGA actually implemented a modified iRGB
definition, using two intermediate values, at about one-third and two-thirds intensity.
Most “normal” mode (0 to 7) colors used values at the two-thirds intensity, with the
exception of yellow, which was assigned a one-third green value that turned the color
brown or orange. To translate from “normal” mode to “bright” mode, convert zero
values to the one-third intensity and two-thirds values to full intensity.

http://www.linuxjournal.com

161 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

Table 3 shows another iteration of the color table, using 0x0 to 0xF for the
color range on each RGB value, with 0x5 and 0xA as the one-third and two-thirds
intensities, respectively.

Table 3. Color Table Using 0x0 to 0xF for the Color Range on Each RGB Value with 0x5 and 0xA as the
One-Third and Two-Thirds Intensities, Respectively

0000 (#000) Black

0001 (#00A) Blue

0010 (#0A0) Green

0011 (#0AA) Cyan

0100 (#A00) Red

0101 (#A0A) Magenta

0110 (#A50) Brown

0111 (#AAA) White

1000 (#555) Bright Black

1001 (#55F) Bright Blue

1010 (#5F5) Bright Green

1011 (#5FF) Bright Cyan

1100 (#F55) Bright Red

1101 (#F5F) Bright Magenta

1110 (#FF5) Bright Yellow

111 (#FFF) Bright White

You may wonder why there are only eight background colors. Note that DOS also
supported a “Blink” attribute. With this attribute set, your text could blink on and off.
The “Blink” bit was encoded at the end of the foreground and background bit-pattern:

Bbbbffff

That’s a full byte! Counting from right to left: four bits to represent the text
foreground color (0000 Black to 1111 Bright White), three bits to code the
background color (000 Black to 111 White) and one bit for the “Blink” attribute.

http://www.linuxjournal.com

162 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

And, that’s how curses got 16 text colors: eight standard-intensity text colors and
eight high-intensity text colors. On the Linux console, these are essentially the
same colors used in old DOS systems. That’s also why you’ll often see “brown”
labeled “yellow” in some old DOS programmer references, because at least on DOS
systems, it started out as plain “yellow” before the intensifier bit. Similarly, you also
may see “gray” represented as “Bright Black”, because “gray” is really “black” with
the intensifier bit set.

Sample Program
Let me demonstrate the Linux terminal colors with a simple program. This color demo
will iterate through all available color combinations using curses.

First, I need a simple function to create all possible color pairs:

void init_colorpairs(void)
{
 int fg, bg;
 int colorpair;

 for (bg = 0; bg <= 7; bg++) {
 for (fg = 0; fg <= 7; fg++) {
 colorpair = colornum(fg, bg);
 init_pair(colorpair, curs_color(fg), curs_color(bg));
 }
 }
}

The init_colorpairs() function also relies on a “translation” function that
converts standard-intensity CGA color numbers (0 to 7) to curses color numbers,
using the curses constant names like COLOR_BLUE or COLOR_RED:

short curs_color(int fg)
{

http://www.linuxjournal.com

163 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

 switch (7 & fg) { /* RGB */
 case 0: /* 000 */
 return (COLOR_BLACK);
 case 1: /* 001 */
 return (COLOR_BLUE);
 case 2: /* 010 */
 return (COLOR_GREEN);
 case 3: /* 011 */
 return (COLOR_CYAN);
 case 4: /* 100 */
 return (COLOR_RED);
 case 5: /* 101 */
 return (COLOR_MAGENTA);
 case 6: /* 110 */
 return (COLOR_YELLOW);
 case 7: /* 111 */
 return (COLOR_WHITE);
 }
}

To create a predictable color pair number for each foreground and background color, I also
need a function colornum() to set an integer bit pattern based on the classic color byte:

int colornum(int fg, int bg)
{
 int B, bbb, ffff;

 B = 1 << 7;
 bbb = (7 & bg) << 4;
 ffff = 7 & fg;

 return (B | bbb | ffff);
}

http://www.linuxjournal.com

164 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

The B bit that usually indicates blinking text is not used in my color demo program, so
I always set B to one to guarantee that color pair 0 is never assigned. In curses, color
pair 0 is reserved for the default foreground and background colors. That should be
white text on a black background, but to be safe, I’ll always define my own combination
for white on black. For a foreground color 7 (white, binary 111) with background
color 0 (black, binary 000), the bit pattern looks like this:

10000111

This is a decimal value of 135.

