
jQuery | Gauger | Moose | Qt4 Designer | GNU Awk | jEdit

Since 1994: The Original Magazine of the Linux Community

™

PROGRAMMING
DEVELOP GUIs
with Qt4 Designer
and Eclipse

MULTIPLATFORM
DEVELOPMENT
Using GNU
Libraries
and Tools

USE GAUGER
for Performance
Regression Testing

WaveMaker
for Rapid

Application
Development

Modern
Development

with Perl
and Moose

Make Utility
Primer

What’s New in
GNU Awk 4.0

SEPTEMBER 2011 | ISSUE 209 | www.linuxjournal.com

PLUS:

GETTING STARTED WITH jEDIT

http://www.linuxjournal.com

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

Pro 2U Appliance:
You Are the Cloud
Storage. Speed. Stability.

With a rock-solid FreeBSD® base, Zettabyte File System (ZFS)
support, and a powerful Web GUI, TrueNAS™ Pro pairs easy-to-
manage FreeNAS™ software with world-class hardware and
support for an unbeatable storage solution. In order to achieve
maximum performance, the TrueNAS™ Pro 2U System, equipped
with the Intel® Xeon® Processor 5600 Series, supports Fusion-io’s
Flash Memory cards and 10 GbE Network Cards. Titan TrueNAS™
Pro 2U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro System offers
excellent capacity at an affordable price.

For more information on the TrueNAS™ Pro 2U System, or to
request a quote, visit: http://www.iXsystems.com/TrueNAS.

KEY FEATURES:
 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You to
 Restore Data from a Previously Generated
 Snapshot
 . Remote Replication Allows You to Copy a
 Snapshot to an Offsite Server, for
 Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash Memory
 . 2 x 1GbE Network interface (Onboard) +
 Up to 4 Additional 1GbE Ports or Single/
 Dual Port 10 GbE Network Cards

JBOD expansion is available on the
2U Pro System

* 2.5” drive options available; please
consult with your Account Manager

Expansion
Shelves

Available

Create Periodic Snapshot

Clone
Snapshot

All Volumes

http://www.iXsystems.com/TrueNAS
http://www.iXsystems.com

&
✓

✓

✓

✓

Environmentally
Responsible:
100% Renewable Energy

Solid Technical
Foundation:
1,000 In-house Developers

Double Security:
Your website is simultaneously
hosted in 2 locations in our
high tech data center!

High-speed
Global Network:
210 GBit/s Connectivity

No other web host offers
more expertise, know-
how and quality service
than 1&1.

®®®

1-855-CA-1AND1 www.1and1.ca

1-877-GO-1AND1 www.1and1.com

WEB HOSTING
THE NEW STANDARD IN

1&1 DUAL HOSTING

* Offers valid through August 31, 2011. 24 month minimum contract term required for Dual Advanced offer. Set-up fee and other terms and conditions may apply. .com price valid fi rst year only.
After fi rst year, standard pricing applies. Visit www.1and1.com for full promotional offer details. Program and pricing specifi cations and availability subject to change without notice. 1&1 and
the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are the property of their respective owners. © 2011 1&1 Internet, Inc. All rights reserved.

SUMMER SPECIAL: 1&1 DUAL ADVANCED PACKAGE

1 YEAR FREE!*

■ 2 FREE Domains
■ FREE Private Domain Registration
■ DNS Management
■ 500 E-mail Accounts
■ 150 GB Web Space
■ DNS Management

■ 50 FTP Accounts
■ 1&1 SiteAnalytics
■ ASP, .NET, AJAX, LINQ, PHP5, Perl, SSI
■ 5 Microsoft® SQL Databases
■ Mobile Website Optimization Software
■ 24/7 Toll-free Customer Support

Need more domains?
.com with FREE Private Registration just $4.99/fi rst year.*

OFFER ENDS
08/31/11

US104020100173_US439_206x276_28L.indd 1 05.07.11 17:49

http://www.1and1.com
http://www.1and1.ca
http://www.1and1.com

CONTENTS SEPTEMBER 2011
Issue 209

4 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

60 Multiplatform
GNU Development
Making a guitar synth work
with Rock Band using GNU
libraries and tools.

Nathanael Anderson

68 Performance Regression
Monitoring with Gauger
How to use Gauger and
guidelines for what a suitable
development environment
for Gauger’s deployment
should look like.

Bart Polot and Christian Grothoff

76 mmaann mmaakkee : a Primer
on the Make Utility
Ever wonder what that Makefile
in your project folder does?
Here’s a look at the basics of
Makefiles and how to manipulate
them.

Adrian Hannah

84 Qt4 Designer and Eclipse
Develop GUIs quickly and easily.

PJ Radcliffe

FEATURES

PROGRAMMING

http://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2121 Sage Road, Ste. 310, Houston, TX 77056 USA. Subscription rate is $29.50/year. Subscriptions start with the next issue.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 5

COLUMNS
8 Doc Searls’ From the Editor

Off the Press

32 Reuven M. Lerner’s At the Forge
CoffeeScript and jQuery

40 Dave Taylor’s Work the Shell
Calculating Day of the Week, Finally

44 Kyle Rankin’s Hack and /
Remotely Wipe a Server

136 Kyle Rankin and Bill Childers’
Tales from the Server Room
Unboxing Day

INDEPTH
94 GNU Awk 4.0: Teaching an

Old Bird Some New Tricks
What’s new with version 4.

Arnold Robbins

102 WaveMaker: It’s Like...RAD!
WaveMaker—it’s a tsunami of change
for rapid application development.

Don Emmack

112 jEdit: a Text Editor and More
An intro to this cross-platform text editor.

Adrian Klaver

124 Moose
Moose is essentially a language extension
for Perl 5 that provides a modern,
elegant, fully featured object system.

Henry Van Styn

IN EVERY ISSUE
10 Current_Issue.tar.gz
14 Letters
18 UPFRONT
50 New Products
54 New Projects
139 Advertisers Index
141 Marketplace

ON THE COVER
• Make Utility Primer, p. 76
• What's New in GNU Awk 4, p. 94
• WaveMaker for Rapid Application Development, p. 102
• Modern Development with Perl and Moose, p. 124
• Develop GUIs with Qt4 Designer and Eclipse, p. 84
• Multiplatform Development Using GNU Libraries and Tools, p. 60
• Use Gauger for Performance Regression Testing, p. 68
• Getting Started with jEdit, p. 112

54 GIADA

112 jEDIT

http://www.linuxjournal.com

Executive Editor

Senior Editor

Associate Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Security Editor

Hack Editor

Virtual Editor

Proofreader

Publisher

General Manager

Advertising Sales Representative

Associate Publisher

Webmistress

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Shawn Powers
shawn@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Mick Bauer
mick@visi.com
Kyle Rankin
lj@greenfly.net
Bill Childers
bill.childers@linuxjournal.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Joseph Torres
ads@linuxjournal.com

Mark Irgang
mark@linuxjournal.com

Katherine Druckman
webmistress@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips • Marco Fioretti • Ludovic Marcotte

Paul Barry • Paul McKenney • Dave Taylor • Dirk Elmendorf • Justin Ryan

Linux Journal is published by, and is a registered trade name of,
Belltown Media, Inc.

PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Panel
Brad Abram Baillio • Nick Baronian • Hari Boukis • Steve Case

Kalyana Krishna Chadalavada • Brian Conner • Caleb S. Cullen • Keir Davis
Michael Eager • Nick Faltys • Dennis Franklin Frey • Alicia Gibb
Victor Gregorio • Philip Jacob • Jay Kruizenga • David A. Lane

Steve Marquez • Dave McAllister • Carson McDonald • Craig Oda
Jeffrey D. Parent • Charnell Pugsley • Thomas Quinlan • Mike Roberts
Kristin Shoemaker • Chris D. Stark • Patrick Swartz • James Walker

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 818-487-2089
FAX: +1 818-487-4550

TOLL-FREE: 1-888-66-LINUX
MAIL: PO Box 16476, North Hollywood, CA 91615-9911 USA

LINUX is a registered trademark of Linus Torvalds.

mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:shawn@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mick@visi.com
mailto:lj@greenfly.net
mailto:bill.childers@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:ads@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe

They say work smarter, not harder. They
 must be using our processor.

The next generation of intelligent server processors
The Intel® Xeon® processor 5600 series automatically
regulates power consumption to combine industry-leading

to your workload. Check out the new intelligent features
of the Xeon® 5600 at intel.com/itcenter.

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Sponsors of Tomorrow, Intel Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Intel is not responsible for and
has not veri� ed any statements
or computer system product-
speci� c claims contained herein.

Enterprise Servers
for Open Source
www.iXsystems.com
1-855-GREP-4-IX

iX2216-10G
® Xeon® 5600 Series Processors

®

iX1204-10G
® Xeon® 5600 Series Processors

®

iX2216-10G
®

®

iX1204-10G ®

Servers from iXsystems feature the Intel® Xeon® processor 5600 series.

92936887_IIMPCMLJ070111_IXSystems_LinuxJ.indd 1 5/4/11 11:51 AM

http://www.iXsystems.com

DOC SEARLS

Why all-digital is more liberating than some-digital and some-print.

E ver since I discovered HTML, it’s
been my preferred format for
writing. Every word of mine that’s

gone into Linux Journal, since I started
in 1996, has been written and delivered
in HTML. That’s because my writing has
been normalized to hypertext, and to
pixels rather than print.
What’s different for me this time is

that I’m not paying attention to my
monthly 900-word limit (or less if
images are involved). While a word limit
does impose the discipline of brevity,
the fact remains that brevity is not the
only virtue of good writing. Yes, it’s a
good one to have when your column
appears on the last page of a print
magazine. But when that magazine is
no longer confined by the dimensions
of printed pages, you’re free to go
longer—or shorter, as the case may be.
My case this month is for the all-

digital version of Linux Journal. Yes,
we lose a lot, but we stand to gain
much more. Let me explain.
We’ve fought to stay in print ever

since the dot-com crash nearly killed us,
11 years ago. Before that crash, we were
fat with ads from well-funded startups.
When the bust hit, many advertisers

vanished without a trace, owing us
literally $millions we never collected.
After that crash, getting and keeping
advertisers for a print trade publication
was much harder. The costs of printing
and mailing also went up, and continued
to go up. Meanwhile, Linux succeeded
in the marketplace and is now the most
widely used operating system.
Yet, while Linux continues to spread,

the population of pure-Linux geeks—the
kind who subscribe to Linux Journal—has
remained a core that has grown very
little. We continue to serve that core.
That’s our mission, and we’re sticking to
it. The question is, what’s the best way?
Today, it’s hard to say print is that best
way, especially with more and more peo-
ple spending more and more time read-
ing glowing rectangles rather than paper.
But, we are by nature and practice a

print magazine, and we have done our
best to remain one, even as the world
has changed around us. So I want to
congratulate the publishing side of our
house for keeping our print operation
going, against stupendous odds, and for
never selling out. (And believe me, there
were many offers, mostly from entities
that are now gone.) Our team did the

Off the Press

From the Editor

8 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

http://www.linuxjournal.com

impossible for as long as it could.
Yet, consider this. We also always

have been a digital publication, starting
with the first CD digest of issues in
1994. And, digital publishing has done
nothing but grow from the beginning.
So has advertising in the digital realm,
which is inherently limitless.
Something else also has started to

happen in digital publishing. It has
become easier, and more acceptable,
for people to pay for goods that also are
available for free. There has been much
experimentation here, and we are among
the many doing the experimenting. One
advantage for us is that we’ve always
had paying subscribers. Maybe it’s crazy
to think they’ll stick with us after we go
all-digital. But, I don’t think so. I’m a big
believer in the willingness of people to
pay for value, provided the means are
there. We have some means today, and
we will have better ones tomorrow,
especially if you help us think those
through—while also helping us improve
our editorial methods and materials.
Every magazine has a periodical

heartbeat. Ours always has been monthly.
That won’t change. What will change is
how much time passes between what
we write and when it appears. A pro-
duction cycle that took several months
will now take just weeks. (So for this
issue, I am writing this on August 1st
for a September publication date.) Much

more of our stuff will be current, or as
close to now as we can get.
We always will remain a print publica-

tion at heart (and in that respect, we will
be no different from the rest of journal-
ism), but we won’t remain contained by
the print medium. That medium, where
nearly all of our contributors grew up,
has legacy values (fairness, transparency,
credit to sources and so on) that are
important to bring to a vast new world
that has too little of them. Again, we
expect you to help us with that.

Linux Journal always has been a publi-
cation for the Linux Community. Linux
Journal will now be a publication by the
Linux Community as well. This is a very
good thing. Here in the digital world,
connection between people and ideas
are much more direct and immediate.
Understandings are also easily iterated
and improved. Just like code.
Maybe Linux doesn’t need Linux

Journal—or anything, other than con-
tinued constructive hacking in kernel
space. But I do believe Linux has been
better with Linux Journal around than it
would have been without it. Therefore,
with Linux Journal in a much more
improve-able place, we can’t help but
make Linux better in the process.�

Doc Searls is Senior Editor of Linux Journal. He is also a fellow
with the Berkman Center for Internet and Society at Harvard
University and the Center for Information Technology and Society
at UC Santa Barbara.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 9

FROM THE EDITOR

http://www.linuxjournal.com

SHAWN POWERS

I f I’ve learned nothing else fromAmerican politics, it’s that it doesn’t
take knowledge or insight on a

topic to have lots to say on the matter.
Thankfully, although this issue’s
Programming focus isn’t even close to
my area of expertise, our authors don’t
have that shortcoming. The worst you
should have to put up with is me trying
to explain what this issue contains. Feel
free to point and laugh.
Kyle Rankin, a fellow sysadmin,

works through an interesting conun-
drum this month. You’re all familiar
with programs like DBAN for wiping
sensitive data, but what if you need
to delete information securely on a
server thousands of miles away? (Or,
in the next room if you’re lazy like me.)
Kyle shows how to go about taking
care of a seemingly difficult chicken/egg
scenario. Kyle also shares a “Tale from
the Server Room” with Bil l Childers
and talks about the joy of UPS delivery—
more specifically, when servers are
unboxed, sometimes things don’t go
quite as planned.
If you’re beginning to worry our

Programming issue doesn’t contain
articles about programming, fear not.
Yes, we try to include a little something
for everyone, but this issue focuses on
programming, and we’ve got tons of
useful stuff for you. Nathanael Anderson
starts out with an appealing way to
learn multiplatform GNU development:
getting a guitar synth to work with
Rock Band 3. Unfortunately, there’s no
programming that can make me any
better at Rock Band, but using a real
guitar is a step in the right direction!
My friend Adrian Hannah is back

this month with a primer on the Make
utility. For most users, prepackaged
applications are how programs are
installed. For programmers, or people
on the bleeding edge, it’s necessary to
compile programs themselves. Adrian
shows how to “make” programs from
their source code. Sometimes when
you are on the bleeding edge, you’ll
notice that a newer version of an
application isn’t always better than
the previous version. Programmers
need to be aware of such things, and
Bart Polot and Christian Grothoff show

My Language: Dork++

Current_Issue.tar.gz

10 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

http://www.linuxjournal.com

CURRENT_ISSUE.TAR.GZ

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 11

us Gauger, a tool that monitors per-
formance regression. Sometimes an
application is slower because it has
more features, but sometimes it’s just
slower because of an erroneous source
code change. Gauger helps determine
when new versions go bad.
When I took programming in college,

I started out learning to program
command-line utilities that did little
more than solve the problem presented
in the curriculum. If programming
was a little more interesting back then,
I might have stuck with it for longer
than the single semester it was required.
My problem was that I wanted to make
GUI programs. PJ Radcliffe shows how
to develop GUI interfaces with Qt4
Designer and Eclipse. Granted, a fancy
GUI controll ing a cruddy underlying
program isn’t very useful, but at least
for me, a cool-looking program is
something I’d l ike to spend time per-
fecting. PJ shows how easy it can be
to include GUI controls.
If GUI programs aren’t for you, that’s

fine too. Adrian Klaver explores jEdit,
which is a very powerful and cross-
platform text editor. jEdit has features
that make programming much easier,
and its cross-platform nature means
you can use a consistent interface
regardless of the computer you’re stuck
using. Arnold Robbins is a fan of text
as well, and he presents GNU Awk
version 4. Awk has been around forever,
and although it’s still as useful as it’s

ever been, version 4 offers a few new
tricks as well.
Of course, we have our regular

columnists teaching about programming
this month as well. Reuven M. Lerner
discusses CoffeeScript, a different
way to program JavaScript. Dave Taylor
finishes his series on determining the
day of the week in a script. Plus, we
have many other programming-related
articles as well! Henry Van Styn describes
how to write object-oriented code in
Perl, Donald Emmack teaches how to
use WaveMaker, and we’ve even included
the results of a LinuxJournal.com
programming survey so you can see
what your fellow Linux programmers
are up to.
If you’re a programmer, this issue

likely will be one of your favorites of
the year. If you’re not a programmer,
there still are exciting things to read,
and you might find that programming
is more interesting than you originally
thought. I know I learned a lot this
month, and I might have to dust off
my old C++ course book and figure
out how to make a GUI version of
“Hello World”. Either way, we hope
you enjoy reading this issue as much
as we enjoyed putting it together.�

Shawn Powers is the Associate Editor for Linux Journal. He’s
also the Gadget Guy for LinuxJournal.com, and he has an
interesting collection of vintage Garfield coffee mugs. Don’t let
his silly hairdo fool you, he’s a pretty ordinary guy and can be
reached via e-mail at shawn@linuxjournal.com. Or, swing by
the #linuxjournal IRC channel on Freenode.net.

mailto:shawn@linuxjournal.com
http://www.linuxjournal.com

Oct. 12, 13, & 14

for BUILDING SUCCESSFUL WEBSITES

Oct. 112, 13, & 14

for BUILDING SUCCESSFUL WEBBBBBBBBBBBBBBBBBBBBBSSSSSSSSSSSSSSSSSSSSSSSSSSSITES

doitwithdrupal.com

Attending Do It With Drupal was absolutely worth it. I

learned more about Drupal in a few days than I would

have in months on my own. Meeting so many talented

and passionate web professionals was exhilarating.

Scott Phillips, Web Developer, Drake University

http://doitwithdrupal.com

Jeffrey
ZELDMAN

Josh
CLARK

Karen
MCGRANE

Featuring Awesome Speakers!

Also Jeff Robbins, Angela Byron, Karen Stevenson, Jeff Eaton, Ryan Szrama & more!

Do it with Drupal sessions are designed for you, covering the latest

Drupal information and best practices. But you’ll learn about more

than just Drupal -- choose from sessions on UX, designing mobile

apps, web typography, and more. And the speakers who present are

not just knowledgeable, they’re fun and engaging. Do it with Drupal

provides practical information that you can start using right away!

Use coupon code LJ50 when you register & save $50!

* coupon code expires October 10th

powered

Aussie
Admirer
I had a cou-
ple hours to
kill at the
shops while I
was waiting
for new tyres
on my car
and found
an April
edition of

your mag for $13.95 AUD (today’s date
is June 6). The people at the news agency
stated it cost that much because they
had to get it from America, and it was
two months old because it would cost
even more to send via air freight! A
quick check of exchange rates shows
the Aussie dollar paying $1.07 USD,
making the price in USD close enough
to $14.95. Would you sell many copies
for this price, I wonder? It’s a crying
shame that Australian retailers charge
this absolutely stupid markup. The rea-
soning I was given is utter garbage—a
hundred issues and I could fly them on
a seat first-class with free champagne
and still show a profit!
Enough with the whining. I purchased

the mag anyway and had a very inter-
esting read while I waited. Compliments
to your team. This won’t be my last
purchase; however, I likely won’t be

purchasing retail again any time soon.
Word of mouth spread of Linux in

this country can get only so far, and the
lack of reasonably priced journals on
the shelves of our shops sparking the
interests of new users is quite an imped-
iment to our plans of world domination.
—Scott K.

Thank you for picking up an issue,
even if the price was painfully high!
The cost of international shipping and
printing is one of the reasons we switched
(starting with this issue!) to a digital-
only format. For the same subscription
price as anyone here in the US, you get
the same experience, regardless of your
location. We think this recent change will
really level the playing field for international
subscribers. Hopefully you agree!—Ed.

Magazine Locations
I’m sitting in a hospital room watching
my father recover from liver cancer
surgery and a fall on the way home.
I recently discovered that my subscrip-
tion expired, and I’m going to renew
it next week. In the meantime, I
thought I’d pick up a copy locally, and
this is why I’m contacting you. I’d like
you to consider an application for
your Web site that would display
nearby magazine/bookstore locations
that carry your fine magazine. Perhaps

14 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

letters

http://www.linuxjournal.com

an Android app would be nice too.
Yes, I can read the on-line version, but
I’d really prefer a hard copy. Perhaps
Shawn Powers could assign this l ittle
Google smashup to someone? Thank
you for your consideration.
—Michael Soibelman

As someone who lives in an area
with no local retailers stocking Linux
Journal, I feel your pain. I’m not sure
how to create an app like that myself,
but hopefully, your letter will spark
someone’s interest in doing such a
thing. As far as assigning it goes, I
always could pick you if you like. Hope

your dad is doing well.—Ed.