After init_colorpairs(), my program can set each color combination using a
wrapper to the curses function COLOR_PAIR(). My wrapper function also turns bold
text on or off, using the A_BOLD attribute:

void setcolor(int fg, int bg)
{
 /* set the color pair (colornum) and bold/bright (A_BOLD) */

 attron(COLOR_PAIR(colornum(fg, bg)));
 if (is_bold(fg)) {
 attron(A_BOLD);
 }
}

void unsetcolor(int fg, int bg)
{
 /* unset the color pair (colornum) and
 bold/bright (A_BOLD) */

 attroff(COLOR_PAIR(colornum(fg, bg)));
 if (is_bold(fg)) {
 attroff(A_BOLD);

http://www.linuxjournal.com

165 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

 }
}

And the is_bold() function simply tests if the “intensifier” bit on the iRGB value
(foreground colors 8 to 15) is set, using a simple bit mask:

int is_bold(int fg)
{
 /* return the intensity bit */

 int i;

 i = 1 << 3;
 return (i & fg);
}

With that, creating the color demonstration program is easy:

/* color-demo.c */

#include <curses.h>
#include <stdio.h>
#include <stdlib.h>

int is_bold(int fg);
void init_colorpairs(void);
short curs_color(int fg);
int colornum(int fg, int bg);
void setcolor(int fg, int bg);
void unsetcolor(int fg, int bg);

int main(void)
{

http://www.linuxjournal.com

166 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

 int fg, bg;

 /* initialize curses */

 initscr();
 keypad(stdscr, TRUE);
 cbreak();
 noecho();

 /* initialize colors */

 if (has_colors() == FALSE) {
 endwin();
 puts("Your terminal does not support color");
 exit(1);
 }

 start_color();
 init_colorpairs();

 /* draw test pattern */

 if ((LINES < 24) || (COLS < 80)) {
 endwin();
 puts("Your terminal needs to be at least 80x24");
 exit(2);
 }

 mvaddstr(0, 35, "COLOR DEMO");
 mvaddstr(2, 0, "low intensity text colors (0-7)");
 mvaddstr(12, 0, "high intensity text colors (8-15)");

 for (bg = 0; bg <= 7; bg++) {

http://www.linuxjournal.com

167 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

 for (fg = 0; fg <= 7; fg++) {
 setcolor(fg, bg);
 mvaddstr(fg + 3, bg * 10, "...test...");
 unsetcolor(fg, bg);
 }

 for (fg = 8; fg <= 15; fg++) {
 setcolor(fg, bg);
 mvaddstr(fg + 5, bg * 10, "...test...");
 unsetcolor(fg, bg);
 }
 }

 mvaddstr(LINES - 1, 0, "press any key to quit");

 refresh();

 getch();
 endwin();

 exit(0);
}

Sample Output
When you run the program, you see all combinations of 16 text colors and eight
background colors, for a total of 16x8=128 different color pairs.

Figure 1 shows how I’ve set up my graphics terminal to reflect the text-mode terminal,
including the standard text colors. Graphical terminal programs (like GNOME Terminal)
support a wide range of colors, because they can leverage the available color palette of
the X Window System. Note that you can change the available colors in these programs.
Most colors are pretty close to their console counterparts, but some colors look quite
different. For example, the default color palette for GNOME Terminal replaces the DOS

http://www.linuxjournal.com

168 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

brown with a yellow color (Figure 2).

Through colors, you can represent information more clearly. This color demonstration
simply iterates through all color combinations to show how each color looks with every
other color.

Of course, this example is just color. You can do so much more with curses, depending
on what you need your program to do. In a follow-up article, I’ll demonstrate other
features of the ncurses library, such as how to create windows and frames. ◾

Jim Hall is an advocate for free and open-source software, best known for his work on the FreeDOS Project, and he also focuses on the
usability of open-source software. Jim is the Chief Information Officer at Ramsey County, Minnesota.

Figure 1. Color Demo Console

http://www.linuxjournal.com

169 | November 2018 | http://www.linuxjournal.com

ABOUT NCURSES COLORS

Figure 2. Color Demo GNOME Terminal

Resources
• Pradeep Padala’s NCURSES Programming HOWTO at the Linux

Documentation Project
• “Getting Started with ncurses” by Jim Hall, LJ, March 2018
• “Creating an Adventure Game in the Terminal with ncurses” by Jim Hall, LJ,

April 2018
• “Programming in Color with ncurses” by Jim Hall, LJ, May 2018

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
https://www.linuxjournal.com/content/getting-started-ncurses
https://www.linuxjournal.com/content/creating-adventure-game-terminal-ncurses
https://www.linuxjournal.com/content/creating-adventure-game-terminal-ncurses
https://www.linuxjournal.com/content/programming-color-ncurses
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

170 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

Game Review:
Lamplight City
A well lit look into Grundislav Games’ latest release.