Google Maps
I enjoyed the mapping article by Mike
Diehl in the April 2011 issue (“Find
Yourself with the Google Maps API”).
Like Mike, I would not be without Google
Maps. You may not be interested in the
content (unless you are a train buff), but
take a look at these sites. I think they
are truly awesome and are done by an
“amateur” at that. It just goes to show
what skills are out there, and it makes
me very envious: traintimes.org.uk/map
and traintimes.org.uk/map/tube.
—Roy Read

[LETTERS]

http://traintimes.org.uk/map
http://traintimes.org.uk/map/tube
http://www.logicsupply.com/linux

What Day Is It?
I’m sending a little feedback to Dave
Taylor’s “parsing the cal” output (see
Dave’s column in the June–September
2011 issues). There’s no need to use
regular expressions in the awk script at
all, because you can compare numbers
directly. Below, you’ll find the script you
can call by the following command line:

$ cal | awk -f day.awk 25

day.awk

BEGIN{

ARGC=1;

getline;getline;

for(i=1;i<=NF;i++) wd[i]=$i

}

{

for(i=1;i<=NF;i++)

if($i==ARGV[1])

print wd[i+($0~/^ /?(7-NF):0)]

}

In the BEGIN block, ARGC=1 prevents
it from taking the last argument (25 in
this case) as an input file. Then, the
script fetches the first two lines and
stores the weekday names in an array.
The rest of the script compares the

argument number with every field in
every line. On a match, the day name
is output, wd[i]. The month does not
always start on a Sunday, so the script
has to fix the index for lines starting
with a space (condition $0~/^ /). For
those lines, the first item starts with

index 7-NF. Note that this fix also works
fine for the second line of numbers
(which also starts with a space), since
7-7 equals 0.
You can make the script a one-liner if

you like. It was written in multiple lines for
readability reasons. And, last but not least:
great OS, great magazine, keep going.
—Eric Miller

Dave Taylor replies: Thanks for your
note. I realized that there was a way to
break down the input and process it
with a multiline awk script (just as I
could do much of the task more easily
in Perl or, for that matter, a short C
program), but my goal with the Work
the Shell column is to force myself to
stick with standard Linux shell com-
mands and capabilit ies as much as
possible and see what I can accomplish.
Sometimes the result is a bit, um,
Byzantine and unquestionably ineffi-
cient, but the upside is that it’s always
interesting and, I hope, informative
and entertaining reading.

Installfest 2001
Installfest goal: adapt seven older desk-
top computers for use by fourth-grade
teacher Mike Steins at Shenandoah St.
Elementary School and learn how to
install/configure Linux. (We had two
Linux experts in the group.)
Outcome: we got four computers

working with Linux by scavenging parts
from various other machines.

16 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[LETTERS]

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 17

Although the Linux installfest event ten years
ago may not have been hugely productive (eight
people @ six hours = four working Linux computers),
it got the ball rolling to get computers at the
school. Since then, every teacher has received a
laptop, projector and document camera. The
school has multiple interactive whiteboards, a fully
functioning computer lab (actually two—one is
made up of aging computers), digital microscopes,
cameras and video cameras, a completely wireless
network with networked printing and storage
capabilities, an in-house server, student e-mail
accounts, and we’re slowly looking to integrate
tablet devices during the next few years as the
technology becomes more inexpensive and funding
levels rise (if that ever happens). So, Linux (I believe
it was the Red Hat distribution) laid the red carpet
for technology at our school. Thanks.
—Mike Steins

At Your Service
SUBSCRIPTIONS: Beginning with the
September 2011 issue, subscriptions to
Linux Journal will be fulfilled digitally and
will be available in a variety of digital
formats, including PDF, an on-line digital
edition, and apps for iOS and Android
devices will be coming soon. Renewing your
subscription, changing your e-mail address
for issue delivery, paying your invoice,
viewing your account details or other
subscription inquiries can be done instantly
on-line: www.linuxjournal.com/subs.
Alternatively, within the US and Canada,
you may call us toll-free at 1-888-66-LINUX
(54689), or internationally at +1-818-487-2089.
E-mail us at subs@linuxjournal.com or reach
us via postal mail at Linux Journal, PO Box
16476, North Hollywood, CA 91615-9911 USA.
Please remember to include your complete
name and address when contacting us.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit
them at www.linuxjournal.com/contact or
mail them to Linux Journal, PO Box 980985,
Houston, TX 77098 USA. Letters may be
edited for space and clarity.

WRITING FOR US: We always are looking for
contributed articles, tutorials and real-world
stories for the magazine. An author’s guide,
a list of topics and due dates can be found
on-line: www.linuxjournal.com/author.

FREE e-NEWSLETTERS: Linux Journal
editors publish newsletters on both a
weekly and monthly basis. Receive late-
breaking news, technical tips and tricks,
an inside look at upcoming issues and
links to in-depth stories featured on
www.linuxjournal.com. Subscribe for free
today: www.linuxjournal.com/enewsletters.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due dates,
or learn more about other advertising and
marketing opportunities by visiting us
on-line: www.linuxjournal.com/advertising.
Contact us directly for further information:
ads@linuxjournal.com or +1 713-344-1956
ext. 2.

Linux installfest at 419 N Vista St., Los Angeles (circa 2001).

Left to right, top row: Danny Olster, Abhijeet Chavan, Christian

Peralta Madera, Mike Steins, Charanjeet Singh, Christian’s Dad.

Bottom row: Chun Wong, Chris Steins.

WRITE LJ A LETTER We love hearing from our readers. Please send
us your comments and feedback via www.linuxjournal.com/contact.

http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/contact
http://www.linuxjournal.com/author
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/contact
http://www.linuxjournal.com

18 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

UPFRONT
N E W S + F U N

Google’s Mike Waychison has posted
some patches to organize Google-specific
firmware used in its servers. These
patches were met with approval by
Alan Cox and Greg Kroah-Hartman,
although Google’s servers remain
unavailable for purchase by the public.
Perhaps that will change soon.

Chris Wright officially is no longer
on the stable kernel team, and he has
not been involved in that project for
some time. Greg Kroah-Hartman will
continue his effort to release several
short-term stable versions of each kernel,
during the intervals between official
releases from Linus Torvalds. Long-
term stable trees in the 2.6 series are
maintained by Andi Kleen, Willy
Tarreau, Paul Gortmaker and others.
The ancient versioning system, CVS,

still is being used by some kernel devel-
opers in spite of the advent of git, and
Sebastian Andrzej Siewior recently
posted a patch supporting those devel-
opers. His patch took out all the stale
CVS Id tags sprinkled throughout
the kernel that were confusing CVS.
Apparently, some developers are syncing
the kernel sources from git and then
feeding the whole tree into a CVS

repository before working on it—bizarre.
But, it’s a great testament to the hardi-
ness of CVS after so many years and so
many attempts to find something better.
A recent bug in SysFS allowed regular

users to overwrite NVRAM. Vasiliy
Kulikov’s patch to close the security
hole had taken more than a month to
be incorporated into the kernel. In light
of that, he’s posted a patch to give the
system administrator the power to
mount the SysFS directory as read-only.
This blanket protection would not be
in effect at all times, but it would give
administrators the ability to lock down
that part of the system in the event that
a similar bug were discovered. The prob-
lem, as Greg Kroah-Hartman points out,
is that locking down SysFS may produce
other unanticipated problems, and he
feels the right approach simply would be
to fix SysFS bugs as they occur, rather
than add a blanket layer of security
over it. The debate is unresolved at the
moment and could play out either way.

Huang Ying recently posted some
code to cause unknown non-masking
interrupts (NMIs) to crash the kernel
and produce a panic report. But, part
of the problem is that a wide array of

diff -u
WHAT’S NEW IN KERNEL DEVELOPMENT

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 19

[UPFRONT]

systems produce unknown NMIs for no
reason at all. Huang’s solution was to
create a whitelist of systems that were
known not to do this, and his patch
would work only on that whitelisted set
of systems. But, Ingo Molnar suggested
using active event filters to allow
unknown NMIs to go through a localized
policy decision-making process first, so
the decision to panic the system could
be made on a per-system basis.
Active event filters, as Ingo pointed

out, would allow a certain portion of
the decision-making process to occur
while sti l l in kernel space, without
having to return to userland. This is key,

because when the system is crashing, it
often is not feasible to pass control over
to a user-space program. But in the
case where the active event filters
determined that a crash probably was
not occurring, they could hand control
to a user-space dæmon that would
make additional decisions about how
to handle the unknown NMI.
Active event filters apparently are

tremendously powerful and soon may
be seen in use throughout the kernel
as a way of standardizing a number of
disparate behaviors that currently are
handled in an ad hoc manner.
—ZACK BROWN

Digital music and, more recently, digital
video and digital books, have changed the
way we consume media. Comic books are
no different, and with the advent of tablet
computers, digital comics are becoming
more and more popular. If you don’t have
a tablet computer, however, viewing CBR
(or their compressed version, CBZ) files is
as simple as installing a CBR reader and
downloading your favorite comic.
Many comic book readers are available

for Linux. A quick Google search will turn
up programs like Comix, ComicMaster
and Comical, all of which display digital
comics quite well. Another search likely

will turn up some free comic resources,
like the one shown here: Cory Doctorow’s
Futuristic Takes of the Here and Now. If
you miss the comic books of your youth,
or if you still enjoy them on a regular
basis, you owe it to yourself to check out
CBR/CBZ files.—SHAWN POWERS

CBZ, the MP3
of Comics

http://www.linuxjournal.com

20 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[UPFRONT]

Sometimes, you just want a simple word processor. Yes, there
are many options for word processing, from the awesome
OpenOffice.org to the awesome-for-other-reasons vi. If you’re
looking for a happy medium, however, it’s hard to do better
than AbiWord. When you add the free on-line component,

AbiCollab.net, you even can collaborate with other AbiWord users on documents.
AbiWord is available for Linux, Windows and even OS X. You need version 2.8

or higher to use AbiCollab.net, but most distributions include at least version
2.8. Check out the Web site at www.abisource.com.—SHAWN POWERS

Non-Linux FOSS

No, I’m not talking browncoats and
spaceships. Unfortunately, that ship
has sailed. If you’re the musical type,
however, installing a Firefly Media
Server is fairly simple. It was renamed
from mt-daapd, so your distribution still
might call it that. After a quick install,
visit the Web configuration, usually at
http://localhost:3689 with the default
login mt-daapd and password mt-daapd.
You can configure your music location,
smart playlists and just about every
other aspect of the media server. Then
comes the cool part.
On any software or hardware on

your network that supports daap (often
known as the iTunes protocol), you
should be able to play your music
remotely. Firefly does a decent job of
scanning your music collection and
updating the clients on the network.

You can add m3u playlists, and Firefly
will serve up playlists as well.
I find the best way to listen to music on

XBMC is via daap. It makes configuring
playlists and adding media simple. It’s also
cross-platform, so those folks using actual
iTunes can listen to their tunes as well.
—SHAWN POWERS

ROCK YOUR WORLD WITH FIREFLY

http://www.abisource.com
http://www.linuxjournal.com

“The question of whether a computer
can think is no more interesting
than the question of whether a
submarine can swim.”—E. W. Dijkstra

“One thing a computer can do that
most humans can’t is be sealed up
in a cardboard box and sit in a
warehouse.”—Jack Handey (from “Deep Thoughts”,

Saturday Night Live)

“If you have any trouble sounding
condescending, find a UNIX user to
show you how it’s done.”—Scott Adams

“Isn’t it interesting that the same people
who laugh at science fiction listen to
weather forecasts and economists?”
—Kelvin Throop III

“Computer Science is no more about
computers than astronomy is about
telescopes.”—E. W. Dijkstra

“Even he, to whom most things that
most people would think were pretty
smart were pretty dumb, thought it
was pretty smart.”—Douglas Adams

“It is bad luck to be superstitious.”
—Andrew W. Mathis

“The problem with quotes on the
Internet is that it is often difficult to
verify their authenticity.”—Abraham Lincoln

They Said It

www.embeddedARM.com

22 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[UPFRONT]

Did you learn all your
Linux console skills
from books or from
forums? Or, did you
peek over someone’s
shoulder to see the
real action? Once in

a while, we stumble upon new projects
that deserve some attention, l ike
Playterm (www.playterm.org).
What’s the reason for this command-
line “peep show”? To spread GNU
Linux command-line knowledge.
You will see a fair amount of on-line

terminal recordings when you enter this
site. The recordings cover several topics
performed in the shell: tricks, one-liners,
guided tutorials and handy utilities.
Personally, I found them quite enter-

taining to watch, and it brought me
back to the BBS days. It can be educa-
tional, and also quite hilarious to see
people making typos and mistakes.
Another interesting Playterm feature

is the embed facility. You can upload
terminal recordings on this site, which
you then can embed and play on your
blog or Web site. Optionally, you can
allow commenting on your recordings,
which, of course, will provide interesting
hints and tips and other improvements.
The Coder of Salvation (Leon van

Kammen) created Playterm because he
was just too curious about what people

were doing in their
terminals. He used
to work for a com-
pany where he did
extreme program-
ming sessions with
his colleagues
through the GNU screen -x utility. In
his experience, it is extremely educa-
tional when you work together in one
terminal (and also entertaining). In his
opinion, console-related books and
articles are great, but sometimes it can
be more helpful to see gurus at work.
If it were up to him, more command-
line projects should feature a terminal
player on their sites: “Why not? Why
have only a tar archive on a site?
Developers should make more demos
to show the world how cool their
utilities are! It hurts me to see so many
great utilities being overseen by the
masses.” Obviously, these are the
words of a true terminal evangelist.
Before the big Internet boom, people

used BBSes a lot (en.wikipedia.org/
wiki/Bulletin_board_system). People
called to other people’s BBSes via
their phone line. The cool thing about
running your own BBS was that you
could create an console “intervention”.
By doing this, you could “take over”
the terminal session of a given user.
In those days, a lot of teaching and

Playterm, Platform of the Gurus

http://www.playterm.org
http://www.linuxjournal.com
http://en.wikipedia.org/wiki/Bulletin_board_system

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 23

[UPFRONT]

cooperation was done this way.
Of course, the Playterm Web site

would not be possible without the GNU
and Open Source movement. Thanks also
to the developers of ttyrec (0xcc.net/
ttyrec) and jsttyplay (encryptio.com).
Playterm is still beta, but it’s already

fully functional. Currently, we are curi-

ous about how many users we can
serve, but in terms of global Linux
knowledge, we are very excited. At
this point, Playterm.org is a nonprofit
project to serve the community and
spread GNU Linux knowledge. Hopefully,
it will inspire youngsters to use the
shell more often.—LEON VAN KAMMEN

I may not be Steven Spielberg,
but every time I see a rerun of
Gumby, I’m convinced I could
be a famous producer. With
Linux, I don’t even have to get
a fancy movie set. I can make
my own science-fiction adven-
ture film with nothing more
than a Webcam and a streak
of bizarre creativity.
Stopmotion is a Linux

program designed for creating
stop-motion films. It’s available
for most distributions and
easily compilable for the rest.
Stopmotion is simple in its design, and
it allows you either to import a series
of pre-taken photos or take live stop-
action with a Webcam. I find the latter
to be slightly easier, as you can see a
ghost image of the last shot you took,
making the slight changes you need
easy to spot.

Recording stop-motion fi lms is
tedious work, but the end result can
be pretty cool. Check out the homepage,
short-linked here: is.gd/stopmotion.
If you create an interesting video, send
a link to ljeditor@linuxjournal.com. If
we get enough, we’ll post them on our
Web site.—SHAWN POWERS

Roll Your Own Cthulhu Flick

mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
http://0xcc.net/ttyrec
http://encryptio.com
http://is.gd/stopmotion

24 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[UPFRONT]

Engineers are some of the heaviest
number-crunchers around. If you are a
grad student, post doc or undergrad, you
usually get whatever is lying around as
your work machine. Also, depending on
how inflexible your local IT department
is, you may be forced to use one of the
commercial operating systems around these
days. What are lowly students to do when
they need to do heavy computational
work? You may be interested in looking at
CAELinux (Computer Assisted Engineering,
www.caelinux.com). This project provides
a live CD that gives you all the open-source
tools you might need for your engineering
work. And, because it is a live CD, you can
use it without touching the local drive of
the machine you are using.
Like all live CDs, it has all the standard

Linux desktop tools you should be familiar
with, including Firefox for Web browsing,
Evolution for e-mail, and OpenOffice.org
for word processing, spreadsheets and
presentations. Along with these applications,
there are dozens of others to help with all
your number-crunching work. The most
recent versions are based on Ubuntu, so it
should be a fairly comfortable environment
for most people. Be aware, however, that
you can’t use the usual software update
mechanism in Ubuntu. Many of the
packages in CAELinux are compiled from
source and optimized, so you don’t want
them being overwritten accidentally by any
packages provided by Ubuntu.

A really well written introduction to
CAELinux is available right on the
desktop, called “Getting Started”. You
should start here if this is your first
step into the world of CAELinux.
Last month, I looked at OpenFOAM

in this space. CAELinux includes a full
install of OpenFOAM. It also includes
another fluid dynamics program called
SALOME. This program provides a full
graphical interface that takes you from
forming your problem, to modeling, to
calculation and through to analyzing
your results. This might be a good
choice for those who are more comfort-
able with a GUI. A series of examples on
the desktop are available that provide a
walk-through of the program, showing
each of the steps as you go through.
As you can see, the tutorials walk

through several common simulations,
l ike modeling flow through a pipe.

Computer-Aided Engineering in Linux

Welcome to CAELinux

http://www.caelinux.com
http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 25

[UPFRONT]

These can provide great starting points
for many people.
If your work leans more toward data

analysis, several popular packages are avail-
able. For all of you Matlab addicts, there is
Scilab. Scilab provides the same types of
functions in an environment familiar to
Matlab users. There also is Maxima, which
provides tools more from a mathematical
background (for example, analyzing func-
tions and doing calculus), as compared to
Scilab’s approach of working from a matrix
background (such as looking at data analy-
sis). Maxima has several front ends available.
The default one in CAELinux is wxMaxima.
If you are doing really heavy statistical
analysis, there is R. The real power of R is
the CRAN repository, and a fair amount is
available out of the box. R also has several
graphical front ends. CAELinux provides
two: R Commander and RKWard. If you are
doing work more along the lines of pure
mathematical analysis, there also is Octave.
The default GUI available within CAELinux

is QtOctave. In all of these cases, text-
based interfaces also are available, if you
are an old-style computer user who prefers

Getting Started CAELinux Tutorials

http://www.linuxjournal.com
www.emacinc.com

26 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[UPFRONT]

that kind of thing.
Several software packages exist for

applications other than CFD or statistics.
If you need to do finite element analysis,
there’s elmer. It provides both a text-based
and GUI interface. There also is JavaFoil,
available for doing analysis on airfoils and
wings. If you are designing electrical
circuits, two packages are available. Electric
is a CAD program that helps you lay out a
circuit. And, once it is all laid out, you can
use PCB Designer to get it set up so you
can etch a board to make it real.
This is all fine and good if you can use

a standard toolset in your work. But, what
if you need computing power for really
cutting-edge research? CAELinux provides
the entire GNU toolset. This means you
have everything you need to go ahead
and start developing your own code. All
of the most common scientific and engi-
neering libraries, like gsl and LAPACK, are
available. If you are working on really
large problems, MPI and openMP also are
available. This way, you can develop a
parallel programming solution if that is
what your problem needs.
Once you have finished all your calcula-

tions, an important part of data analysis
is graphical analysis. There is something
visceral and instinctive about actually
seeing your data represented. To this end,
CAELinux provides several packages. If
you simply want to plot your data, you
can use programs like grace and LabPlot.
If you want to do more complicated data
analysis, you have programs like G3Data

and OpenDX Data Explorer. These programs
have lots of functionality that can be
used to look at your data graphically.
If you are doing CFD work, several
programs for visualizing your meshes
are available. So, you have your choice
based on what features you need.
The last option to look at this month

is using CAELinux in “the cloud”. Cloud
computing is one of those sexy terms that
gets used a lot in marketing, but it some-
times doesn’t really give you anything
useful. In this case, there really is something
substantial being offered. CAELinux
now can be run as an application under
Amazon Elastic Cloud Computing. You can
now run, on demand, as many nodes as
you like, each having eight cores and 64GB
of RAM. For people who don’t have the
resources to run their own clusters, but
need more than what a desktop can handle,
this can be a very attractive choice. It
definitely is worth looking into as a possible
option. You can find more information
about EC2 at aws.amazon.com/ec2, and
the CAELinux Web site has a very good set
of instructions to get you up and running.
As you can see, CAELinux provides a

lot of power and functionality for doing
computational science. Because it is a
live CD, you can run it on essentially any
64-bit machine without touching the hard
drive. But, you also have the option of
installing it on the machine if you are
allowed. Download an ISO and start
playing with it to see just how much
work you can do with it.—JOEY BERNARD

http://www.linuxjournal.com
http://aws.amazon.com/ec2

More TFLOPS,
Fewer WATTS

GSA Schedule
Contract Number:
GS-35F-0431N

Configure your next Cluster today!
www.microway.com/quickquote
508-746-7341

FasTree™ QDR InfiniBand Switches and HCAs

 36 Port, 40 Gb/s, Low Cost Fabrics

 Compact, Scalable, Modular Architecture

 Ideal for Building Expandable Clusters and Fabrics

 MPI Link-Checker™ and InfiniScope™ Network Diagnostics

Enhanced GPU Computing with Tesla Fermi

 480 Core NVIDIA® Tesla™ Fermi GPUs deliver 1.2 TFLOP
single precision & 600 GFLOP double precision performance!

 New Tesla C2050 adds 3GB ECC protected memory

 New Tesla C2070 adds 6GB ECC protected memory

 Tesla Pre-Configured Clusters with S2070 4 GPU servers

 WhisperStation - PSC with up to 4 Fermi GPUs

 OctoPuter™ with up to 8 Fermi GPUs and 144GB memory

New Processors

12 Core AMD Opterons with quad channel DDR3 memory

 8 Core Intel Xeons with quad channel DDR3 memory

 Superior bandwidth with faster, wider CPU memory busses

 Increased efficiency for memory-bound floating point algorithms

Microway delivers the fastest and greenest floating
point throughput in history

Achieve the Optimal Fabric Design for your Specific
MPI Application with ProSim™ Fabric Simulator
Now you can observe the real time communication coherency
of your algorithms. Use this information to evaluate whether
your codes have the potential to suffer from congestion.
Feeding observed data into our IB fabric queuing-theory
simulator lets you examine latency and bi-sectional bandwidth
tradeoffs in fabric topologies.

2.5 TFLOPS

5 TFLOPS 10 TFLOPS

45 TFLOPS

FasTree 864 GB/sec
Bi-sectional Bandwidth

pC2_Microway.indd 1pC2_Microway.indd 1 7/15/10 9:20:43 AM7/15/10 9:20:43 AM

http://www.microway.com/quickquote

[UPFRONT]

One of our favorite things to do over
at LinuxJournal.com is to check the
pulse of the Linux community and our
readership. We do this fairly regularly
with simple polls on our site. These
give us valuable insight into your
interests, and they give us a fun way
to get feedback on a specific question.
Sometimes a simple question generates
a tremendous amount of discussion, and
even a little controversy. We recently
asked readers to choose their favorite
programming language, and we received
a lot of great answers. Check it out at
www.linuxjournal.com/content/whats-
your-favorite-programming-language.

We know that for some of you, your
favorite programming language is such an
important part of your existence that you
are understandably quite opinionated
on the subject. So, as you might expect,
there were clear leaders and underdogs,
as well as passionate supporters of each.
Python tends to be the favorite among

our readers, and it has won more than
one Readers’ Choice Award for favorite
programming language. Indeed, Python
has staying power, as it once again
was the leading choice among
LinuxJournal.com readers with 24% of
the votes. Not surprisingly, there were
many skeptics among the commenters,

LinuxJournal.com Programming Survey

http://www.linuxjournal.com/content/whats-your-favorite-programming-language
http://www.linuxjournal.com/content/whats-your-favorite-programming-language
http://www.linuxjournal.com/content/whats-your-favorite-programming-language
www.siliconmechanics.com
www.siliconmechanics.com/xeon
www.siliconmechanics.com/ors
www.oceanrowsolo.com
http://LinuxJournal.com
http://LinuxJournal.com

[UPFRONT]

but Python fans did their best to set
everyone straight about Python’s virtues,
and one reader offered this sage advice:

In my opinion, a large Python

system is well organized (like any

language), sticks to standards, has

docs (particularly module docs) and

has tests. Consistent, well-written

Python code makes it fairly obvious

what objects/types functions accept

and return, and having useful

standard types (lists, dics, sets, etc.)

encourages people not to make

exotic variations often. Having

module docs that document what

your function does and its inputs

and outputs clarify any questions.

In a close second and third place were
C and C++, respectively. Both had enthu-
siastic support in the comments section,
and we can infer from some comments
that “all of the above” (in the case of
C, C++ and Python) might have been a
popular answer as well. Many indicated
a preference for different languages for
different tasks, and we applaud their
versatility and open-mindedness!
Java trailed C++ in fourth place, and it

was cited more than once as a preferred
learning and teaching language. It
probably also is safe to bet that some of
Java’s popularity is due to the increasing

�

30 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

[UPFRONT]

demand for Android applications written
in Java. One anonymous commenter
gave us a detailed breakdown of how
Java fits the bill versus other languages:

� For fun: Forth.

� For teaching (elementary): Logo.

� For teaching (secondary+): Java.

� For desktop applications: C++ (with Qt).

� For Web services: Java (SE or SE +
Servlet only).

� For enterprise internal: Java (EE with
or without Spring).

� For enterprise external: Java (SE or
SE + Servlet and JSP, no Spring).

� For cloud: C++, Java, Scala and
Python together.

� For mobile: Java (Android) C++ and
Qt (native).

� For embedded systems: C++ or Java
(real time).

� For device drivers: C++ or C.

� For deep embedded (no MMU): C,
Forth or Assembly, as needed.

Although these may not suit every-

one, I have to give credit for such a
detailed response.
Getting a little less love were Perl,

C# and Ruby. Although these all have
devoted followings, their fans were
largely outnumbered in this poll. I was
a little surprised to see Ruby score only
4% of the votes, as I personally know
so many enthusiastic Ruby coders.
Haskell and OCaml each got 1% of

the vote, while the catchall “other”
made up the remaining 8%. Most
interesting were the comments describing
the variety of languages our readers use
regularly as well as dabble in.
PHP always has a few fans, and

although we can argue that PHP belongs
in a separate “scripting languages” poll,
its fans still showed support. The same
can be said for JavaScript and Bash,
both of which got a little love from
our readers. Perhaps we’ll do a favorite
scripting language poll soon, but in
the meantime, since PHP, JavaScript
and Bash tend to be part of my daily
life, it is nice to see I am not alone.
There were quite a few mentions of

Scala, LISP and Erlang, as well as oldies
but goodies, FORTRAN and Cobol. The
latter occasionally were mentioned in
the context of “getting old”, but frankly,
do the classics ever go out of style?
It is always fun to read the nostalgia

posts that inevitably appear on these sorts
of comment threads. When programmers
share their stories, there is usually a men-
tion of the language they started with,

http://www.linuxjournal.com

and when our readers share stories of the
language they were using in 1976 or even
1968, it gives us all a glimpse at where
we’ve been, and how we all got to where
we are today. Whether you started as a
mainframe pioneer or a geeky kid typing
out rudimentary BASIC on your TI-99/4A
(What? Bill Cosby said it was cool!),
you’ve likely had a somewhat meandering
journey made up of more than a few
languages to get to the code you write
today. In my humble opinion, sharing
these stories is one of the best parts of
LinuxJournal.com. I hope you’ll all join
in the fun and check out the current poll
next time you visit LinuxJournal.com.
Don’t be shy! Tell us your stories and
opinions in the comments. You never
know who you may inspire. I suspect it
might be me!—KATHERINE DRUCKMAN

Programming Language
Survey Results

C 19% (1,661 votes)
C++ 17% (1,488 votes)
C# 5% (399 votes)
Haskell 1% (126 votes)
Java 13% (1,118 votes)
OCaml 1% (47 votes)
Perl 8% (674 votes)
Python 24% (2,025 votes)
Ruby 4% (361 votes)
Other 8% (670 votes)
TOTAL VOTES 8,569

http://LinuxJournal.com
http://LinuxJournal.com

32 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

Last month, I wrote about CoffeeScript,
a new, small language that compiles into
JavaScript. CoffeeScript has generated a
great deal of buzz and excitement among
Web developers, including no less than
Brendan Eich, Mozilla’s CTO and the
inventor of JavaScript. Ruby on Rails 3.1,
which presumably will be released by
the time this column sees print, includes
CoffeeScript, and other frameworks
might follow suit in the future.
Even if you’re not interested in the

future of JavaScript or in Ruby on Rails,
you owe it to yourself to look at
CoffeeScript. First, it’s a new and
interesting language, and I’m definitely
a believer in learning new languages as
part of my professional development.
Second, CoffeeScript’s syntax makes it
easier to do many things that previously
were difficult, long-winded or just plain
ugly in JavaScript. Just as a number of
languages have emerged that compile
to the JVM, but that are easier to use
in various ways, so too is CoffeeScript

functionality equivalent at the end of
the day to JavaScript, but with an easier
syntax that’s more appropriate for many
modern applications.
But, perhaps the most interesting

part of CoffeeScript is the fact that,
ultimately, it’s just another way of
writing JavaScript, which means anything
you can do in JavaScript, you also can
do in CoffeeScript. CoffeeScript pro-
grams can run on the server, in such
environments as node.js, but they also
can run in the browser, working in
conjunction with Web applications.
Things become even more interesting
if you use a JavaScript framework,
such as jQuery, for developing Web
applications—you can benefit from
the best of both worlds, enjoying the
power and expressiveness of jQuery,
along with the terse and readable
syntax of CoffeeScript.
This month, I describe some ways

that CoffeeScript and jQuery can
interact in a browser-based program.

CoffeeScript
and jQuery
CoffeeScript is a better way to write JavaScript, but it integrates
just fine with libraries like jQuery.

REUVEN M.
LERNER

AT THE FORGE

CCOOLLUUMMNNSS

http://www.linuxjournal.com

Even if you don’t decide to adopt
CoffeeScript in your own programs,
it’s worth playing with the language
to get the hang of things.

Starting Off
I’m going to assume you already have
installed CoffeeScript, as well as any
support files, such as a mode for your
editor. Create a bare-bones HTML file,
as shown in Listing 1, and a stylesheet
(coffeescript.css), in the same directory,
similar to what’s shown in Listing 2.
Notice how in the HTML file, I include
two JavaScript files:

<script

src="http://ajax.googleapis.com/ajax/libs/

�jquery/1.4.2/jquery.min.js"></script>

<script src="app.js"></script>

The first probably is recognizable as
the Google-hosted version of a minified
version of jQuery. But the second file,
app.js, is the target of the CoffeeScript
compilation—that is, you’re not going
to write app.js directly. Rather, you’re
going to write CoffeeScript that compiles
into JavaScript.
You do this by creating (in the same

directory as the HTML file, unless
you want to change the paths in the
<script> tag) a CoffeeScript program,
named app.coffee. Just to test things,
I created a very simple CoffeeScript

program that uses the standard (and
annoying!) alert dialog to say “hello”:

alert "hello"

Save this file as app.coffee. On the
command line, you then want to tell
CoffeeScript to compile app.coffee into
app.js. (Otherwise, it’ll try to execute
your program, which not only will mean
that the resulting JavaScript isn’t available

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 33

AT THE FORGE

CCOOLLUUMMNNSS

Listing 1. coffeescript.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta http-equiv="content-type"

�content="text/html; charset=utf-8" />

<link rel="stylesheet" type="text/css"

�href="coffeescript.css" />

<title>CoffeeScript</title>

<script src="http://ajax.googleapis.com/

�ajax/libs/jquery/1.4.2/

�jquery.min.js"></script>

<script src="app.js"></script>

</head>

<body>

<h1>Headline</h1>

<p>Paragraph 1</p>

<p>Paragraph 2</p>

<p>Paragraph 3</p>

</body>

</html>

http://www.linuxjournal.com

for your Web page, but it also will result
in an error if you try to access the DOM,
which isn’t available outside a browser
context.) You can do this with:

coffee --compile app.coffee

The problem with this approach is that
you need to recompile your CoffeeScript
program every time you change it. A bet-
ter solution probably is to tell CoffeeScript
to watch the file and compile it every
time a change is detected:

coffee --compile --watch app.coffee

Just after running this, the compiler
will run over app.coffee, producing
app.js. When you load your Web page,
app.js will run, and you should have
an alert saying “hello”.

Functions and Objects
It’s important to remember that although
CoffeeScript certainly is a different syntax
from JavaScript, it is fundamentally
the same language. This means any
function or object that you can access
from JavaScript can be accessed from
CoffeeScript, with the same name. True,
CoffeeScript does offer some shortcuts
and syntactic sugar; those basic JavaScript
objects are still around and kicking.
That’s why you could invoke the “alert”
function in app.coffee—it’s not that
CoffeeScript has defined a new function,
but rather that you’re using the same
built-in JavaScript function.
This means if you load jQuery in the

same document as a program written in
CoffeeScript, you can use jQuery from
within CoffeeScript. What does that mean?
Well, it means you can access the jQuery
object directly, often abbreviated as $. For
example, let’s change app.coffee so that it
tells you what version of jQuery you’re
using, normally available via $().jquery.
You also can do this in CoffeeScript:

alert $().jquery

Let’s do something a bit more exciting
now, using jQuery’s capabilities for easily
changing elements in the DOM based on
events that take place. For example, you
can add the “large” class to all of the
paragraph elements in your document.

34 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

AT THE FORGE

CCOOLLUUMMNNSS

Listing 2. coffeescript.css

p.large {

font-size: 30px;

}

p.medium {

font-size: 20px;

}

p.small {

font-size: 10px;

}

http://www.linuxjournal.com

In JavaScript, you would do this with:

$("p").addClass("large");

In CoffeeScript, you can use the
same code as above. But, because
CoffeeScript allows you (like in Ruby)
to remove most of the parentheses,
you end up with this:

$("p").addClass "large"

Notice how the original jQuery selector
has remained the same, as has the
method you’re call ing on each of the
selected DOM elements. What has
changed is the way you invoke the
method; you no longer need to put
parentheses around it.
There is a problem with this though.

It will execute immediately upon being
loaded. The problem is that just because
the JavaScript is executing, it doesn’t
mean the HTML all has been loaded or
rendered onto the screen. Now, you can
get around this in traditional jQuery by
putting all of your code inside a call to
$(document).ready(), as in:

$(document).ready(

function () {

// Event handlers go here

}

);

You can do the same thing, but in less
space (of course) using CoffeeScript:

$(document).ready ->

($ "p").addClass "large"

As you can see, CoffeeScript’s syntax
is cleaner and trimmer, without nearly as
many curly braces and parentheses. You
start off with the same invocation of $
with the “document” parameter, and
then invoke the “ready” method on that
object. You then need to pass a function
to “ready”, which you do by defining
a new, anonymous method with
CoffeeScript’s -> symbol, cleverly dubbed
“dashrocket” in the PeepCode screencast
about CoffeeScript.
In other words, you’ve wrapped your

original invocation of “addClass” and
friends inside a function that’s invoked
when the document is ready. But, you’ve
cut the number of lines of code in half,
without sacrificing readability. Now, let’s
do something a bit more exciting, namely
change the size each time you click on a
paragraph. In order to do that, you’ll need
to use one of jQuery’s event handlers—
specifically, you’ll use the “click” handler,
which you set by invoking a selector, the
“click” method, and then passing the
name of a function. For example, if all you
want to do is display an alert dialog when

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 35

AT THE FORGE

CCOOLLUUMMNNSS

http://www.linuxjournal.com

a paragraph is clicked, you can do it with
the following CoffeeScript:

$(document).ready ->

changeSize = ->

alert("changing size!")

$("p").addClass "large"

$("p").click changeSize

Note how I’ve defined two functions
here: an anonymous function for
$(document).ready and another function
to which I give the name changeSize.
But, of course, you want to do something
a bit more complex than display an alert
dialog; you want to change the size.
When changeSize is fired, you want to
know which paragraph to change. An
event handler always is passed “this”,
an all-too-common word in JavaScript
that confuses many people.
One way to get the sizes to rotate is

shown in Listing 3, app.coffee. Basically,
your callback function starts off by
assigning a local variable, “text”. If this
were JavaScript, “text” would not be a
local variable, but rather a global one,
because you used neither the “var”
keyword nor another object (for example,
myObject.text). In CoffeeScript, variables
are local, which means you cannot pollute
the global namespace accidentally.

Listing 3 shows a basic use of if/then/else
blocks. Notice there isn’t any need for
braces, begin/end statements or other
markers. Python programmers will see this
(rightly) as a vindication of semantically
significant whitespace. I just like the fact
that well-indented code is easy to read,

36 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

AT THE FORGE

CCOOLLUUMMNNSS

Listing 3. app.coffee

$(document).ready ->

changeSize = ->

text = $(this)

if text.hasClass "small"

text.removeClass "small"

text.addClass "medium"

else if text.hasClass "medium"

text.removeClass "medium"

text.addClass "large"

else if text.hasClass "large"

text.removeClass "large"

text.addClass "small"

else

text.addClass "large"

true

($ "p").addClass "large"

($ "p").live 'click', changeSize

http://www.linuxjournal.com

and that CoffeeScript enforces this on me.
You also can see that with rare

exception, you’ve managed to get rid
of the parentheses that JavaScript would
require, in favor of terse, clean syntax.
You’re still using the same jQuery meth-
ods, but you’re doing so in a way that I
find easier to read.

You then take the changeSize function
and attach it to an event:

($ "p").click changeSize

It might look a bit strange to have the

parentheses around the call to $ "p",
which in standard jQuery would look like:

$("p")

CoffeeScript tries to get rid of as
many parentheses as possible, but there
are times when the ambiguity would
makes things too difficult for its parser.
In such circumstances, you can use
parentheses to make things easier.

As you can see from the above
example, CoffeeScript makes all of
jQuery’s functions available. No matter

AT THE FORGE

COLUMNS

lj209_September2011_digitalBU:lj_template_current060704.qxt 8/7/11 11:19 PM Page 37

http://RackMountPro.com
http://RackMountPro.com
mailto:sales@rackmountpro.com

what you might want to do to the text
or HTML of your document, you can
use CoffeeScript to do it—adding
and removing (and querying) nodes,
adding and removing (and querying)
attributes, changing text, invoking
menus or anything else you can do
in JavaScript. Having jQuery around
means you can make use of its syntax
and abstractions, a potentially killer
combination. Indeed, a number of
blog postings (including several men-
tioned in the Resources section for this
article) indicate that the combination
of CoffeeScript and jQuery is a popular
and effective one.

Conclusion
jQuery is a popular framework for client-
side Web development, providing a large
number of abstractions and convenience
functions for querying and modifying the
DOM. CoffeeScript is a language that
makes it easier to write in JavaScript, by
simplifying the syntax, removing some of
the most common problems that people
have with the language, and providing
easier ways to work with strings, arrays
and hashes. But at the end of the day,
both jQuery and CoffeeScript are tools
for working with JavaScript, which
means there’s full interoperability
between them. Although the examples
in this column are simple, they demon-
strate that it’s easy to get started with

CoffeeScript and even to integrate it into
an existing application. My guess is that
CoffeeScript has a very bright future
and, I should add, deservedly so.�

Reuven M. Lerner is a longtime Web developer, architect
and trainer. He is a PhD candidate in learning sciences at
Northwestern University, researching the design and analysis
of collaborative on-line communities. Reuven lives with his
wife and three children in Modi’in, Israel.

38 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

AT THE FORGE

CCOOLLUUMMNNSS

Resources

The home page for CoffeeScript, including docu-
mentation, quick references, FAQs and annotated
source code, is at jashkenas.github.com/coffee-script.
There is an active and growing community of
CoffeeScript users, with an IRC channel
(#coffeescript) and Wiki at GitHub.

A good introduction to CoffeeScript is this
presentation written by Jacques Crocker:
coffeescript-seattlejs.heroku.com.

PeepCode (peepcode.com), which makes excellent
screencasts on a variety of subjects, has one about
CoffeeScript that I learned from and enjoyed.

There are many blog postings about CoffeeScript and
jQuery. Stefan Buhrmester wrote a nice description of
using jQuery with CoffeeScript: buhrmi.tumblr.com/
post/5371876452/how-coffeescript-makes-jquery-
more-fun-than-ever. And, Aaron Russell describes
his experience combining CoffeeScript with jQuery:
aaronrussell.co.uk/articles/using-coffeescript-with-
jquery.

Finally, the Pragmatic Programmers have released
(at the time of this writing) an excellent pre-release
“beta book”, written by active CoffeeScript user
Trevor Burnham. If you’re interested in learning more
about this interesting little language, I highly recom-
mend this book. It’s aimed mostly at beginners, but
given the limited number of advanced CoffeeScript
programmers out there, that shouldn’t bother you.

http://www.linuxjournal.com
http://jashkenas.github.com/coffee-script
http://coffeescript-seattlejs.heroku.com
http://peepcode.com
http://buhrmi.tumblr.com/post/5371876452/how-coffeescript-makes-jquery-more-fun-than-ever
http://aaronrussell.co.uk/articles/using-coffeescript-with-jquery

www.routerboard.com

40 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

As with many of the challenges we
tackle in this column, the latest project has
sprawled across more issues than I ever
expected when I first received the query
from a reader. The question seems reason-
ably simple: given a month, day number
and day of the week, calculate the most
recent year that matches those criteria.
There are some obscure and complex

formulas for doing just this, but instead, I
decided it’d be interesting basically to loop
backward from the current year for the
month in question, parsing and analyzing
the output of the handy cal program.
The real challenge has been that the

cal program never really was designed
to produce easily parsed output, so
figuring out the day of the week (DOW,
as we’ve been abbreviating it) involves
basically counting the number of leading
spaces or otherwise compensating for
an average month where the first day
starts mid-week, not neatly on Sunday.
An algorithmic-friendly version of cal

would have output where days prior to
the first day of the month would be out-
put optionally as zeros or underscores,

making this oodles easier. But it isn’t, so
we have to compensate.

Figuring the Day of the Week
Last month, we wrapped up with a
shell function that expected the day,
month and year as arguments and
returned the day of the week of that
particular date in that month on that
year. In other words, 16 May, 2011,
occurs on a Monday:

May 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

The actual return value of the func-
tion in this instance is 2, so 1 = Sunday,
2 = Monday, and so on.
Given the desired day of the week that

the user specifies and a simple way to
decrement the year until we hit a match
coupled with the function already shown,

Calculating Day
of the Week, Finally
Dave wraps up the script and leaves us with the problem of Leap Year.