By Patrick Whelan

The universe of Lamplight City is rich, complex and oddly familiar. The game draws
on that ever-popular theme of a steampunk alternative universe, adding dashes of
Victorian squalor and just a pinch of 1950’s detective tropes. Is it just a mishmash of
clichés then? Yes, but it all works well together to form a likable and somewhat unique
universe—like a cheesy movie, you can’t help but fall in love with Lamplight City.

http://www.linuxjournal.com

171 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

In Lamplight City, you play Miles Fordham, a disgraced detective turned PI following
the death of his partner in Act I at the hands of a mysterious killer. Miles is

Figure 1. The Lamplight City Universe

Figure 2. Some Protesters

http://www.linuxjournal.com

172 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

accompanied by the ghostly voice of his partner Bill as a sort of schizophrenic inner
monologue. It’s creepy, and it’s a perfect example of taking a classic trope and turning
it into one of the game’s biggest strengths. Bill’s monologues add witty flavour to the
dry protagonist and a way to explain details and scenarios to the player.

Lamplight City features multiple cases that are all tied together with an overarching
story. More impressively though is the overarching story’s effect on the individual
cases. In my play-through, mistakes I made in one case affected another and
effectively led to another case becoming unsolvable. This is a system I instinctively
hated. It seemed unjustly punitive to punish players for simply exploring dialogue
options. Over time, however, as the music and art slowly enveloped me into a
universe I truly enjoyed exploring and experiencing, I began to see how subtleties
are at the center of this universe. What at first is dismissed as unimportant or
underwhelming later appears as a subtle smack in the face, with that familiar feeling of
“Oh, I knew I shouldn’t have done that!”

Figure 3. Miles Fordham’s Schizophrenic Dialogue

http://www.linuxjournal.com

173 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

Patience is most certainly a virtue in Lamplight City, which is not to say the game lacks
flavor. In fact, the opposite is true. Many times it’s down to you to sweep through
the data and discern fact from fiction. It’s important to note that Lamplight City isn’t
a logic game—not really. There’s no inventory, and although there are elements of
small physical puzzles, the game thrives on interpersonal relationships and dissecting
dialogues, not using some half-forgotten wrench on a valve. It takes patience and
discretion. This is not a simple mobile game where enough spamming clicks will win
the game. Speaking of winning, let’s talk about the end of the game—no spoilers, I
promise!

On my first play-through of the final case, I failed, miserably, and I loved it. Most
games are too afraid to let the player fail. They’ll respawn you, give you tips or let you
skip to the next part. When I failed in Lamplight City, you can imagine my disbelief
and slow, emerging grin as the credits began to roll, the biggest case of the game still
unsolved. It’s a nice breath of fresh air after the safe world of invincible super heroes
and perfect protagonists found in many popular movies and games today.

Figure 4. Petri Dish

http://www.linuxjournal.com

174 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

All this is not to say, however, that you are doomed to failure. Lamplight City provides
you with the opportunity to establish yourself in Miles Fordham. The universe of
New Bretagne no longer feels distant but real. You are the master of your own fate,
and you, the player, are brought into the fold and become invested in every lead and
discovery. The game does a great job at portraying a sense of responsibility onto the
player for making poor decisions, like annoying your wife, which in any other game
wouldn’t affect a mighty protagonist nor penalize a player for doing so.

So that’s what Lamplight City does well, but there are plenty of areas where it’s quite
not so exceptional. At the end of the day, it feels like a small progression on a long-
standing genre of point-and-click adventure games—a small evolution, if you will,
instead of a revolution in game design. That’s not necessarily a bad thing if you’re
looking for a safe game you know you’ll probably enjoy, but if you’re looking to be
tested or truly excited by an innovative game, Lamplight City isn’t for you. With that
said, the story is pleasantly compelling, and even if the gameplay itself isn’t riveting,
the story is comparable to a long book, slowly reeling you into its universe without

Figure 5. Example Dialogue

http://www.linuxjournal.com

175 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

you noticing until 2am when you can’t put the game down until you’ve gotten to the
bottom of the case.