DAVE TAYLOR

WORK THE SHELL

CCOOLLUUMMNNSS

http://www.linuxjournal.com

it should be relatively easy to assemble
all the pieces and create—finally—the
script that details when a specific date
was on a specific day of the week.
I won’t republish all the code from

previous months (the completed script is
83 lines long), but here’s the most salient
portion at the end, the section that steps
back year by year to figure out which
one has a matching calendar entry:

echo Looking for $weekday, $day, $month \($monthnum\) \

starting in $mostrecent

now we need to loop backwards through years until a match

year=$mostrecent

DOW=-1 # start with a dead value

while [$DOW -ne $desiredDOW]

do

figureDOW $day $monthnum $year

echo "> $day $month occurred on a $DOW in $year"

year=$(($year - 1))

done

echo "Got it! $day $month occurred on a $weekday

�most recently in ${year}:"

cal $month $year

Notice that when we find a match, we
not only print out what year had that

WORK THE SHELL

CCOOLLUUMMNNSS

Develop. Scale.Deploy.
Full root access on your own virtual server for as little as $19.95/mo

www.linode.com or 609-593-7103

evD
l root access on Ful

.poleev
your own virtual server for as little as $19.95/mol root access on

.yloepD
your own virtual server for as little as $19.95/mo

cS
your own virtual server for as little as $19.95/mo

e.la
your own virtual server for as little as $19.95/mo

 .edolin.www 935-906r omoc 0317-93

http://www.linode.com
http://linode.com

date on the specified day of the week,
but we also print out the calendar for
that month as a visual confirmation.
A few sample runs illustrate:

$ whatyear Friday February 9

Got it! 9 feb occurred on a fri

�most recently in 2006:

February 2006

Su Mo Tu We Th Fr Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28

$ whatyear wed aug 3

Got it! 3 aug occurred on a wed

�most recently in 2004:

August 2004

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Since we convert the day of the week
name and the month name to all lower-
case and then truncate anything after
the first three letters, you can see that
“Friday” and “wed” both work, which is a
nice side benefit. Applications with more

flexible input options obviously are greatly
preferred and make everyone’s life easier.

Something’s Still Broken
One date breaks the script because it
doesn’t occur every year: February 29.
Here’s the problem in a nutshell:

$ cal feb 2010

February 2010

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28

When we try to find a match for “29”
on this calendar, there’s no matching out-
put, and the conditional tests we have in
the script can’t handle the empty string.
It’s not pretty:

$ whatyear mon feb 29

./whatyear.sh: line 21: [: -eq: unary

�operator expected

./whatyear.sh: line 72: [: -ne: unary

�operator expected

Got it! 29 feb occurred on a mon

�most recently in 2010:

February 2010

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

42 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

WORK THE SHELL

CCOOLLUUMMNNSS

http://www.linuxjournal.com

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28

You know, if we had these ugly “[” test
error messages but the end result was cor-
rect, I probably could live with it, but you
can see that it’s matched on a February
that doesn’t even have a 29th day—lame.

However, fixing it might be more
trouble than it’s worth, and it certainly
will cause us to sprawl into a subse-
quent column. Instead, I encourage you
to grab the entire source code library

from ftp.linuxjournal.com/pub/lj/
listings/issue209/11090.tgz, and explore
how to fix it yourself. Yes, I am punting!

Next month, I’l l start on a new shell
scripting challenge, and as usual, I
encourage you to send me a quick
e-mail note with some ideas you have
on what would be compelling for us to
develop or any particularly interesting
scripting problems you’re facing.�

Dave Taylor has been hacking shell scripts for a really long time,
30 years. He’s the author of the popular Wicked Cool Shell
Scripts and can be found on Twitter as @DaveTaylor and more
generally at www.DaveTaylorOnline.com.

WORK THE SHELL

COLUMNS

RACKMOUNT SERVERSSERVERSRACKMOUNT SERVERS

lj209_September2011_digitalBU:lj_template_current060704.qxt 8/7/11 11:22 PM Page 43

RACKMOUNT SERVERS

http://www.DaveTaylorOnline.com
ftp.linuxjournal.com/pub/lj/listings/issue209/11090.tgz
www.siliconmechanics.com/R350
www.siliconmechanics.com/A350

44 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

In many ways, I feel sorry for people
stuck with proprietary operating systems.
When something goes wrong or if they
have a problem to solve, the solution
either is obvious, requires buying special
software or is impossible. With Linux, I’ve
always felt that I was limited only by my
own programming and problem-solving
abilities, no matter what problem pre-
sented itself. Throughout the years that
Linux has been my primary OS, I’ve run
into quite a few challenging and strange
problems, such as how to hot-migrate
from a two-disk RAID 1 to a three-disk
RAID 5, or more often, how to somehow
repair a system I had horribly broken.

The Problem
Recently, I ran into an interesting challenge
when I had to decommission an old
server. The server had quite a bit of
sensitive data on it, so I also had to
erase everything on the machine securely.
Finally, when I was done completely
wiping away all traces of data, I had to
power off the machine. This is a relatively

simple request when the server is under
your desk: boot a rescue disk, use a tool
like shred to wipe the data on all the
hard drives, then press the power button.
When the server is in a remote data
center, it’s a little more challenging: use
a remote console to reboot into a rescue
disk, wipe the server, then remotely pull
the power using some networked PDU.
When, like me, you have to wipe a server
thousands of miles away with no remote
console, no remote power, no remote
help and only an SSH connection, you
start scratching your head.

Why Would You Ever Do This?
At this point, some of you might be
asking: “Why would you ever need to do
this?” It turns out there are a few differ-
ent reasons both legitimate and shady:

1. You have broken hardware. This
could be a server with a broken
video card, a malfunctioning KVM or
remote serial console, or some other
problem where physical hardware

Remotely
Wipe a Server
What would you do if you had to erase all the files securely on a
server thousands of miles away?

KYLE RANKIN

HACK AND /

CCOOLLUUMMNNSS

http://www.linuxjournal.com

access just doesn’t work.

2. You are locked out from your server.
This could happen, for instance, if you
colocate your server in a data center
but stop paying your bills or somehow
have a falling out with the provider.
They revoke your physical access to
your server, but you need to remove all
the sensitive files while the machine is
still available over the network.

3. You have a bad consulting client.
Perhaps you are a responsible and
talented sysadmin who sets up a
server for a client in good faith only
to have that client refuse to pay you
once the server is on-line. You want
to remove your work securely, the
client won’t return your calls, yet you
still have SSH access to the machine.

4. You bought a cloud server with inad-
equate tools. It is very popular these
days to host your server environment
in the cloud; however, one downside
is that many cloud providers cut costs
by giving you limited access to man-
agement of your cloud instance. Do
you really trust that when you termi-
nate a server instance it is securely
erased? Do you get access to tools
that would let you boot a rescue
disk on your cloud instance? In
some cases, about the only remote

management you have for a cloud
server might be your SSH connection.

5. You are an evil, malicious hacker who
wants to cover his tracks. Yes, this is
the least legitimate and most shady
reason to wipe a server remotely, but
I figured I should mention it in the
interest of completeness.

6. It’s a challenge. Some people climb
mountains, others run marathons,
still others try to wipe servers
remotely over SSH. You could just
be a person who likes to push
things to the limit, and this sounds
like an interesting challenge.

How Would You Ever Do This?
Now that you have worked through the
reasons you might need to know how to
wipe a server remotely, let’s talk about
how you actually would do it. First, and
most important, there are no redos!
When you write random bits to a raw
disk device, especially over SSH, you have
only one shot to get it right. When I was
preparing this process, I tested my proce-
dure multiple times on virtual machines to
make sure my steps were sound. I’m glad
I did, as it took a few times to get all the
steps right, confirm my assumptions and
get the commands in the correct order.
What makes this challenge tricky is the

fact that you will write randomly over

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 45

HACK AND /

CCOOLLUUMMNNSS

http://www.linuxjournal.com

the very filesystem you are logged in to.
What happens if you overwrite the sshd
and shred files while you are running shred
and logged in over SSH? More important,
what happens when you overwrite the
kernel? The main principle that will make
this procedure work is the fact that Linux
likes to cache files to RAM whenever it
can. As long as you can make sure every-
thing you need is stored in RAM, you
can overwrite the filesystem as much
as you want. The trick is just identifying
everything you need to store in RAM.

Always Have a Plan B
So, I mentioned there was no redo to this
procedure, but that doesn’t mean you
can’t set up some sort of safety net for
yourself. Although I knew that once I
launched the shred command it would run
completely from RAM, what I had to figure
out was what commands I would need to
run after shred. Even commands like ls
won’t work if there’s no filesystem to read.
So that I would have some sort of backup
plan, I took advantage of the /dev/shm
ramdisk that all modern Linux systems
make available. This is a directory that any
user on the system can write to, and all
files will be stored completely in RAM.
Because I wasn’t sure whether com-

mands like echo (which I would need
later) would work after I had shredded
the hard drive, I copied it to /dev/shm
along with any other files I thought I

would need. If you have the space, why
not copy all of /bin, /sbin and /lib if you
can. Finally, I knew I would need access
to the /proc filesystem to power off
the server. I assumed I still would have
access to /proc even if I had overwritten
the root filesystem, but I wasn’t 100%
certain, so just to be safe, I became root
(you can’t assume sudo will work later)
and mounted an extra copy of /proc
under /dev/shm as the root user:

$ sudo -s

mkdir /dev/shm/proc

mount -t proc proc /dev/shm/proc

It turns out I ultimately didn’t need
any of these precautions, but it doesn’t
hurt to be prepared.

It’s Clobbering Time
Now is the point of no return. Just to be
safe, I changed to the /dev/shm directory
so my current working directory would
be on a ramdisk. Then, I unmounted any
unnecessary mountpoints (like /home)
and ran the shred command below on
every nonroot drive on the system. In my
case, I used software RAID, so I also took
the extra step of hot-removing all but
one drive from any RAID array and
shredded them separately. Finally, I was
left with just my root filesystem stored
on /dev/sda, so I took a deep breath and
typed the following command:

46 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

HACK AND /

CCOOLLUUMMNNSS

http://www.linuxjournal.com

http://LinuxCareer.com
http://LinuxCareer.com
http://LinuxCareer.com
http://LinuxCareer.com
http://LinuxCareer.com
http://LinuxCareer.com

shred -n2 -z -v /dev/sda

This command writes random bits to
/dev/sda for two complete passes (-n2)
then does a final pass with zeros so the
drive looks perfectly clean (-z) with
verbose output so I can see what’s going
on (-v). Of course, adjust the -n argument
to your particular level of paranoia—two
passes was fine for me. I have to admit,
there’s something satisfying and strange
about overwriting the root filesystem
while you are still logged in.
Once the shred process completed, I

had a completely empty filesystem. It
was weird—commands like ls gave odd
errors, and I knew I was isolated in my
/dev/shm jail. All that was left was to
shut down the server, but how do you
do that when /sbin/shutdown is erased?
No problem, you might say, just kill PID
1, since if you kill init, it will halt the
system. That would work if, say, the kill
program still were around. In this case,
the only way I had left to shut down the
system was via the /proc interface. The
/proc directory is a special filesystem that
allows you access to processes and kernel
information, and it resides entirely in
RAM, so my little shred stunt didn’t wipe
it out. To halt the machine, just enable
the sysrq interface in the kernel, and
then send the right command to sysrq:

echo 1 > /proc/sys/kernel/sysrq

echo o > /proc/sysrq-trigger

If the halt command doesn’t work, or
if you just want to reboot the machine
instead, you would type:

echo b > /proc/sysrq-trigger

Now you might be asking yourself, didn’t
I overwrite the echo command? After all,
/bin/echo is on the root filesystem. It turns
out I didn’t even have to rely on my copy
of the command under /dev/shm—echo is
one of the programs that are built in to
the bash shell. When you execute echo,
bash executes the version that is built in
to itself, and because I already was inside
a bash shell, the executable ran from RAM.
Once you run the last echo command,
the kernel instantly will halt. Any remote
pings or other commands will stop, and
the system will be powered off.
As a final note, I want to say that even

if you don’t think you’ll ever need to go to
such lengths to wipe a server, I think this
procedure is such fun that you should at
least try it in a disposable virtual machine.
Shred the system and see which commands
still work and which ones don’t. As an extra
challenge, see if you can get commands to
run within /dev/shm.�

Kyle Rankin is a Sr. Systems Administrator in the San Francisco
Bay Area and the author of a number of books, including The
Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks.
He is currently the president of the North Bay Linux Users’ Group.

48 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

HACK AND /

CCOOLLUUMMNNSS

http://www.linuxjournal.com

High Performance Computing, Low Latency, Networks, Data
Centers, Cost Savings – the largest meeting of High Performance

Computing in New York in 2011.

This HPC networking opportunity will assemble 800 Wall Street IT
professionals at one time and one place in New York in September 2011.

This show will cover High Performance Computing, High Frequency
Trading, Low Latency, Networks and Switch Solutions, Data Centers,
Virtualization, Grid, Blade, Cluster, overcoming Legacy systems.

Our Show is an efficient one-day showcase and networking
opportunity.
Register in advance for the full conference program which
includes general sessions, drill down sessions, an industry luncheon,
coffee breaks, exclusive viewing times in the exhibits, and more. Save
$100. $295 in advance. $395 on site.

Don’t have time for the full Conference? Attend the free Show.
Register in advance at: www.flaggmgmt.com/hpc

Show & Conference:
Flagg Management Inc
353 Lexington Ave, NY10016
(212) 286 0333 flaggmgmt@msn.com

SAVE
THE DATE

Wall Street IT speakers and Gold Sponsors will lead drill-down sessions
in the Grand Ballroom program.

Show Hours: Mon, Sept 19 8:00 - 4:00
Conference Hours: 8:30 - 4:50

This Show is a networking opportunity for the entire IT community.

www.flaggmgmt.com/hpc

8th Annual

HIGH PERFORMANCE COMPUTING
ON WALL STREET Show and Conference
September 19, 2011 (Monday) Roosevelt Hotel, NYC
 Madison Ave and 45th St, next to Grand Central Station

2011

Global Investment
Technology

Register today online. See HPC, Low Latency, Networks, Data Centers,
Speed, Cost Savings. Wall Street markets will assemble at the 2011
HPC Sept. 19 show to see these new systems live on the show floor.

Sponsors

Visit: www.flaggmgmt.com/hpc

��������(+/1����&-.#%��#2,/.������������������������#'&��

http://www.flaggmgmt.com/hpc
mailto:flaggmgmt@msn.com
http://www.flaggmgmt.com/hpc
http://www.flaggmgmt.com/hpc

50 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

NEW PRODUCTS

DeLorme’s inReach
We’ll be expecting letters to the editor from Antarctica
once the more intrepid among you get DeLorme’s new
inReach, a personal communicator that delivers two-
way communication beyond the reach of cell-phone
signals and one-way satell ite systems. The Iridium
Communications-based inReach offers “pole to pole”
two-way satellite text messaging, delivery confirmations,
SOS capabilities, remote tracking and an Android smart-
phone interface. The device’s core communications
component is the Iridium 9602 short-burst data
transceiver, which utilizes the company’s far-reaching
satell ite network. The GPS-enabled inReach can be used by itself or paired with
either an Android smartphone or a DeLorme Earthmate PN-60w. With the standalone
inReach, users can send pre-loaded text messages to designated recipients and
activate remote tracking, allowing others to follow one’s travels on-line via a
“bread crumb” trail. When paired with an Android or the DeLorme Earthmate
PN-60w, users enjoy full-featured, two-way text messaging to and from e-mail
addresses and cell phones, as well as the ability to post to Facebook and Twitter.
www.delorme.com

Mellanox’s FDR 56Gb/s
InfiniBand Solutions
Mellanox recently unveiled a complete end-to-end
solution for FDR 56Gb/s InfiniBand consisting of adapter
cards, switch systems, software and cables, a feat that
the firm calls an industry first. The solution consists of
Mellanox’s ConnectX-3 FDR 56Gb/s InfiniBand adapters,

SX-6000 series switch systems, Unified Fabric Manager (UFM), Mellanox OS, software
accelerators and FDR copper and fiber cables. As a package, it delivers “the highest
level of networking performance while reducing system power”, according to the
company. The combination enables cost-effective networking topologies for HPC,
financial services, database, Web 2.0, virtualized data centers and cloud computing.
www.mellanox.com

http://www.delorme.com
http://www.mellanox.com
http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 51

NEW PRODUCTS

Emphase’s S3 Series
Compact SATA modules
Emphase’s new S3 Series l ine of compact SATA
modules—that is, the CFast, SATA Flash Module,
and mSATA—offers big performance in a small

package, combining performance, dependability and longevity with extremely
low power consumption and the most compact footprint. When space is an
issue, this team of SLC NAND solid-state devices is an ideal solution. Transfer
speeds have been increased to 120R/100W; capacities range from 1GB–32GB,
with a 64GB capacity in the pipeline. The quick-and-rugged CFast S3 is the
solution for data mobility or where hot-swap functionality is a must. The SATA
Flash Module S3 weighs in at less than 10 grams and plugs directly, vertically
or horizontally, in to a board’s SATA port. The mSATA S3 is ideal for a low-profile
embedded system, integrating high performance and capacity at less than 4mm
thick. All modules now integrate TransferSAFE technology to weather-inconsistent
power scenarios and operate off as l ittle as 0.5 Watts, well below the average
of 3 Watts.
www.emphase.com

Acquia’s Commons
Here’s a recipe for a kick-booty social software solution: download
Drupal, stir in Acquia’s updated open-source Commons 2.0, mold
carefully with your creative vision and skil l and voilà—you’ve got
yourself an engaging community Web site. Commons melds rapidly
evolving social Web features, including activity streams, social net-
working, blogs, wikis, badges and events together with enterprise-
class analytics, support and management services. The result is a
“prepackaged open-source alternative to proprietary social business
solutions” that gives companies extensive freedom to extend and
adapt their community sites to meet unique business needs. Version 2.0 adds
features such as increased style flexibil ity, access to Acquia Cloud, increased
configuration options, more support resources and complete design and theming
control, including prebuilt Commons themes. A number of service packages are
available from Acquia.
www.acquia.com

http://www.emphase.com
http://www.acquia.com
http://www.linuxjournal.com

52 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

NEW PRODUCTS

David Kennedy, Jim O’Gorman, Devon
Kearns and Mati Aharoni’s Metasploit:
A Penetration Tester’s Guide (No Starch)
You may be familiar with the the Metasploit Framework, a
toolset that makes discovering, exploiting and sharing vulner-
abil it ies quick and relatively painless. The challenge for secu-
rity professionals is that the documentation is lacking, and it can be hard to
grasp for first-time users. Metasploit: A Penetration Tester’s Guide from No
Starch Press intends to fi l l this gap by teaching how to harness the Framework,
use its many features and interact with the vibrant community of Metasploit
contributors. Readers will learn to find and exploit unmaintained, misconfigured
and unpatched systems; perform reconnaissance and find valuable information
about targets; bypass antivirus technologies and circumvent security controls;
integrate Nmap, NeXpose and Nessus with Metasploit to automate discovery;
use the Meterpreter shell to launch further attacks from inside the network;
harness standalone Metasploit util it ies, third-party tools and plugins; and learn
how to write Meterpreter post-exploitation modules and scripts.
www.nostarch.com

Jason Andress and Steve Winterfeld’s
Cyber Warfare: Techniques, Tactics and
Tools for Security Practitioners (Syngress)
Jason Andress and Steve Winterfeld’s new book Cyber Warfare:
Techniques, Tactics and Tools for Security Practitioners explores
the battlefields, participants and the tools and techniques used

during today’s digital conflicts. The concepts discussed in this book will give
those involved in information security at all levels a better idea of how cyber
conflicts are carried out now, how they will change in the future and how to
detect and defend against espionage, hacktivism, insider threats and non-state
actors l ike organized criminals and terrorists. The authors provide concrete
examples and real-world guidance on how to identify and defend a network against
malicious attacks, dive deeply into relevant technical and factual information
from an insider’s point of view, and outline the ethics, laws and consequences
of cyber war and how computer criminal law may change as a result.
www.syngress.com

http://www.nostarch.com
http://www.syngress.com
http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 53

NEW PRODUCTS

Likewise Open
With Likewise Open, recently upgraded to version 6.1, admins can
standardize on Microsoft Active Directory in their enterprise networks
without losing the flexibility to choose non-Microsoft operating systems.
The open-source Likewise Open allows single sign-on for critical
enterprise applications, such as Apache Tomcat, IBM WebSphere,
Oracle WebLogic and JBoss Application Server. Newly open-sourced
integrations include the Kerberos/NTLM JAAS login module and
SPNEGO Kerberos/NTLM servlet fi lter, which can be integrated with
any servlet spec2.3-compliant application server. Customers wishing to
extend event management, auditing and reporting for compliance with
SOX, PCI-DSS, HIPPA and other industry standards to these integrations
can do so by upgrading to Likewise Enterprise.
www.likewise.com

QLogic’s InfiniBand Fabric Suite
The new 7.0 release of QLogic’s InfiniBand Fabric Suite
(IFS)—a fabric management software package that
enables users to optimize fabric performance and
communications efficiency for HPC clusters—is now
available. IFS 7.0’s leading new feature is the integra-
tion of vFabric QoS (Quality of Service) with work-flow schedulers from Adaptive
Computing and Platform Computing, making it possible for HPC users to set a
priority and QoS level as the message-passing interface application is being
scheduled. This reduces management overhead, simplifies cluster scheduling
and optimizes use of the fabric. Other noteworthy features include an enhanced
Fabric Viewer with Fabric Dashboard, improved static routing performance, an
improved Congestion Control Algorithm and support for both NVIDIA GPUs and
Red Hat Enterprise Linux 5.6/6.1. The result of this feature set, says QLogic, is
an ability for HPC customers to obtain maximum performance and efficiency
from their cluster investments while simplifying management.
www.qlogic.com

Please send information about releases of Linux-related products to newproducts@linuxjournal.com or
New Products c/o Linux Journal, PO Box 980985, Houston, TX 77098. Submissions are edited for length and content.

http://www.likewise.com
http://www.qlogic.com
mailto:newproducts@linuxjournal.com
http://www.linuxjournal.com

Giada—Hard-Core Live Looping
www.monocasual.com/giada
Live DJs chasing a simplistic but
attractive application are going to love
Giada. At the same time, Giada also
covers something I’ve been wanting for
a year now, which is a way to trigger
individual samples from a computer
keyboard simply in real time. According
to the documentation:

Giada is a free, minimal, hard-core

audio tool for DJs and live perform-

ers. Load up to 32 samples, choose

to play them in single mode (drum

machine) or loop mode (sequencer),

and start the show with your com-

puter keyboard as a controller. Giada

aims to be a compact and portable

virtual device for Linux and Windows

for production use and live sets.

Installation Using Giada is pretty
easy, but its ease of use comes at a
price. It’s a freeware binary. This is the
first freeware program I’ve covered,
but don’t worry, I won’t make a habit
of it.
The project’s Web site consists of a

(well-designed) single page, with
download links for both the Windows
and Linux versions of Giada.
As far as l ibrary requirements go,

the documentation states:

Giada is based upon RtAudio and

FLTK (GUI). They are both statically

linked, but the former needs

libjack.so to provide JACK’s features.

In a modern Linux-based OS, you

should be able to run Giada without

any further installation or hack.

54 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

NEW PROJECTS

Fresh from the Labs

The Giada hard-core looping program for
real-time DJ performances with a GUI
that’s sleekly minimal.

Giada in its full-flight recording mode lets
you layer a live performance piece by piece.

http://www.monocasual.com/giada
http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 55

Regarding binaries, the manual also
noted: “This software is compiled for
x86 processors; we sti l l don’t know
what happens if you run it under a
64-bit OS/environment; try it and tell
us your experience.” Yes, I’m on 64-bit
Linux, and it runs just fine.
Once you have the dependencies out

of the way, download the latest tarball
and extract it. Personally, I found I could
just open the new folder, click on the
binary, and it worked. For those wanting
more control, open a terminal in the
new folder, and enter the command:

$./giada_lin

Usage Once you’re inside, using Giada
is actually pretty easy. Although I was
rather confused at first glance, a quick bit
of “RTFM” shows that its methodology is
very basic, but you need to understand a
few things from the outset.
First, this isn’t for programming songs

over some sort of grid, such
as the way that programs
like Fruity Loops operate.
Giada is for playing l ive.
All of your actions take place
in real time, as you perform
what is essentially a live DJ
set (even if it’s only in your
bedroom to an audience of
one). So trust me, you’ll want to
practice before using it in public.
Second, Giada is designed to be run

by your keyboard, and by that I mean

the thing on which you type, and not
something that resembles a piano.
Before I explain the three modes of

operation, let’s first load some samples so
we have something to play with. In terms
of format, Giada likes only 44KHz .wav
files. A good starting point is Hydrogen’s
drumkits. If you have Hydrogen installed
(and if you don’t, at least install the
drumkits), look for .wavs under
/usr/share/hydrogen/data/drumkits.
Kicks, snares and a cymbal or two—
hi-hats in particular—are the best starting
point. With these, you can lay down a
basic beat and then layer other samples
over the top to make a song.
To load these samples, click on the

long and wide buttons that say, “-- no
sample --”, and choose your .wav file
from the file browser. Now, if you look
to the left of each sample, a keyboard
character is shown; with this, you switch
samples on and off. Try pressing it now,
and nothing will play, but fear not. I

discuss Giada’s three running modes
below, and it all will make sense.

Oneshot mode: this is the most
basic way of operating Giada. Press a

NEW PROJECTS

First, this isn’t for programming
songs over some sort of grid,
such as the way that programs
like Fruity Loops operate.
Giada is for playing live.

http://www.linuxjournal.com

keyboard button, and that button’s
sample will play. However, first you must
turn on this mode, as well as turn up
this sample’s volume. Starting with the
volume, the empty circle to the immedi-
ate right is actually a volume knob.
Clicking and dragging inside the circle
turns up the volume. However, unless
you’ve pressed the Play button, there
still will be no sound; you have to
enable Oneshot mode.
The next control to the right, with the

small circle inside the square, is the key
to operating Giada. Click the button,
and you’ll have a choice of looping
modes, or Oneshot “basic”, “press” and
“retrig”. Choose basic, press the key,
and at last, a sound plays!
With this basic mode, you press a key

and a sample plays until it’s finished—
pretty basic. But, you also can interrupt
the sample by pressing the key again.
With the “press” option, you have to
hold down the key to play the sample,
and as soon as you release it, the
sample stops. The “retrig” option (and
this is the functionality I’ve been chasing)
plays a sample upon pressing a key,
but pressing again restarts the sample
whether or not the sample has finished.
You even can keep thrashing away at
the key for instant response, which is
handy for playing hi-hat notes or ripping
up a waveform.

Loop mode: this is the second mode,
and perhaps the most conventional.
When Giada is actually playing, choosing

either “Loop . basic” or “Loop . once”
plays a sample on the next bar along. In
order to use this, press the Play button
near the top-left corner, then press each
sample’s button to activate/deactivate
it on the next bar. The “basic” option
simply keeps the sample looping until
you turn it off manually; the “once”
option plays a sample until it’s finished,
and then starts it again at the beginning
of the next bar.

Recording mode: this is the pièce de
résistance. Basic loops can be turned
on and off willy-nil ly; however, the
Oneshot samples start turning this
into a real live performance. As the
bar moves along each of its counts,
every time you play a note, that note
is repeated every bar that follows.
Using this method, you genuinely
can layer an entire song, creating new
beats on the fly. Be wary, however.
Every note you play is a commitment,
and you’ll be stuck with that note
repeating for the rest of the song.
Get it right, and you’ll have people
dancing. Get it wrong, and you’ll look
totally lame and ruin the party.
Nevertheless, some tools are available

to help out the mere mortals among
us. The beat bar will be immediately
obvious, because it’s the only moving
thing on screen. Use this and its
(default) four boxes to guide your
counting. Over to the right, the box
that’s marked “off” is for quantizing
your music. For the uninitiated, this

56 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

NEW PROJECTS

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 57

aligns your notes to even places on a
musical grid, removing the element of
human error: “1b” is the most severe,
making each note land on a whole count;
“8b” is the least severe, allowing you
to make much more intricate music.
If you look farther right, you’ll see

a tempo and beat number, set to a
default BPM of 120 and a time signa-
ture of 4/4. You can turn these up or
down, allowing for strange feels, such
as 7/4 @ 72 BPM (less dance-friendly,
but much more trippy).
Still, this early software does have its

limitations. First, it’s freeware. In this
day and age? Why? Ech! Second, there
weren’t any panning controls as far as
I could tell. Any stereo imaging you’ll
have to do beforehand, manually.
Nevertheless, this program is incredibly

cool. It allows you to output to JACK,
which makes it more powerful, and just
look at it. It’s a techno-minimalist’s wet
dream! Giada has an amazing economy
of space and features in its design that’s
quite deceptive. I actually thought this
was going to be a very short review
when I started. Giada is a must-have
for any electronic musician.

LinkChecker—Web Site Testing
linkchecker.sourceforge.net
Broken links are a serious pain in the
backside for Webmasters, and keeping
track of every individual link becomes so
laborious, most Webmasters simply give
up on the idea. Thankfully, there’s a way

to automate the process with LinkChecker.
According to its Freshmeat entry:

With LinkChecker, you can check

HTML documents and Web sites for

broken links. It features recursion,

robots.txt exclusion protocol support,

HTTP proxy support, i18n support,

multithreading, regular-expression

filtering rules for links and

user/password checking for authorized

pages. Output can be colored or

normal text, HTML, SQL, CSV or a

sitemap graph in DOT, GML or XML

format. Supported link types are

HTTP/1.1 and 1.0, HTTPS, FTP, mailto:,

news:, nntp:, Telnet and local files.

Installation The Web site has pack-
ages for Windows, OS X and Debian
(yes, it actually specifies Debian), and the

NEW PROJECTS

LinkChecker makes Web site maintenance
that much easier by scanning your Web
site for broken links.

http://www.linuxjournal.com
http://linkchecker.sourceforge.net

obligatory source. The Debian packages
are available for just about every archi-
tecture on the planet, and they worked
immediately with my Kubuntu installation.
Installing the .deb package is much
easier, so you may want to run with that;
however, unless I missed something, you
get only the command-line version.
For those who don’t have a Debian-

based system or want to use the GUI
version, here’s a very compressed version
of the instructions.
In terms of dependencies, you’ll

obviously need gcc, as well as Python
>= 2.6, including its -dev package, as
well as the Qt development tools, which
are named qt4-dev-tools on my system.
There also are a bunch of optional
l ibrary dependencies for extended
functionality, such as bash completion,
syntax checks and so on; see the manual
for more information on these.
Once you have the dependencies out

of the way, grab the latest tarball from
the Web site, extract it, and open a
terminal in the new folder. Enter the
following commands:

$ make -C doc/html

(The above generates the Qt help files.)
Then:

$ python setup.py sdist --manifest-only

$ python setup.py build

If your distro uses sudo:

$ sudo python setup.py install

If your distro uses root:

$ su

python setup.py install

To run the command-line version:

$ linkchecker

To run the GUI version:

$ linkchecker-gui

Usage Actually using LinkChecker is
a simple affair. If you’re running the
command-line version, enter:

$ linkchecker http://{website url}

Of course, LinkChecker also can scan

58 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

NEW PROJECTS

The effect of ten years’ neglect on a Web
site: here I’m running the console version
against my old Tomb Raider page.

http://www.linuxjournal.com

local files, but unless the page starts
with www, remember to put the preced-
ing http:// before on-line pages, or it
automatically scans local files instead.
Once inside, enter the URL in the bar

at the top and press Enter.
Whether in the GUI or console ver-

sion, LinkChecker gradually makes its
way through all the pages of a given
Web site, outputting any broken links or
warnings in the process. Depending on
the Web page, the output can be pretty
verbose, so console users might consider
piping the output for larger pages.

Once the scan has finished, a readout
is provided with the number of valid and
invalid URLs, as well as various statistics
having to do with URLs and content.
In the end, LinkChecker is a very

simple project that serves its purpose
beautifully. Its ease of use and multi-
platform nature also make everyday usage
much more likely. Any serious Webmaster
should check out this project.�

John Knight is a 27-year-old, drumming- and bass-obsessed

maniac, studying Psychology at Edith Cowan University in Western

Australia. He usually can be found playing a kick-drum far too much.

NEW PROJECTS

BREWING SOMETHING FRESH, INNOVATIVE OR MIND-BENDING? Send e-mail to newprojects@linuxjournal.com.

mailto:newprojects@linuxjournal.com
http://www.EmperorLinux.com

60 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

MULTIPLATFORM
GNU DEVELOPMENT
Get a guitar synth working

with Rock Band 3.
NATHANAEL ANDERSON

I
n my ideal world, mixing games and music
would result in music games that use real
instruments. Harmonix’s Rock Band series is

the closest mainstream realization of this lofty
ideal, except for one major issue. I couldn’t plug
in my guitar and play pro guitar mode songs
out of the box.

Now, before you think this is an impossible

task, one important fact should be noted. I play

a guitar synthesizer. What this means is my

guitar has a hexaphonic pickup that reads and

processes every string’s signal individually and

connects with a 13-pin cable to a guitar processor

with midi out. This means my signal is already

digital and, therefore, does not require any

additional A/D algorithms in my software.

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 61

Custom-built guitar synth,
built by the author.

http://www.linuxjournal.com

The Hardware
I have a few guitars with different 13-pin
interfaces that can connect to an Axon
AX-100 that has its midi out running to
the midi in port on an M-Audio UNO,
which gets connected to my Linux box
running g2ghpro. The midi out port on
the UNO then runs into a PS3 Rock Band
adapter and into my PS3. A guitar hexa-
phonic pickup with 13-pin midi out is
required to run g2ghpro. The following
lists are of tested hardware that will work:
Pickups:

� Roland GK-3a.

� Roland GK-2a.

� Roland GK-3b.

� Graph Tech LB-63 (any Graph Tech
piezo bridge will work if using the
hexpander module).

� Godin Synth Access guitars.

Guitars with built-in 13-pin capability:

� Godin LGX-SA.

� Godin Freeway-SA.

� Godin LGXT.

� Roland Ready Fender stratocaster.

� Brian Moore i8.13.

Guitar-to-midi converters:

� Axon Ax-100.

� Roland VG-99.

� Roland GR-55.

� Roland GR-20.

Of the listed hardware, I use a Roland
VG-99, Axon Ax-100, Godin LGX-SA,
Godin LGX with Roland GK-3a and
custom-built Ibanez S540 with Graph
Tech LB-63 and hexpander.
I’ve also tested g2ghpro with a Roland

GK-3a pickup running into a Roland VG-99.
Others have reported using a Roland GK-3a
with GR-20 and GK-3b with GR-55 on a
bass guitar as well. G2ghpro currently is the
only solution for using a real bass guitar
in the game, as no official bass guitar con-
trollers have been released at this point.

The Original Controller
Harmonix created two guitar controllers
for Rock Band 3 pro guitar mode. The
first controller released was the Mustang,
which is a “button” controller, with 102
buttons on the frets and six strings over
the body of the guitar. When I wrote
the initial version of g2ghpro, the
Fender Squier Pro Strat wasn’t on the
market yet, which is the other pro
guitar controller that works with the
game. So I had midi dumps only from
the Mustang to work with.

62 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Multiplatform GNU Development

http://www.linuxjournal.com

Midi
In order to understand how the Mustang
worked, I first had to understand what
the Mustang dumps meant and relate
controller actions to messages sent.
This required a refresher on the midi
standard. Midi has 16 separate chan-
nels, and changing the sending channel
is done by adding the value of the
channel minus one to the message type
value. My first example is a midi “note
on” message, which has a decimal value
of 144 in the first byte for channel 0.
To send the same message on channel
6, add 5 to 144.

Example Data
Action: held fret one of low E and picked
low E:

TIMESTAMP IN PORT STATUS DATA1 DATA2 CHAN NOTE EVENT

0023E843 1 -- 95 29 00 6 F 2 Note Off

0023E843 1 -- 95 29 7D 6 F 2 Note On

0023E847 1 -- F0 Buffer: 8 Bytes System Exclusive

SYSX: F0 08 40 0A 05 06 7D F7

The dumps I had found came from a
Windows program called Midi Ox, which
showed the data in hex. The midi specifi-
cation shows data in binary, and I was
used to seeing this data with aseqdump
in decimal. I converted all the examples I
had been provided with into decimal so I
could understand their behavior. The midi
spec states that note on-and-off events
contain 3 bytes of data. The first byte is
event type plus channel; the second is

note number, and the third is velocity.
From experience, I’ve seen that many
devices send a velocity event of 0 instead
of an actual note off event, which is what
the above shows. So, the result after it
has been converted to decimal is (note:
velocity zero below is really note off):

Type Channel Note Velocity

(Note On 149) 5 41 00

(Note On 149) 5 41 125

SysEx is short for System Exclusive
messages, and they are free-form
messages to send data that doesn’t fit
into the predefined midi message types.
Initially, I tried to treat the data from
the dumps as a normal midi controller,
and I ignored the SysEx data in the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 63

From left to right: custom-built guitar
synth, custom-built rack for VG-99, Axon
AX-100 and Fantom-XR.

http://www.linuxjournal.com

dump, which I later realized is why I
didn’t have any code that made the
game react. All game functions react
to SysEx messages, not note events. This
is why a guitar synthesizer cannot be
plugged in to Rock Band and just work.
At this point, I requested more dumps,
where different frets were pressed down
with the same string pressed.
I converted all the dumps I had to

decimal and compared SysEx messages
to note messages and found a correlation.
Here’s the resulting structure of the
messages (displayed in decimal):

Part 1 2 3 4 5 6 7 8

Sample 240 8 64 10 1 1 43 247

� Part 1: starting byte of a SysEx message.

� Part 2, 3, 4: identifiers that this is a
SysEx message used by the Mustang.

� Part 5: message type (1 = set fret
position, 5 = play string).

� Part 6: midi channel (string on the
instrument).

� Part 7: midi note number.

� Part 8: end SysEx message.

The Software
To explore the message format, I put
together a quick program for sending a
combination of note events and SysEx

messages to the game. I know that the
guitar synthesizer hardware required to
use the software I was writing isn’t very
common, so I want to be proactive in
removing any limitations to people using
it. I’ve done midi and C++ programming
with ALSA under Linux before, but never
midi on Windows or OS X, and I wanted
to be able to support all three to make
the software more accessible.
From past experience with RtMidi, I

knew it was written in portable C++, while
supporting Windows, Linux and OS X.
The home page for RtMidi provides

detailed, easy-to-read documentation,
with examples for many basic midi tasks.
Copy-and-paste examples are provided
that give a base from which to start
working, along with ready-to-compile
demos provided in the tests directory
in the RtMidi source code.
A good place to start with RtMidi is

the bundled code in the tests directory.
I started by modifying midiout.cpp and
tried sending different SysEx messages
based on my data dumps until finally I
ended up with the following:

std::vector<unsigned char> sysExMessage;

sysExMessage.push_back(240);

sysExMessage.push_back(8);

sysExMessage.push_back(64);

sysExMessage.push_back(10);

sysExMessage.push_back(1); // 1 sets fret position,

// 5 to play the current string

sysExMessage.push_back(channel + 1); // channel

sysExMessage.push_back(note);

64 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Multiplatform GNU Development

http://www.linuxjournal.com

sysExMessage.push_back(247);

midiout->sendMessage(&sysExMessage);

With the above SysEx message, I was
able to toggle fret position and strings
played in the game. The actual logic to
make this work was less than 100 lines.
The full code is available in the Subversion
repository for game2midi in g2ghpro.cpp.
RtMidi currently has issues processing

active sensing messages that came from
my Roland gear, which the author is
aware of. A flag is provided to filter
out active sensing messages. Setting
ignoreTypes to true on your midi input
object’s third parameter will work around
the issue until it is resolved—for example:

midiin->ignoreTypes(false, false, true);

The main missing feature of RtMidi,
as far as the Linux pro audio world is
concerned, is no jack-midi support.
The RtMidi documentation listed

compiler flags for all three operating
systems to link the required libraries, so
all that was left for me to do was figure
out how to compile under Windows.

Supporting Other Operating Systems
I hadn’t touched a Windows development
IDE in more than ten years, and I wanted
to keep the same code base for all three
operating systems. Somewhere during
the past few years, I heard mention of
MinGW (Minimalist GNU for Windows).
As I am familiar developing in a

GNU/Linux environment, this sounded
like what I needed. To bring your Linux
dev environment to Windows, use
mingw-get-inst, and do a full installation.
This will provide you with the MinGW
Shell, bundled with many standard
GNU tools, including SSH. Next, install
TortoiseSVN, which is a Subversion client
that integrates with the Windows shell.
Checkout and commit actions are
accessed by right-clicking on folders in
Explorer to keep files in sync. The MinGW
shell allows for changing drives’ letters
like a standard DOS shell with cd C:.
The next problem is how to build the

code based on operating system. Let’s
look at two options: Makefiles and
autotools. First, let’s look at basic
Makefile-based builds and compare
the differences by platform:

Makefile.linux

all:

mkdir -p deps

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D__LINUX_ALSASEQ__

�-g -O2 -MT midiio.o -MD -MP -MF deps/RtMidi.Tpo

�-c -o RtMidi.o RtMidi.cpp

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D__LINUX_ALSASEQ__

�-g -O2 -MT -midiio.o -MD -MP -MF deps/midiio.TPO

�-c -o midiio.o midiio.cpp

g++ -g -O2 -o midiio RtMidi.o midiio.o -lasound

Makefile.mingw

all:

mkdir -p deps

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 65

http://www.linuxjournal.com

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D__WINDOWS_MM__

�-g -O2 -MT RtMidi.o -MD -MP -MF deps/RtMidi.Tpo

�-c -o RtMidi.o RtMidi.cpp

g++ -DHAVE_CONFIG_H -I. -I.. -g -O2 -D__WINDOWS_MM__

�-g -O2 -MT -midiio.o -MD -MP -MF deps/midiio.TPO

�-c -o midiio.o midiio.cpp

g++ -g -Wl,--enable-auto-import -O2 -o midiio RtMidi.o

�midiio.o -lwinmm

The library I used, rtmidi, requires that
the platform be defined, so for Linux,
define -D_ _LINUX_ALSASEQ_ _, and for
Windows, define -D_ _WINDOWS_ _MM_ _.
The last step in each is the linking
phase, where you specify system
libraries to link to the binary. To enable
a clean build under Windows, I had to
add -Wl,--enable-auto-import, so
functions would be auto-imported.
Now, let’s look at autotools-based

builds. Usually when an autotools-based
build is committed to version control,
only non-generated files are committed,
which includes configure.ac, Makefile.am
and src/Makefile.am. The standard
practice is to create an autogen.sh
script that will call the files to generate
configure, Makefile and other required
files from *.ac and *.am files:

Autogen.sh

#!/bin/sh

aclocal

autoreconf

automake --add-missing --copy

autoreconf

libtoolize -f --automake

configure.ac (Listing 1) contains
host-based auto-detection and is where
to specify which host-based libraries to
check for and link against.
Full code for these examples can

be downloaded from the game2midi
project’s Subversion repository in the
basic-midi-io-example folder.