Just like other games of its genre, there are moments when you’ll be stuck and cursing
to high heaven that you wish you’d payed more attention to dialogue or details of
previous cases. The game does a good job of keeping you informed through a case
book that contains the most relevant information and clues, but this won’t stop you
from gallivanting across the city multiple times a case talking with every NPC and
revisiting every room, hoping for some slight lead. I’ll be honest; I watched my fair
share of play-throughs to find the next clue. This isn’t a fault of the game per se but
a problem with the genre in general, often leaving players dazed and confused with
little direction. It’s a feature of the genre, and it can be extremely alluring or repulsive
depending on the type of gamer you are. This game sticks with its hard-core roots
of butterfly-effect dialogues, refusing to implement a hints system as in other similar
games, sometimes making it frustrating.

Finally, Lamplight City is a relatively short game at around ten hours for a price tag of
$15 USD. This falls far short of large “triple A games” with thousands of developers

Figure 6. Map of New Bretagne

http://www.linuxjournal.com

176 | November 2018 | http://www.linuxjournal.com

GAME REVIEW: LAMPLIGHT CITY

creating vast expanses of land and hundreds of characters with which to interact.
However, with multiple endings, more than 50 voiced characters and a uniquely
charming art style, Lamplight City has a great replay-ability value, and there are still
cases I haven’t totally solved. The price, although not entirely competitive with huge
games, is fair enough for an intriguing and engaging story that will undoubtedly have
you playing again! ◾

Patrick Whelan is a second-year student at Edge Hill University in the UK. He is an aspiring developer, blogger and all-round hacker.

Additional Info

Lamplight City was released September 13, 2018. The game was developed by Grundislav
Games and published by Application Systems Heidelberg. It’s available for SteamOS +
Linux, Mac OS X and Windows.

You can purchase Lamplight City from the Steam Store.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://store.steampowered.com/app/761460/Lamplight_City
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Time for Net
Giants to Pay
Fairly for the
Open Source
on Which
They Depend
Net giants depend on open source: so where’s
the gratitude?

By Glyn Moody

Licensing lies at the heart of open source. Arguably, free
software began with the publication of the GNU GPL in 1989.
And since then, open-source projects are defined as such by
virtue of the licenses they adopt and whether the latter meet
the Open Source Definition. The continuing importance of
licensing is shown by the periodic flame wars that erupt in this
area. Recently, there have been two such flarings of strong
feelings, both of which raise important issues.

First, we had the incident with Lerna, “a tool for managing

177 | November 2018 | http://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://www.gnu.org/licenses/old-licenses/gpl-1.0.html
https://opensource.org/licenses
https://opensource.org/osd
https://lernajs.io/
http://www.linuxjournal.com

178 | November 2018 | http://www.linuxjournal.com

OPEN SAUCE

JavaScript projects with multiple packages”. It came about as a result of the way the
US Immigration and Customs Enforcement (ICE) has been separating families and
holding children in cage-like cells. The Lerna core team was appalled by this behavior
and wished to do something concrete in response. As a result, it added an extra
clause to the MIT license, which forbade a list of companies, including Microsoft,
Palantir, Amazon, Motorola and Dell, from being permitted to use the code:

For the companies that are known supporters of ICE: Lerna will no longer be licensed as
MIT for you. You will receive no licensing rights and any use of Lerna will be considered
theft. You will not be able to pay for a license, the only way that it is going to change is by
you publicly tearing up your contracts with ICE.

Many sympathized with the feelings about the actions of the ICE and the intent of
the license change. However, many also pointed out that such a move went against
the core principles of both free software and open source. Freedom 0 of the
Free Software Definition is “The freedom to run the program as you wish, for any
purpose.” Similarly, the Open Source Definition requires “No Discrimination Against
Persons or Groups” and “No Discrimination Against Fields of Endeavor”. The situation
is clear cut, and it didn’t take long for the Lerna team to realize their error, and they
soon reverted the change:

I apologize for making the rash decision to support the addition of an unenforceable
clause to the project’s MIT license. I failed to accurately assess the impact of this change,
which led me to (incorrectly) focus on the intent. Despite the most noble of intentions,
it is clear to me now that the impact of this change was almost 100% negative, with
no appreciable progress toward the ostensible goal aside from rancorous sniping and
harmful drama.