Conclusion
Using GNU libraries and tools can help
reduce the time and effort required in
supporting multiple platforms. I hope
this article encourages you to consider
adding multiplatform support to a
current or future open-source project.�

Nathanael Anderson has been a UNIX systems administrator for
five years. Family, coding and all things guitar keep him active.
Feel free to contact him on his blog at wirelessdreamer.com.

66 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Multiplatform GNU Development

Resources

Official Midi Specification:
www.midi.org/techspecs/midimessages.php

Posts of Mustang Controller Dumps: www.rockband.com/
forums/showthread.php?t=207792&page=1

Official RtMidi Home Page:
www.music.mcgill.ca/~gary/rtmidi

MinGW: www.mingw.org

Mingw Download: sourceforge.net/projects/
mingw/files/Automated%20MinGW%20Installer/
mingw-get-inst/mingw-get-inst-20110316/
mingw-get-inst-20110316.exe/download

TortiseSVN: tortoisesvn.tigris.org

game2midi Home Page: game2midi.sourceforge.net

http://www.midi.org/techspecs/midimessages.php
http://www.rockband.com/forums/showthread.php?t=207792&page=1
http://www.music.mcgill.ca/~gary/rtmidi
http://www.mingw.org
http://www.linuxjournal.com
http://wirelessdreamer.com
http://tortoisesvn.tigris.org
http://game2midi.sourceforge.net
http://www.rockband.com/forums/showthread.php?t=207792&page=1
http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20110316/mingw-get-inst-20110316.exe/download

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 67

Listing 1. configure.ac
#configure.ac

dnl - dnl represents a comment in automake config files

dnl here we specify the

AC_INIT(midiio,0.1)

AM_INIT_AUTOMAKE(midiio, 0.1)

AC_PROG_CXX

AC_LANG_C

dnl Checks for programs.

AC_PROG_AWK

AC_PROG_CC

dnl Check for headers

AC_CHECK_HEADERS(unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.

AC_TYPE_SIZE_T

dnl Detect OS we're building on

dnl this next line is required to be able to read the host value

AC_CANONICAL_HOST

dnl Use the value here to add support for other operating systems

echo "Host Value: '${host}'"

case "${host}" in

-mingw32)

dnl specify Windows specific compiler flags

�and linker options

compile_target=win

CPPFLAGS="$CPPFLAGS -D_ _WINDOWS_MM_ _"

LIBS="$LIBS -lwinmm"

;;

*linux-gnu)

dnl specify Linux specific compiler flags

�and linker options

compile_target=linux

dnl Check for ALSA

AC_CHECK_LIB(asound, snd_seq_event_output_direct,

�alsalib=yes,alsalib=no)

AC_CHECK_HEADERS(alsa/asoundlib.h,alsaheader=yes,

�alsaheader=no)

if test "$alsalib" = "yes"; then

if test "$alsaheader" = "yes"; then

LIBS="$LIBS -lasound"

else

AC_MSG_ERROR([** Coulnd't find ALSA

�header file sys/asoundlib.h **])

fi

else

AC_MSG_ERROR([** Couldn't find ALSA library

�libasound. **])

fi

CPPFLAGS="$CPPFLAGS -D_ _LINUX_ALSASEQ_ _"

;;

esac

AC_HEADER_STDC

AM_CONFIG_HEADER(config.h)

AC_OUTPUT(Makefile src/Makefile)

Makefile.am

Here we specify we have files in the source directory to process

AUTOMAKE_OPTIONS = foreign

SUBDIRS = src

src/Makefile.am

Here we define there are 2 programs we're compiling

bin_PROGRAMS = midiio midiout

and here we define what we put together to make the final programs

midiout_SOURCES = midiout.cpp RtMidi.cpp

midiio_SOURCES = midiio.cpp RtMidi.cpp

http://www.linuxjournal.com

68 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

R egression testing is a well-
established technique to detect
both the introduction of new bugs

and the re-introduction of old bugs.
However, most regression tests focus
exclusively on correctness while ignoring
performance. For applications with
performance requirements, developers
run benchmarks to profile their code in
order to determine and resolve bottle-
necks. However, unlike regression tests,
benchmarks typically are not executed
and re-validated for every revision. As a
result, performance regressions sometimes
are not detected quickly enough.
Compared to correctness issues,

performance regressions can be harder
to spot. An individual absolute perfor-

mance score rarely is meaningful;
detecting a performance regression
requires relating measurements to
previous results on the same platform.
Furthermore, small changes in external
circumstances (for example, other pro-
cesses running at the same time) can
cause fluctuations in measurements
that then should not be flagged as
problematic; this makes it difficult to set
hard thresholds for performance scores.
Also, good measurements often take
significantly longer than correctness
tests. Performance improvements in
one area may cause regressions in
others, causing system architects some-
times to consider multiple metrics at the
same time. Finally, performance can be

Performance
Regression

Monitoring
with Gauger

Introducing Gauger, a lightweight tool for visualizing
performance changes that occur as software evolves.

http://www.linuxjournal.com

platform-specific. This can make it
necessary to perform performance
evaluations on a range of systems.
The Gauger package described in this

article provides developers with a sim-
ple, free software tool to track system
performance over time. Gauger is
lightweight, language-independent and
portable. Gauger collects any number of
performance values from multiple hosts
and visualizes their development over
time (Figure 1). In order to use Gauger,
developers need to add the necessary
instrumentation to their code to obtain
a performance measurement and then
submit it to Gauger with the gauger
function call. The gauger function argu-
ments are the description of the value, a
category, the value itself and a unit of
measurement. Gauger’s Web interface
then allows visitors to group metrics by

category or by execution host and adjust
the visualized revision range or the size
of the plot. Gauger is ready to be used
with many programming languages and
revision control systems, and it is easily
expandable to accommodate new ones.
Gauger’s Web interface can be used

to analyze the collected performance
data in various ways. It can combine
different metrics in a single plot and offers
a color-coded guide to help visitors
select only unit-wise compatible metrics.
Gauger also allows users to normalize
the data in order to mask differences in
absolute performance between different
execution hosts. If multiple measure-
ments were taken for the same revision,
Gauger will show the average and
standard deviation as long as only a
single metric is plotted. For larger
projects with many metrics or execution

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 69

Figure 1. Gauger in action: this screenshot shows performance measurements obtained
and visualized by Gauger for the GNUnet Project over the course of a few revisions.

http://www.linuxjournal.com

hosts, Gauger offers a search feature to
locate the desired plots. An additional
instant search keeps the menus free of
irrelevant items.
Finally, should further fine-tuning

be needed (for example, for use in
presentations), Gauger can be used to
retrieve the gnuplot source of any
plot. The generated gnuplot source
includes the plotted data.

Gauger’s Architecture
Gauger uses a traditional client-server
architecture, where the clients report
performance measurements to a central
server. This architecture allows machines
behind NAT or with otherwise restricted
Internet access to provide performance
measurements to Gauger.
All of the performance-monitoring

machines to be used with Gauger
should install the Gauger client, and
the software to be tested should be

integrated with the appropriate lan-
guage bindings. Language bindings
are designed to be transparent and
(except for a few extra system calls)
have no negative effects in case the
Gauger client is not installed on the
machine. Thus, it is safe to commit
the language bindings to a project
repository. As long as the (tiny) lan-
guage bindings are included, integrat-
ing Gauger will not disrupt operations
on systems where the Gauger client
is not installed.
The Gauger server runs the data

collection and visualization part. Data
is logged through a RESTful API and
saved in human-readable plain-text
fi les. The primary job of the server is
to provide a dynamic Web interface
to visualize and analyze the collected
data. All the communication between
Gauger clients and the Gauger server
is done in standard HTTP(S) requests

70 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Performance Regression Monitoring with Gauger

Figure 2. Gauger architecture: the Gauger server is responsible for authentication and
receives performance data from the clients. The results are stored in a simple text format
in a local directory. PHP is used to generate the Web site.

http://www.linuxjournal.com

so that only port 80 (or 443) needs to
be open (Figure 2).

Installation
Each Gauger client installation
requires a local Python (> or = than
2.6) interpreter. For the Gauger server,
a Web server installation with PHP and
gnuplot is required.
The provided install.sh script can be

used to install the client, install the
server code into an appropriate loca-
tion and generate an updated Apache
configuration. The script prompts for
key configuration options, such as the
installation path and the desired URL
at which the Gauger server should
run. Installations that do not use
Apache currently require manually
configuring the Web server.

Configuration
Each part of Gauger uses a simple configu-
ration file. The Gauger client configuration
file contains the remote server URL,
followed by the user name and password.
Here’s a sample configuration:

https://gnunet.org/gauger/ username password

The Gauger server configuration fi le

contains the directory where data and
authentication information are stored.
Listing 1 shows a sample server con-
figuration. When the auto-add feature
is enabled, new hosts can be added by
logging in to the Web site using a
fresh hostname and password.

Integrating Gauger
Adding a single simple call at the
places where performance measure-
ments are obtained typically is all
that’s required to integrate Gauger
with existing projects. This call then
starts the Gauger client process,
which, if installed and configured
correctly, submits the performance

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 71

Listing 1. A few basic configuration
options and a list of clients with their
passwords’ hashes are needed for the
Gauger server configuration file.

[config]

data = "/var/lib/gauger"

salt = "makemyhashesunique"

auto_add = 1

[hosts]

debian-amd64-grothoff="da39a..."

Adding a single simple call at the places
where performance measurements are

obtained typically is all that’s required to
integrate Gauger with existing projects.

http://www.linuxjournal.com

measurement to the server. On systems
where the Gauger client is not installed,
the call fails silently so as not to disrupt
normal operations in any way. The
syntax of the Gauger client command-
line tool is as follows:

$ gauger [-i ID] -c CATEGORY -n NAME \

-u UNIT -d DATA

Here, NAME is the name of the met-
ric, and DATA is any floating-point
value that represents the performance
measurement. UNIT is a string that
describes the unit of the value, for
example, ms/request. CATEGORY is a
string used to group multiple perfor-
mance metrics by subsystem. We

recommend using the name of the
subsystem or module here, especially
for larger projects.

Revision Numbers
Gauger can autodetect the current
revision of the project if the bench-
mark is executed in a directory that
was checked out from a supported
Version Control System (VCS). The
supported VCSes are Subversion, Git,
hg, bazaar, monotone and GNU arch.
For distributed VCSes that do not pro-
vide an ascending revision numbering
system (l ike Git), Gauger uses the
number of commits to the repository.
In this case, all execution hosts used
for benchmarking should use the same
origin to keep the data consistent. If
the project uses an unsupported VCS
or if the benchmark is executed out-
side the tree, Gauger needs to know
which (revision) number to use for the

72 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Performance Regression Monitoring with Gauger

Listing 2. The GAUGER macro makes it
easy to integrate Gauger with C code.
Note that the code does not need to be
linked against any additional libraries
(other than libc).

#include <gauger.h>

#include <time.h>

int main() {

time_t start = time (NULL);

do_test ();

time_t delay = time (NULL) - start;

GAUGER ("subsystem", "execution time for f",

delay, "s");

return 0;

}

Listing 3. A simple static method call,
leading to a single line of Java code, can
be used to invoke Gauger from Java.

import static org.gnunet.gauger.Gauger.gauger;

class HelloGauger {

public static void main(String[] args) {

gauger ("subsystem", "Speed",

42 /* value */, "kb/s");

}

}

http://www.linuxjournal.com

x-axis. The --id ID option is used to
supply the revision number in this case.
Some projects may want to use an
internal version number or a timestamp
instead of a revision number generated
by their VCS. The only restriction
imposed on the numbers used is that
Gauger’s regression monitoring
assumes a l inear progression of devel-
opment. For projects with multiple
branches under active development,
different Gauger servers should be set
up for each branch.

Language Bindings
Gauger ships with bindings for various
languages (see, for example, Listings
2, 3, 4 and 5) to make integration
easy. The resulting binaries do not
depend on a Gauger client installation
on the target system. The bindings
should be integrated with the main
project and, as mentioned before,
simply do nothing when invoked if
the Gauger client is not installed or
not configured properly.
The JavaScript binding is unusual.

Because JavaScript cannot access the
local fi lesystem to read the configura-

tion fi le, the login data must be
stored in a cookie in advance. The
login page on the Gauger Web site,
which usually is used to set up new
accounts for execution hosts, can be
used to set the respective login cookie
in the browser. Access to the source
code’s repository also is not possible
from JavaScript, so the revision number
must be supplied explicitly to the
GAUGER call. Typically, the current
revision number is obtained on the
server side. For example, PHP code
can be used to obtain the number
from the VCS, or on-commit trigger

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 73

Listing 4. Example Code for Invoking
Gauger from Python

from gauger import GAUGER

GAUGER("CAT", "NAME", 42, "kb/s")

Listing 5. The browser must be regis-
tered with the Gauger Web site before
Gauger can be invoked from JavaScript.
Once the login cookie is set, the main
difference from other languages is that
the JavaScript code must supply its
revision number explicitly.

[...]

<script type="text/javascript"

src="http://www.example.com/gauger.js">

</script>

[...]

var rev = $Revision$;

/* or */

var rev = <?php echo get_revision() ?>;

var performance = do_test();

GAUGER ('CAT', 'NAME',

performance, 'kb/s', rev)" />

[...]

http://www.linuxjournal.com

functions provided by the VCS could
be used to insert the number into the
source code.

Selecting Proper Units
Gauger provides developers complete
freedom with respect to the names,
values and units of the performance
metrics to be monitored. So, how do
you choose a good unit? Naturally, part
of the unit always is dictated by the
kind of performance characteristic you
are interested in—for example, execution
time (seconds) or space consumption
(bytes). However, generally it’s a good
idea always to relate this basic unit to
the amount of work performed as part
of the unit given to Gauger.
For example, suppose a benchmark

measures the execution time for 100
GET requests. In this case, it is better
to choose a name “GET request perfor-
mance” with unit “requests/second”
(and log the execution time divided by
100) instead of the name “Time for
100 GET requests” with unit “seconds”.
The reason for this is it’s quite possible
the benchmark will be adjusted in the
future—for example, to run 1,000 GET
requests. If performance is logged as
“requests/second”, such a change
would then not require any changes to

the name of the tracked metric. As a
result, the performance regression
analysis can continue to track the metric
in the same curve.
Additionally, Gauger allows different

results to be compared by adding new
metrics to existing plots. If the new
metric uses the same unit as the old
one, they will use the same y-axis;
otherwise, the new one will be plotted
against a second y-axis on the right
side of the plot. This limits the number
of units per plot to two. We recom-
mend using the same units where
applicable (for example, no mixing of
“seconds” and “milliseconds”) to make
comparative analysis easier.

Related Projects
Gauger does not include for support
for actually automatically running
the benchmarks on various systems.
However, this is not a drawback,
because an excellent tool for that
purpose exists in the form of Buildbot.
Buildbot typically is used for regression
testing and, hence, is by itself not
suitable for identifying performance
regressions. Nevertheless, Buildbot
requires a similar network setup—that
is, clients that run the tests connect to
a public server. This makes it trivial to

74 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Performance Regression Monitoring with Gauger

Gauger provides developers complete freedom
with respect to the names, values and units of
the performance metrics to be monitored.

http://www.linuxjournal.com

combine a Buildbot setup with Gauger.
Buildbot is used to execute regression
and performance tests, and Gauger
visualizes the development of performance
metrics over time.
Another tool for monitoring perfor-

mance is Munin. Like Gauger, Munin
allows users to specify which perfor-
mance measurements should be created.
In contrast to Gauger where execution
hosts push data to the server, the
Munin server periodically pulls all
participating systems for a performance
score. As a result, NATed systems are
not easily supported. Also, because
Munin stores the data indexed by time
and not revision number, and given
that software performance may differ
widely between different platforms,
not all systems may have performance
scores ready at fixed time intervals.
Although Munin is not a good fit for
performance regression analysis for
developers, it likely is a better fit for
system administrators who need to
monitor system performance.

Conclusion
Gauger offers a l ightweight and
language-independent approach for
integrating performance regression
testing with existing development pro-
cesses for projects using a wide range
of version control systems. With Gauger,
performance regressions are detected
early, providing users with software
that finally is improving consistently in

both correctness and performance.�

Bart Polot is working on his PhD as a researcher at the
Technische Universität München. His research interests
include security, networking, routing and botnets.

Christian Grothoff is an Emmy-Noether research group
leader at the Technische Universität München. His research
interests include compilers, programming languages,
software engineering, networking and security.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 75

Resources

Gauger: freshmeat.net/projects/gauger

Buildbot: buildbot.org

Munin: munin-monitoring.org

http://www.linuxjournal.com
http://freshmeat.net/projects/gauger
http://buildbot.org
http://munin-monitoring.org
www.logicsupply.com/linux

76 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

I
n a compiled language, the makefile
is arguably the most important part
of any programming project. To
compile your project, you first have
to compile each source file into an

object file, which in turn needs to be
linked with system libraries into the
final executable fi le. Each command
can have a considerable number of
arguments added in. That’s a lot of
typing and a lot of potential for mistakes.
The more source files you have, the
more complex the compilation process
becomes, unless you use makefiles.
Most Linux users have at least a cursory
knowledge of make and makefiles
(because that’s how we build software
packages for our systems), but not
much more than that. Most developers
probably don’t have too much in-depth
experience with makefiles, because
most Integrated Development
Environments (IDEs) have the capability

of managing makefiles for them.
Although this is convenient most of
the time, knowing more about how make
works and what goes into makefiles
can help you troubleshoot compilation
errors down the road.
According to make’s man page,

“The purpose of the make utility is to
determine automatically which pieces
of a large program need to be recom-
piled, and issue the commands to
recompile them.” Essentially, make is
used to determine efficiently (and
without user error) which portions of
the source code have been updated
since the last compilation and recom-
pile them. It can be used for more than
just compiling programs. Because it
isn’t limited to any particular language,
you can use it for anything you can come
up with that relates to the modified
date of a group of files.
Running make is a straightforward

man make
A PRIMER ON THE MAKE UTILITY
In the modern world of Integrated Development Environments, we
forget what really goes into compiling a large code project. This
article should be a refresher on (or teach for the first time) the

basics of makefiles, the most underrated part of any code project.

Adrian Hannah

http://www.linuxjournal.com

process. The more convoluted portion
of using make is constructing the
makefile. The makefile is a file that
consists of a series of rules that define
the dependencies of your project.
These rules govern the behavior of
make during execution.

Rules and Targets
Each rule in the makefile is an inde-
pendent series of commands that are
executed in order to build a target.
Make does not necessarily run each
rule in order. Make will run through
the rules recursively, building each
target in turn, based on modification.
Rules are formatted like this:

target: dependency list ...

commands

...

The target is typically the name of
a fi le, but it can be a phony target
(discussed later in this article). The
dependency l ist is a space-separated
list of files that designate whether the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 77

IMPORTANT:
Command lines must be indented with tab

characters; spaces cause funky errors.

This has been a design flaw in make for

decades. Empty lines must sti l l have a

tab character or else make will throw a fit.

THE BASICS:
� Comments start with a pound sign (#).

� Continuation of a line is denoted by a

back slash (\).

� Lines containing equal signs (=) are

variable definitions.

� Each command line typically is executed in

a separate Bourne shell—that is, sh1.

� To execute more than one command line

in the same shell, type them on the same

line, separated by semicolons. Use a \ to

continue the line if necessary.

Listing 1. Example Makefile

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp

OBJECTS=$(SOURCES:.cpp=.o)

EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:

$(CC) $(CFLAGS) $< -o $@

http://www.linuxjournal.com

target needs to be rebuilt. The com-
mands can be any shell command, so
long as the target is up to date at the
end of them. It is imperative that you
indent the commands with a tab char-
acter and not spaces. This is a design
flaw in make that has yet to be fixed,
and it will cause some strange and
obscure errors should you use spaces
instead of tabs in your makefile.
When make encounters a rule, it first

checks the files listed in the dependency
list to ensure that they haven’t changed.
If one of them has, make looks through
the makefile for the rule containing
that file as the target. This recursion
continues until a rule is found where
all the dependencies are unchanged or
rebuilt (or have no further dependen-
cies), and then make executes the listed
commands for that rule before returning
to the previous rule, and so on, until
the root rule has been satisfied and its
commands run.
You may use pattern-matching char-

acters to describe dependencies in the
dependency list or in commands, but
they may not be used in the target.

Phony Targets
Phony targets (also called dummy or
pseudo-targets) are not real files; they
simply are aliases within the makefile.
As I mentioned before, you can specify
targets from the command line, and this
is precisely what phony targets are used
for. If you’re familiar with the process of

using make to build applications on
your system, you’re familiar with make
install (which installs the application
after compiling the source) or make
clean (which cleans up the temporary
files created while compiling the
source). These are two examples of
phony targets. Obviously, there are no
“install” or “clean” files in the project;
they’re just aliases to a set of commands
set aside to complete some task not
dependent on the modification time
of any particular fi le in the project.
Here is an example of using a “clean”
phony target:

clean:

-rm *.o my_bin_file

Special Targets
Some special targets are built in to
make. These special targets hold special
meaning, and they modify the way make
behaves during execution:

.PHONY — this target signifies which
other targets are phony targets. If a
target is listed as a dependency of
.PHONY, the check to ensure that the
target file was updated is not per-
formed. This is useful if at any time
your project actually produces a file
named the same as a phony target;
this check always will fail when execut-
ing your phony target.

.SUFFIXES — the dependency list of
this target is a list of the established file
suffixes for this project. This is helpful

78 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

http://www.linuxjournal.com

when you are using suffix rules (discussed
later in this article).

.DEFAULT — if you have a bunch of
targets that use the same set of com-
mands, you may consider using the
.DEFAULT target. It is used to specify the
commands to be executed when no rule
is found for a target.

.PRECIOUS — all dependencies of the
.PRECIOUS target are preserved should
make be killed or interrupted.

.INTERMEDIATE — specifies which
targets are intermediate, or temporary,
files. Upon completion, make will delete
all intermediate files before terminating.

.SECONDARY — this target is similar
to .INTERMEDIATE, except that these
files will not be deleted automatically
upon completion. If no dependencies
are specified, all fi les are considered
secondary.

.SECONDEXPANSION — after the
initial read-in phase, anything listed
after this target will be expanded for
a second time. So, for example:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: $(ONEVAR) $$(TWOVAR)

will expand to:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile $(TWOVAR)

after the initial read-in phase, but
because I specified .SECONDEXPANSION,
it will expand everything following a
second time:

.SECONDEXPANSION:

ONEVAR = onefile

TWOVAR = twofile

myfile: onefile twofile

I’m not going to elaborate on this
here, because this is a rather complex
subject and outside the scope of this
article, but you can find all sorts of
.SECONDEXPANSION goodness out there
on the Internet and in the GNU manual.

.DELETE_ON_ERROR — this target
will cause make to delete a target if it
has changed and any of the associated
commands exit with a nonzero status.

.IGNORE — if an error is encountered
while building a target list as a depen-
dency of .IGNORE, it is ignored. If there
are no dependencies to .IGNORE, make
will ignore errors for all targets.

.LOW_RESOLUTION_TIME — for
some reason or another, if you have
files that will have a low-resolution
timestamp (missing the subsecond
portion), this target allows you to desig-
nate those files. If a file is listed as a
dependency of .LOW_RESOLUTION_TIME,
make will compare times only to the
nearest second between the target and
its dependencies.

.SILENT — this is a legacy target
that causes the command’s output to

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 79

http://www.linuxjournal.com

be suppressed. It is suggested that you
use Command Echoing (discussed in
the Command Special Characters sec-
tion) or by using the -s flag on the
command line.

.EXPORT_ALL_VARIABLES — tells
make to export all variables to any child
processes created.

.NOTPARALLEL — although make
can run simultaneous jobs in order to
complete a task faster, specifying this
target in the makefile will force make
to run serially.

.ONESHELL — by default, make will
invoke a new shell for each command it
runs. This target causes make to use one
shell per rule.

.POSIX — with this target, make is
forced to conform to POSIX standards
while running.

Variables
In other versions of make, variables
are called macros, but in the GNU

version (which is the version you likely
are using), they are referred to as
variables, which I personally feel is a
more appropriate title. Nomenclature
aside, variables are a convenient way
to store information that may be
used multiple times throughout the
makefile. It becomes abundantly clear
the first time you write a makefile
and then realize that you forgot a
command flag for your compiler in
all 58 rules you wrote. If I had used
variables to designate my compiler
flags, I’d have had to change it only
once instead of 58 times. Lesson
learned. Set these at the beginning
of your makefile before any rules.
Simply use:

VARNAME = information stored in the variable

to set the variable, and do use
$(VARNAME) to invoke it throughout
the makefile. Any shell variables that

80 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

PREDEFINED VARIABLES
� $? — evaluates to the l ist of compo-

nents that are younger than the current

target. Can be used only in description

fi le command l ines.

� $@ — evaluates to the current

target name. Can be used only in

description fi le command l ines.

� $$@ — also evaluates to the current

target name. However, it can be

used only on dependency l ines.

� $< — the name of the related fi le

that caused the action (the precur-

sor to the target). This is only for

suffix rules.

� $* — the shared prefix of the target

and dependent—only for suffix rules.

http://www.linuxjournal.com

existed prior to calling make will exist
within make as variables and, thus, are
invoked the same way as variables. You
can specify a variable from the com-
mand line as well. Simply add it to the
end of your make command, and it will
be used within the make execution.
If, at some point, you need to alter

the data stored in a variable tem-
porarily, there is a very simple way to
substitute in this new data without
overwriting the variable. It’s done
using the following format:

$(VARNAME:find=replace)

where find is the substring you are try-
ing to find, and replace is the string to
replace it with. So, for instance:

LETTERS = abcxyz xyzabc xyz

print:

echo $(LETTERS:xyz=def)

will produce the output abcdef
xyzabc def.

Suffix Rules
In certain situations, you will find that
the rules for a certain fi le type are
identical except for the fi lename. For
instance, a lot of times in a C project,
you will see rules l ike this:

file.o: file.c

cc -O -Wall file.c

because for every .c fi le, you need to
make the intermediate .o fi le, so that
the end binary then can be built.
Suffix rules are a way of minimizing
the amount of time you spend writing
out rules and the number of rules in
your makefile. In order to use suffix
rules, you need to tell make which fi le
suffixes are considered significant
(suffix rules won’t work unless the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 81

� CC — the name of the compiler.

� DEBUG — the debugging flag. This is

-g in both g++ and cxx. The purpose

of the flag is to include debugging

information into the executable, so

that you can use util it ies l ike gdb to

debug the code.

� LFLAGS — the flags used in l inking.

As it turns out, you don’t need any

special flags for l inking. The option

listed is -Wall, which tells the compiler

to print all warnings. But, that’s fine.

We can use that.

� CFLAGS — the flags used in compil-

ing and creating object fi les. This

includes both -Wall and -c. The -c

option is needed to create object

fi les—that is, .o fi les.

COMMON VARIABLES FOR C++ PROGRAMMING

http://www.linuxjournal.com

suffix is defined this way), then write
the generic rule for the suffixes. In
the case described above, you would
do this:

.SUFFIXES: .o .c

.c.o:

cc -O -Wall $<

You may note that in the case of
suffix rules, the dependency suffix
goes before the target suffix, which is
a reversal from the normal order in a
makefile. You also will see that you
use $< in the command, which evalu-
ates to the .c fi lename associated with
the .o fi le that triggered the rule.
There are a couple predefined vari-
ables l ike this that are used exclusively
for suffix rules:

� $< — evaluates to the component
that is being used to make the
target—that is, fi le.c.

� $* — evaluates to the fi lename
part (without any suffix) of the
component that is being used to
make the target—that is, fi le.

Note that the $? variable cannot
occur in suffix rules, but the $@ variable
stil l wil l work.

Command Special Characters
Certain characters can be used in

conjunction with commands to alter
the behavior of make or the com-
mand. If you’re familiar with shell
scripting, you’l l recognize that \ sig-
nifies a l ine continuation. That is to
say, using \ means that the command
isn’t finished and continues on the
next l ine. Nobody likes looking at a
messy fi le, and using this character
at the end of a l ine helps keep your
makefile clean and pretty. If a rule
has more than one command, use a
semicolon to separate commands. You
can start a command with a hyphen,
and make will ignore any errors that
occur from the command. If you want
to suppress the output of a command
during execution, start the command
with an at sign (@).
Using these symbols will allow you

to make a more usable and readable
makefile.

Directives
Sometimes, you need more control
over how the makefile is read and
executed. Directives are designed
exactly for that purpose.
From defining, overriding or export-

ing variables to importing other
makefiles, these directives are what
make a more robust makefile possible.
The most useful of the directives are
the conditional directives though.
Conditional directives allow you to

define multiple versions of a command
based on preexisting conditions. For

82 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE man make: a Primer on the Make Utility

http://www.linuxjournal.com

example, say you have a set of
libraries you want included in your
binary only if the compiler used is gcc:

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

In this example, you use ifeq to
check if CC equals gcc and if it does,
use the gcc libraries; otherwise, use
the generic libraries.
This is just a small, basic sampling

of the things you can do with make
and makefiles. There are so many more
complex and interesting things you
can do, you just have to dig around
to find them!�

Adrian Hannah has spent the past 15 years bashing keyboards to
make computers do what he tells them. He currently is working
as a system administrator for the federal government. He is a jack
of all trades and a master of none. He spends all his waking hours
on the Linux Journal IRC channel, on Twitter (@codemoney2841)
and talking to random chat bots on the Internet.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 83

Resources

GNU make comes with most Linux distributions by default,
but it can be found on the main GNU FTP server:
ftp.gnu.org/gnu/make (via HTTP) and
ftp.gnu.org/gnu/make (via FTP). It also can be found
on the GNU mirrors at www.gnu.org/prep/ftp.html.

Documentation for make is available on-line at
www.gnu.org/software/make/manual, as is
documentation for most GNU software. You also can
find more information about make by running info make
or man make, or by looking at /usr/doc/make/,
/usr/local/doc/make/ or similar directories on your system.
A brief summary is available by running make --help.

Conditional directives allow you to define
multiple versions of a command based on
preexisting conditions.

http://www.gnu.org/prep/ftp.html
http://www.gnu.org/software/make/manual
http://www.linuxjournal.com
www.linuxjournal.com/rss_feeds
ftp.gnu.org/gnu/make
ftp://ftp.gnu.org/gnu/make

84 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

Q t4 Designer is one of the most
powerful GUI builders on the
market. If you look at the many

Qt4 Designer tutorials, they are all very
code-heavy, which really puts off new
programmers. After some searching, I
put together a few simple methods that
make GUI development easy, even for
novice C++ programmers, and for
experts, it will speed up development.
This article shows how to use a GUI

builder based on Qt4 Designer and
Eclipse. Unlike other tutorials, this one
is not code-heavy; instead, it describes
several simple methods that will enable
you to develop a GUI in a visual manner
with a minimum of C++ code. If you are
new to C++ and GUI building, this tuto-
rial will make it possible for you to build
a GUI. If you are an expert, these meth-
ods at least will help speed your devel-

opment. The development tools must
run under the KDE desktop, although
the final program can be run on a
GNOME desktop as well.
GUI interfaces are a key part of most

operating systems, and with Linux, we
are spoiled for choice. So many good
tools are available; see the Wikipedia
IDE comparison in the Resources section
of this article for an excellent summary.
I teach some 300 first- and second-year
engineers about Linux programming
including GUI programming. They need
to use C++, and the options tend to be
narrow. The two IDEs that look most
applicable are Code Blocks and the
combination of Eclipse CDT and Qt4
Designer. Qt4 Designer clearly is the
most powerful GUI builder with the best
documentation, and it’s free if you are
creating GPL or LGPL code.

Designer

You don’t have to be a code guru to develop GUIs.
PJ RADCLIFFE

and

Eclipse
Qt4

http://www.linuxjournal.com

Installing the Software
The simplest option is to obtain a live
DVD with all the necessary tools installed.
See interestingbytes.wordpress.com for
a Mint-based live DVD with these tools
plus many other development tools.
To install the software yourself, work

through the following steps:
First, ensure you have the gcc compiler

toolchain installed. From a command
line, type g++ --version. If this fails,
use your package manager to install gcc,
g++ and libstdc.
Next, you need the GUI builder Qt4

Designer and the documentation system
Qt4 Assistant. You can find them in your
Linux repository and install them with
your package manager. In the unlikely
event that Qt4 is not available, try the
Nokia Qt download site (see Resources).
You also need Eclipse with CDT

(C/C++ Development Tools) installed.
There are several options here:

� Install Eclipse CDT from your package
manager (easiest option).

� If you already have Eclipse installed
but not the C/C++ development
tools, start Eclipse and select the
menu option Help→ Install New
software. Select your main repository
site and filter on “CDT”. Select the
CDT package and install.

� The latest version of Eclipse at the
time of this writing is Helios, which

may not be in your distribution’s
repository. It has a nice all-in-one
package of Linux Tools that includes
code coverage and profiling. The
Eclipse Helios site has a download
and installation instructions (see
Resources). Note the wiki link from
that page, which has some very
useful tutorials.

Finally, you need the Qt4 integration
plugins for Eclipse. The Nokia Web
site has instructions and the download
(see Resources).

Creating a GUI Project
Most Qt4 tutorials show how to write
code to build a form. The combination
of Qt4 Designer and Eclipse means
you can do this in a purely visual
manner, which is faster and easier.
To build your own GUI, work through
the following steps:

� Start Eclipse using the Linux Menu
option Development→Eclipse. If any
projects are open, select the Project
Explorer in the left-hand panel,
right-click on the project folder,
then select Close Project.

� From the Eclipse menu, select
File→New→Project.

� Find the Qt option, select the
sub-option Qt GUI project, and
then click Next.

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 85

http://www.linuxjournal.com
http://interestingbytes.wordpress.com

� On the next panel, provide a project
name (let’s use demo_1 for this
example), and click Next (not Finish).

� The next panel will set up the class
and filenames. You can change the
name of the class where you place
your code. The bottom list box
labeled UI Type is the most important
field. It determines the type of GUI
you will create. A Widget is a basic
panel with no special functions; a
Qdialog provides simple interaction
with a user, and a QmainWindow is a
panel with menus and other features.
For this example, select
QmainWindow, then click Next.

� This panel allows you to include extra
Qt modules—for example, a network

interface or SQL interface. For this
example, the extra modules aren’t
needed, so just click Finish.

� You will be asked to accept Qt
perspectives; click yes.

You now should have a GUI project
ready to add visual components. To see
the appropriate files, as shown in Figure
1, expand the project in the Project
Explorer panel to the left and double-click
on demo_1.ui.
The compile and execution of the GUI

you have just created may have a hiccup,
especially the first time you run it. You
should be able to select from the Eclipse
menu File→Save All, Project→Build
All, and then Run→Run. If Run→Run
is grayed-out, try the following:

86 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Qt4 Designer and Eclipse

Figure 1.
Empty Main
Page

http://www.linuxjournal.com

� If demo_1.cpp is not already in the
editor window, then in the Project
Explorer panel on the left, double-
click demo_1.cpp to get the code in
the editor window.

� Add a space anywhere, and then
from the Eclipse menu, select
File→Save All.

� Select Project→Build All, then
Run→Run. If you are asked for a
debugger configuration, choose
gdb/mi.

� Your GUI now should appear. Close
it by clicking the close icon on the
top right.

Now, it’s time to add visual compo-
nents to your bare form. On the left-
hand panel, select the Qt tab to see
the visual components. Click and drag
across two Push Buttons, an LCD
Number, a Text Edit box, a Horizontal
Slider and a Progress Bar to get a form
similar to Figure 2.
You can see the properties of any

visual component by clicking on a

component and then examining the
property editor in the right-hand panel.
The properties are shown as a hierarchy
with the parent class first and then the
child classes. You may need to scroll
down to find the property you want to
change. In Figure 2, a button has been
selected and the property editor shows
its properties. The property called “text”
has been changed to MyButton, which
is not the name of the button, just the
message displayed. It’s worth spending
some time looking at all the properties
you can alter. Try also right-clicking
on visual components to see what you
can change. For example, right-click
on the text edit box and select Change
HTML. Type in some text, click OK,
and that text is now displayed in the
text edit box.
To create a menu for your form,

click at the top left where it says “Type
Here”, and type “File”. Your form now
has a menu option “File”.
Click on this again, and add a sub-

option “Save”. After finishing this
tutorial, it’s worth starting a new project
and playing with a range of visual
components, right-clicking on each and

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 87

Figure 2.
Visual
Components

http://www.linuxjournal.com

changing the properties.
Qt Designer has the concept of signals

and slots. A class can emit a signal
when it has done something—for exam-
ple, when a button is clicked. A class
can accept a signal in a slot—for exam-
ple, the LCD display has a slot to accept
a new value. You can connect visual
components directly together using
signals. From the Eclipse menu, select
Qt Designer→Editor Mode→Signals and
Slots. Click on the slider, drag the result-
ing red line to the progress bar, and
release the mouse. In the panel that
pops up, select sliderMoved in the left
box and setValue in the right box, then
click OK. It’s important to know this edit
mode, because it’s a quick way to dis-
cover all the signals and slots a visual
component can support. To see what
signals a button can generate, drag the
mouse from the button to the form and

release the mouse. A window now pops
up that names all the signals a push
button can emit. Close this window by
pressing cancel to delete the link. Now,
try dragging from the form to the but-
ton to see all the slots the button can
support. Try doing the same to the LCD
display (see Resources for more details
on slots and signals).
To run your GUI, first change the

editor mode back to the normal widget
view with Qt Designer→Editor Mode→
Widgets. Then, compile and run using
the Eclipse menu options File→Save All,
Project→Build Project and Run→Run.
If all goes well, you should get a
result l ike what’s shown in Figure 4.
Try moving the slider, clicking on the
buttons (which do nothing), and then
close the window.
I don’t have space to cover layout

tools and spacers, which ensure that
your layout expands and contracts as a
user resizes the GUI window. See the
large e-book from Blanchette and
Summerfield, the short Layout Tutorial

88 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Qt4 Designer and Eclipse

Figure 3. Wired Signal

Figure 4. First Run

http://www.linuxjournal.com

and the Qt Overview listed in the
Resources section for more information.
Qt Assistant, discussed later in this
article, also has an excellent tutorial.

Adding Your Own Code
Other Qt4 tutorials become code-heavy
at this point and lose people who are
not experienced C++ programmers.
Here, I explain how to link your code
to the GUI interface in a simple and
pain-free manner with minimal C++.
Adding code to a GUI project is not

like writing code for a command-line
program. Your code must be placed in
the class created for you, in the example
demo_1.cpp, not a main() routine.
You should alter only demo_1.cpp,
demo_1.h or demo_1.ui. The other files
are generated automatically and will be
overwritten on the next build.
Your code can be started only when

a GUI event happens and it is linked to
your code, or when a timer you have
created times out. Furthermore, your
code must do its job quickly and return.
If your code delays, the entire applica-
tion freezes and stops responding to
user stimuli. These factors require you to
design your code differently from how
you would design a command-line pro-
gram. When you write a GUI program,
plan for all of your code to respond to
GUI events and timers. The GUI package
handles the rest for you.
Most GUI systems have a library of

useful classes, and it’s very much worth

learning how to use those classes, as
they can save you a lot of time and pro-
vide features you could not implement
otherwise. The library with Qt Designer
is particularly powerful and worth
mastering (more on that later).
Now, let’s add the links between your

own code and the visual components.
Click the demo_1.h tab, and add the
single #include line at the top of Listing
1. Next, add the declaration for timer,
the public slots section and functions
that are called when signals are gener-
ated. These slots are all of the form
on_objectName_action(). The available
“action” can be discovered from what

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 89

Listing 1. Adding Slots to demo_1.h

#include <QtGui>

public:

demo_1(QWidget *parent = 0);

~demo_1();

private:

Ui::demo_1Class ui;

//--- add the following lines.

QTimer timer ;

public slots:

void on_pushButton_clicked();

void on_pushButton_2_clicked();

void on_actionSave_triggered() ;

void timer_tick() ;

};

http://www.linuxjournal.com

you did to create Figure 3. The first two
slots are called when the buttons are
clicked, the next when the form’s menu
item Save is selected, and the final one
when your own timer based on Qtimer
ticks. In total, you must add seven lines
of code to the existing file.
Now, you can link the timer to the

LCD display. In the demo_1.cpp file,
modify the constructor to add the three
lines of timer setup, as shown in Listing
2. First, the timer is created, and then
the timer tick signal is connected to

your own routine
timer_tick().
Finally, the timer
is set up to tick at
1,000 milliseconds
(one second).
Listing 3 shows

the code to react to
the first push but-
ton. You need to
add all the lines, as
this member func-
tion is new. The first
two lines of code
change the text in
the button and the
font type. The next
few lines change the
color. This is well
beyond what a sim-
ple application will
need to do, but it
shows a little more
of what is possible.