The Lerna episode was a useful opportunity for the Open Source world to remind
itself that true freedom includes the freedom to use software in ways that many
might not approve of. Stallman appreciated this early on, and he wrote the post
“Why programs must not limit the freedom to run them” on the topic.

https://twitter.com/ACLU/status/1033084026893070338
https://www.bbc.com/news/world-us-canada-44518942
https://github.com/lerna/lerna/pull/1616
https://github.com/lerna/lerna/pull/1616
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://github.com/lerna/lerna/pull/1633
https://github.com/lerna/lerna/pull/1633
https://citizenlab.ca/2018/08/an-analysis-of-censorship-in-chinese-open-source-projects
https://citizenlab.ca/2018/08/an-analysis-of-censorship-in-chinese-open-source-projects
https://www.gnu.org/philosophy/programs-must-not-limit-freedom-to-run.html
http://www.linuxjournal.com

179 | November 2018 | http://www.linuxjournal.com

OPEN SAUCE

The other flare-up over licensing has been similarly instructive. It involves Redis, “an
open source (BSD licensed), in-memory data structure store, used as a database,
cache and message broker”. Here’s the problem, as outlined by Salil Deshpande,
Managing Director at Bain Capital Ventures, which has invested in Redis Labs:

Amazon takes Redis (the most loved database in StackOverflow’s developer survey),
gives very little back, and runs it as a service, re-branded as AWS Elasticache. Many other
popular open-source projects including, Elasticsearch, Kafka, Postgres, MySQL, Docker,
Hadoop, Spark and more, have similarly been taken and offered as AWS products.

To be clear, this is not illegal. But we think it is wrong, and not conducive to sustainable
open-source communities.

The response from Redis Labs was to append for certain add-on modules an extra
paragraph, known as the Commons Clause, to its open-source license. It includes the
following: “Without limiting other conditions in the License, the grant of rights under
the License will not include, and the License does not grant to you, the right to Sell
the Software.”

Deshpande writes: “if you want to take substantially the same software that someone else
has built, and offer it as a service, for your own profit, that’s not in the spirit of the open-
source community.” But that’s incorrect. Both the Free Software Definition and the Open
Source Definition explicitly require that option. There’s even a page all about selling free
software on the main gnu.org site. Well known voices within the coding community were
more or less unanimous: the Commons Clause negates any open-source license it is
used in conjunction with, and really misses the point of free software.

That notwithstanding, the Commons Clause does spring from a legitimate concern.
As Deshpande points out, Amazon is making a lot of money offering open-source
programs on its cloud computing platform. In fact, its debt to the hacker community
goes much deeper: free software permeates the company and its operations. Without
open source’s low costs and ability to scale, Amazon might never have grown to
become the world’s second trillion-dollar company by valuation.

https://redis.io/
https://techcrunch.com/2018/09/07/commons-clause-stops-open-source-abuse
https://redislabs.com/
https://commonsclause.com/
https://www.gnu.org/philosophy/selling.html
https://www.gnu.org/philosophy/selling.html
https://www.zdnet.com/article/open-source-licensing-war-commons-clause
https://www.reuters.com/article/us-usa-stocks-amazon-com-trillion/amazon-touches-1-trillion-on-pace-to-overtake-apple-idUSKCN1LK1ZJ
http://www.linuxjournal.com

180 | November 2018 | http://www.linuxjournal.com

OPEN SAUCE

Moreover, the same can be said of many of today’s internet giants. Google and
Facebook are also built on a variety of open-source programs, and they probably
would have struggled to achieve the rapid growth and today’s high profitability had
they been forced to depend on proprietary code.

It’s true that all these companies “give back” to free software in various ways. They
have open-sourced some code that they have written; provided bug reports and
fixes to key programs; supported top free software coders by employing them; and
encouraged young people to join the Open Source world, for example through
Google’s annual Summer of Code.

Those are all welcome. But they are not enough. The decision to craft the Commons
Clause was driven largely by companies based around open source seeing internet giants
like Amazon deriving great financial benefit from being a free rider on their efforts. That
is neither fair nor sustainable. Indeed, it is extremely foolish for companies like Google
and Facebook to exploit open source and its culture of frictionless giving. Ultimately,
if these companies that are highly dependent on free software don’t start providing
serious financial support, paid directly to open-source projects and to their associated
companies, those resources will dwindle and may disappear.

They should pay not because the license forces them, but simply because it is in
their own interests to do so. That’s particularly true at a time when the big internet
companies are increasingly being painted as the source of all digital evil. Frankly, they
need to do more on the public relations front if they are to avoid punitive legislation
being passed around the world. Supporting open source generously—with some
very large and regular cash payments—would be an excellent way to do that. It would
burnish their public image, safeguard their core infrastructure and give a massive
boost to projects whose unstinting generosity enriches the entire world. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://summerofcode.withgoogle.com/
https://en.wikipedia.org/wiki/Free-rider_problem
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com