Note that the properties of any visual
component can be changed using the format
ui.ComponentName->member_function().
As you begin to write more complex
applications, you will need to find these
member functions. The simplest way is
to start a separate application called Qt
Assistant, by going to Development→
Qt4 Assistant from the Linux menu. As
shown in Figure 5, click the Index tab
and enter the name of the visual element.
A detailed description of the element will
be displayed, including all useful member

90 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Qt4 Designer and Eclipse

Listing 2. Constructor with Timer Start

demo_1::demo_1(QWidget *parent)

: QMainWindow(parent)

{ ui.setupUi(this);

//--- add the following lines.

timer = new QTimer(this);

connect(timer, SIGNAL(timeout()), this, SLOT(timer_tick()));

timer->start(1000);

}

Listing 3. First Push Button Code

void demo_1::on_pushButton_clicked()

{ //--- comment out or remove whatever is not needed.

ui.pushButton->setText("New Name") ;

ui.pushButton->setFont(QFont("Courier",10,QFont::Bold));

QPalette palette;

palette.setColor(ui.pushButton->backgroundRole(), Qt::red);

palette.setColor(ui.pushButton->foregroundRole(),Qt::blue);

ui.pushButton->setPalette(palette);

}

http://www.linuxjournal.com

functions. If you are serious about master-
ing Qt Designer, it’s worth spending some
time working through the Qt Assistant
documents. In particular, click the
Contents tab, and open the Qt
Designer Manual, which
includes a wealth of useful
tutorials and examples.
The second push button also

must have its member function
created (Listing 4). Again, the
code shown here is more com-
plex than a simple application
needs to be, but it shows a
very useful feature: calling a
command-line program.
Let’s work through the

code. Note how the text box
on-screen is cleared. The
ui.textEdit gives you access
to the visual component, and
the member function clear()

is called. QbyteArray is an
advanced C++ string type
object. The QProcess object
enables you to run a command-
line program. First, the working
directory is set, and then the
command started. If it returns
within 300 milliseconds, the
result is written into the
textEdit box; otherwise, the
command is terminated, and
the default error message is
printed. Note that the returned
text from the command line may
have nonprinting characters,

such as line feeds. To solve this problem,
look up the QbyteArray member function
simplified() in Qt Assistant.
To respond to the menu on the

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 91

Figure 5. Qt Assistant

Listing 4. Second Push Button

void demo_1::on_pushButton_2_clicked()

{ ui.textEdit->clear() ;

QByteArray command_line, work_dir("/tmp"),

result ;

command_line = "ls /home" ;

result="Nothing happened." ;

QProcess shell(this) ;

shell.setWorkingDirectory(work_dir) ;

shell.start(command_line) ;

if (shell.waitForFinished(300)) //ms timeout

result = shell.readAllStandardOutput() ;

ui.textEdit->append(result) ;

}

http://www.linuxjournal.com

window, add:

void demo_1::on_actionSave_triggered()

{ ui.textEdit->clear() ;

ui.textEdit->append("Menu item Save just triggered.") ;

}

To increment the LCD display every
second, add:

void demo_1::timer_tick()

{ ui.lcdNumber->display(ui.lcdNumber->intValue() + 1) ;

}

Now, let’s run your program. From
the Eclipse menu, go to File→Save All,
Project→Build Project and, finally,
Run→Run. The LCD timer should be
incrementing every second. Try clicking
on the buttons and the form menu to
make sure they perform as expected.

What Next?
What happens next is up to you. If
you have trouble creating the example
described here, you can download all of it
from www.pjradcliffe.wordpress.com,
then click on the “Other Useful
Resources” page. Place the new direc-
tory inside the workspace directory
(/home/user/workspace), then start Eclipse.
Browsing through Qt Assistant is a good

way to discover the useful member func-
tions of visual components and the other
powerful classes, such as QbyteArray. Qt
Assistant has many tutorials and examples,
and the Web is a great source of informa-

tion, as Qt has a vibrant user community.
It won’t take you long to make those visual
components perform just as you wish.

Conclusion
After reading this article, you should be
able to create a GUI using Eclipse and Qt4
Designer, mostly by visual manipulation of
visual components plus a little C++ code.
The example given here shows how to call
your own code when visual components
are activated (as with a button click), how
to start your own code with a timer tick,
and how to call command-line programs
and read back their responses. You can do
a lot with just those functions.�

Dr PJ Radcliffe is a senior lecturer at RMIT University in
Australia. He once was an ardent Windows programmer, but
then he discovered Linux, which he now teaches along with
the control of hardware using Linux. If you are interested in
these topics, see www.pjradcliffe.wordpress.com.

92 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

FEATURE Qt4 Designer and Eclipse

Resources

Wikipedia Article on IDE Comparison: en.wikipedia.org/
wiki/Comparison_of_integrated_development_environments.

Qt4 download site from Nokia: qt.nokia.com/downloads.

Helios Eclipse Linux tools download and install instructions:
www.eclipse.org/linuxtools.

Qt4 integration for Eclipse:
qt.nokia.com/developer/eclipse-integration.

Good designer information (see the “signals and slots” link in
particular): doc.qt.nokia.com/4.6/designer-manual.html.

A 700-page reference for Qt Designer from Blanchette and
Summerfield (definitely worth obtaining although many examples
take a code-heavy approach): search for “c-gui-programming-
with-qt-4-2ndedition.pdf” to find a convenient upload source.

Layout basics: thelins.se/learnqt/2009/05/qt-layouts-the-basics.

Good overview of key Qt4 visual design features:
web.mit.edu/qt-dynamic/www/qt4-designer.html.

http://www.pjradcliffe.wordpress.com
http://www.pjradcliffe.wordpress.com
http://www.eclipse.org/linuxtools
http://www.linuxjournal.com
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://qt.nokia.com/downloads
http://qt.nokia.com/developer/eclipse-integration
http://doc.qt.nokia.com/4.6/designer-manual.html
http://thelins.se/learnqt/2009/05/qt-layouts-the-basics
http://web.mit.edu/qt-dynamic/www/qt4-designer.html

www.hackerhalted.com

94 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

GNU Awk (gawk) is one of those
programs that has been available
“since forever”, which many people
never think about. But, it’s a standard
and important part of just about every
GNU/Linux distribution. In fact, it has
been available since even before GCC!
During the past year and a half or

so, gawk has undergone a quiet revo-
lution, culminating in the release of
gawk 4.0. Although not yet released at
the time of this writing, work is in
progress and moving forward. By the
time you read this article, gawk 4.0
will be a fact and not just a promising
code base in the Git repository.

A Little History
The awk language was developed by
Al Aho, Peter J. Weinberger and Brian
Kernighan, then at Bell Labs (hence the
name A.W.K.). It first was released in

1978 with V7 UNIX. It offered the
pattern-action programming paradigm,
powerful regular expression matching,
associative arrays, conventional opera-
tors and control structures, and a mod-
est array of built-in numeric and string
functions. It was only minimally docu-
mented. (So minimally, in fact, that I
remember being terribly confused after
reading the short paper on awk, and
deciding to avoid it!) Nonetheless, the
UNIX world accepted it and used it;
true UNIX wizards were comfortable
writing even large scripts in it.
Circa 1985, the authors started

beefing up the language, adding user-
defined functions, C-compatible opera-
tor precedence, more built-in func-
tions, dynamic regular expressions and
a few other minor features. More
important though, they then proceeded
to write a book about the new version

GNU Awk 4.0:
Teaching an Old Bird
Some New Tricks
What’s new and nifty in gawk 4.0, with a little history and
background along the way. ARNOLD ROBBINS

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 95

of awk (The AWK Programming
Language), which was published in
late 1987. This version became available
to the world with the UNIX System V
Release 3.2.
I bought the book, figuring that now

was my chance to learn awk. It was
(and remains) a great book. Having an
interest in programming languages and
an interest in contributing to the world
at large, I decided to see whether the
GNU project had a version of awk.
Indeed, it did, but it implemented only
old awk (and poorly, at that). Being
single at the time, I decided to get
involved and see if I could work to
make gawk compatible with new awk.
(And, thus, the course of history
changed, forever.)
As early as 1988, the GNU developers

were corresponding with Brian Kernighan
and other awk implementers to make
sure that the awk semantics were con-
sistent across implementations. System V
Release 4, in 1989, brought a few new
features for new awk (the -v option,
the ENVIRON array, the tolower() and
toupper() built-in functions) and the
first POSIX standard (circa 1992) intro-
duced the CONVFMT variable.
Starting in December 1993, Brian

Kernighan was able to release the
code to new awk; it continues to be
available (see Resources) and sees
minor bug fixes from time to time.

GNU Awk
GNU Awk was first written around
1986 by Jay Rubin and Paul Finlason,
with some help from Richard Stallman.
It barely implemented the original awk
language, was buggy and not particu-
larly fast. It worked by building a parse
tree representation of the program
and then recursively evaluating the
parse tree for each input record.
When I got involved in late 1987,

David Trueman already had volun-
teered to upgrade it to new awk, and
I joined the effort, contributing code
fixes and doing serious work on the
documentation. We worked together
until around 1994, when I became the
sole maintainer.
Along the way, gawk acquired full

compliance with new awk, including
POSIX, and it improved in code quality,
speed and new features. Throughout
the course of more than 20 years though,
the basic design remained the same:
build the parse tree and recursively
evaluate it for each input record.
In 2003, out of the blue, a gentle-

man named John Haque contacted
me. He had rewritten the gawk inter-
nals to use a byte-code interpreter and
provided an awk-level debugger for
awk programs. This was a startling
innovation. I worked with him to get
his version to the point where it was
stable and passed the test suite, but I

INDEPTH

http://www.linuxjournal.com

96 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

did not integrate his changes, because
they were major, and I wanted to under-
stand them better.
Bad move: John disappeared in early

2004, and the code languished, unused.
Finally, in fall 2009, I got a volunteer
(Stephen Davies) to start bringing the
last version of the byte-code gawk that
I had into the present. He and I had
things working, pretty much, and I even
announced a test release to the world.
Again, out of the blue, John resur-

faced in early 2010 and joined the
effort to make the byte-code gawk
viable. This moved things into high
gear, and we made a lot of progress.
As I write this, the byte-code version
has been merged with my “new
features” branch of the code. This is
the basis for gawk 4.0.
If you don’t yet have gawk 4.0, see

Resources for information on where to
download the source and how to build
it; building from source is very easy.

New Stuff in gawk 4.0
With all the background out of the way,
let’s look at the cool stuff. Due to space
considerations, this is just a quick tour;

see the documentation (listed in
Resources) for details.

New Internals
The most significant new feature is that
the gawk internals have been completely
redone. The parser now builds a linked
list of “instructions”. Each instruction
contains a code indicating what it is and
a few members with needed informa-
tion, such as the next instruction and
which instruction to jump to if a jump is
needed. This list then is interpreted for
each record by a big switch statement
running inside a for loop that traverses
the list. Data for operations are pushed
and popped off a runtime stack.
This implementation performs no

worse than the original recursive evalu-
ator, and in many cases, it performs
better. But what’s really cool is that
John added an awk-level debugger!
Since 1978 when awk was first intro-

duced into the world, the only debug-
ging tool was the print statement.
Now, gawk has a full debugger, with
breakpoints, watchpoints, stepping by
statement or instruction, the ability to
step into and out of functions, and

INDEPTH

The most significant new feature
is that the gawk internals have been
completely redone.

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 97

many other features.
The debugger is a separately compiled

program named dgawk. It is a l ine-
oriented debugger modeled after GDB
(the GNU Debugger). If you’re familiar
with GDB, it will be very easy to learn
the gawk debugger. In addition, the
debugger is fully documented in the
gawk.texi file in the gawk distribution.

New Language-Level Features
At the language level, there are several
new features.
1. gawk now provides a built-in file

inclusion mechanism. Lines that begin
with @include and have a filename in
double quotes cause gawk to include
that file, using the same path search-
ing mechanism as the -f option.
Nested includes are supported, and
gawk will not include the same file
twice. This effectively obsoletes the
igawk script that has come with gawk
for many years.
2. New patterns named BEGINFILE

and ENDFILE provide “hooks” into
gawk’s automatic “read a record and
process it” loop. The action for
BEGINFILE is called before the first
record is read from each input file.
Normally, when a file cannot be
opened, gawk exits with a fatal error
(such as if you provide a directory on
the command line). When a program
has a BEGINFILE pattern, instead,

gawk sets the ERRNO variable to a string
indicating the problem, so that you can
tell if the file is problematic. If it is,
use the nextfile keyword to just skip
it. ENDFILE actions let you do easy
per-file cleanup actions.
3. You now can call a function

indirectly. By setting a variable to the
name of the function you wish to call
and using special syntax, gawk will
“indirect” through the variable and
call the desired function:

function f1(a, b) { }

function f2(c, d) { }

{ fun = "f1"; @fun(2, 3) # calls f1()

fun = "f2"; @fun(4, 5) } # calls f2()

4. gawk now sports true multidi-
mensional arrays! Regular awk simu-
lates multidimensional arrays (a[x, y])
using string concatenation of the
index values. gawk now provides
multidimensional arrays (a[x][y]) but does
not require that arrays be rectangular
(as in C or other compiled languages).
Code like this is valid:

a[1] = 1

a[2][1] = 21

It is up to the programmer to track
the type stored at any given index:
scalar or array. Subarrays can be passed

INDEPTH

http://www.linuxjournal.com

98 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

to functions, as long as the function
knows what to expect.
5. The switch/case statement is

enabled by default. gawk has had
switch/case for a long time, but it had
to be enabled at build time, and the
default was not to do so; now it’s
enabled automatically.
6. gawk now supports defining fields

based on field content, instead of
based on the separators between
fields. A new variable, FPAT, is used.
When you assign a string containing a
regular expression to FPAT, gawk
begins splitting fields such that each
field is the text that matched FPAT.
(Normal field splitting is based on the
text in between fields matching the
regular expression in FS.) This is useful
for many kinds of data where FS-based
matching just doesn’t work.
The new patsplit() built-in function

provides access to this functionality for
strings besides the input record. It is
the analogue of awk’s regular split()
function. Additionally, patsplit() lets
you capture the text of the separators
between fields.
7. Standard awk provides only one-

way pipelines, either to or from another
process. gawk provides a notation for
opening a two-way pipeline to a co-
process. gawk uses the same notation
with special, internally recognized file-
names, to provide TCP/IP communication

over sockets. This feature has been
available for a long time.
gawk 4.0 enhances the networking by

providing explicit filenames to indicate
IPv4 or IPv6 connections. Filenames are
of the form /inet4/protocol/local-portt/
remote-host/remote-port or /inet6/protocol/
local-port/remote-host/remote-port. Plain
/inet/protocol/local-port/remote-host/
remote-port is what gawk supplied up
to now and continues to be supported:
it now means “use the system default”.
Most likely, this will continue to be IPv4
for many years.
8. gawk now provides a short (sin-

gle-letter) option for every long option
that it has. This finally makes it possible
to use almost every feature from a !#
script. It does somewhat bloat the
manual page. (gawk has too many
options, but that’s a different problem;
nonetheless, I did remove a few redun-
dant long options.)
9. Interval expressions now are available

by default. An interval expression is an
enhanced regular expression syntax,
such as (foo|bar){2,4}, which matches
anywhere from two to four occurrences
of either foo or bar. The part between
the curly braces is the interval expres-
sion. POSIX added them to awk many
years ago for compatibility with egrep’s
regular expressions. But most awks
didn’t implement them. For historical
compatibility, gawk’s default was to

INDEPTH

http://www.linuxjournal.com

disable them, unless running in POSIX
mode. Today, compatibility with POSIX
has gained enough importance for
enough users that interval expressions
now are available by default.
10. Finally, for this release, the code

has been reviewed and cleaned up.
gawk now requires a full C 89 environ-
ment to compile and run. It will not
work with K&R compilers or if _ _STDC_ _
is defined but less than 1. The code for
many obsolete and unsupported systems
has been removed completely. This slightly
decreases the size of the distribution,

but mainly it reduces useless clutter in
the source. The documentation also has
been reviewed and cleaned up.

Source Code Management
For many years, I was the only one with
access to gawk source while it was being
worked on. Circa 2006, I made both the
stable and development versions available
via CVS from savannah.gnu.org. This
was a good move; it gave the user
community access to all my bug fixes
and to my development code base.
In late 2010, I moved to git. I am

INDEPTH

SUBSCRIBE TODAY!
WWW.LINUXJOURNAL.COM/SUBSCRIBE

http://www.linuxjournal.com/subscribe

100 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

expecting greater productivity from
using git and better ease of use for
the user community. And, it’s nice to
be using 21st-century tools.

Future Work
Some further interesting development
remains to be done.
1. The XMLGawk Project (see

Resources) is a fork of gawk based on
3.1.6 that provides better facilities for
loading dynamic extensions and several
very interesting extensions to go with
those features. These should be merged
into the main gawk code base and
distribution, respectively.
2. Although gawk has had the ability

to load extensions dynamically for many
years, the API has not been stable or
easy to use. I have designed an API for
C functions that can be called from an
awk program that is considerably better,
but I have not implemented it yet. This
should be done.
3. Currently, the gawk distribution

builds three separate executables: regular
gawk, pgawk (for profiling awk programs)
and dgawk for debugging them. The
new internals enable the possibility of
making just one executable that could
perform all three functions (based on
command-line options). This should sim-
plify the build process and definitely will
reduce the total installation “footprint”.
4. The documentation could use further

cleanup. Some of the examples cause
the documentation to show its age. (Who
uses dial-up BBS systems anymore?)

Acknowledgements
Thanks to Brian Kernighan, Stephen
Davies and John Haque for reviewing
this article.�

Arnold Robbins is a programmer, technical author, husband and
father. A native of Atlanta, Georgia, he and his family have been
living in Israel since 1997, where he now works writing software
for a very large semiconductor manufacturing company. He has
been involved with GNU Awk since 1987(!). In his non-copious
spare time, he maintains gawk and its documentation, among
other activities. Arnold is also the author or co-author of a number
of UNIX- and Linux-related books from O’Reilly and Prentice
Hall, which he hopes that all readers of this article will now run
out and buy. For more information, see www.skeeve.com.

INDEPTH

Resources

Gawk Home Page at the FSF:
www.gnu.org/software/gawk

Gawk Project Home Page at Savannah, with Links
and Instructions for Using Git: savannah.gnu.org/
projects/gawk

Gawk Download Directory: ftp.gnu.org/gnu/gawk

Gawk Documentation:
www.gnu.org/software/gawk/manual

Installation Instructions:
www.gnu.org/software/gawk/manual/html_node/
Installation.html#Installation

Brian Kernighan’s “one true awk”:
www.cs.princeton.edu/~bwk/btl.mirror

The XMLGawk Download Page:
sourceforge.net/projects/xmlgawk

http://www.skeeve.com
http://www.gnu.org/software/gawk
http://www.gnu.org/software/gawk/manual
http://www.gnu.org/software/gawk/manual/html_node/Installation.html#Installation
http://www.cs.princeton.edu/~bwk/btl.mirror
http://www.linuxjournal.com
http://sourceforge.net/projects/xmlgawk
http://savannah.gnu.org/projects/gawk
ftp.gnu.org/gnu/gawk

BBBBBBBBBBBBBBBBBBBBROROROROROROROOROROROROROOOOOROOUGUGUGUGUGUGUGUGUGUGGHTHTHTHTHTHTHTTHTHTTHTHTHHHTHTHTHTHTT T T T TT TTTTT TT T TTT TTTOOOO OO OO O OOOOOO OOOOOO YOYOYOYOYOYOYOYOYOYOYOYOOYOYOYOYOYY U U UU U U U U UUUUUUUUU BYBYBYBYBYBYBYBYBYBYYBYYBYBYBBY

GGGGGGGGGGGGGGGGGGUEUEUEUEUEUEUEEEUEUEEUEUEUUESTSTSTSTSTSTSTSTSTSTSTTSTTSSSSSSSSSSS EEEEEEEEEEEEEEEEEEEEEEEEEEXHXHXHXHXHXHXHXHXHXHXHHXHXHHXXHHHHIBIBIBBIBIBIBBBBBBBIBBBBBBBIBIBBBBBBIBBITITTITITITITITITITTTTITTTITITTITITTTTI ORORORORORORORORORORORORORORORROROOROOROROOOOOOROO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS LLLLLLLLLLLLLLLLLLLEAEAEAEAEAEAEAEAEAEAEAEAAEAEAEAEAEAEAAAEAEAE RNRNRNRNRNRNRNRNRRNRNRNRNRNRRNRNNRNRNRRRRNRRNNINININNININNININININNNNINININNNINNNNNNNNI GGGGGGGGGGGGGGGGGGGGGGG
SESESESESESESESESESESESESESSEESEESEESESESESESS SSIOOIOIOIOIOIOIOIOIOIIOOIOIOIOIIIIOOOOONSNSNSNSNSNSNSNSNSSSNSNSNSNSNSNSNSNSNSNNSSSNN

LLLLLLLLLLLLLLLLLLLLLLLLLIIGIGIGIGIGGIGIGGIGGIGIGIGIGIGGGGGIGGGIGGGGIGGGHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTTHTHTHTHTHTHTHTHTNININININININININNININNINININININNIINNININNN NGNGNGNGNGNGNGNGNGNGNNGNGNGNGNGNGGNGGNGNGNGGNGNNGGGNGG
TATATATATATATATATATATATAATATAATAATATATTAATATT LKLKLKLKLKLKLKLKLKLKKLKLKLLKLKLKLKLKLKLLLKLKLKKLKKSSSSSSSSSSSSSSSSSSSSSSSS

MMMMMMMMMMMMMMMMININININININININININNNNINND-D-D-D-D-D-D-D-D-D-DDD-DD-D-
BLBLBLBLBLBLBLBLBLBLBLBLBLLBBLLBLBBB OWOWOWOWOWOWOWOWOWOWOWWOOOWOWOWOOWOWWOWWINININININININININNIINNNININI GGGGGGGGGGGGGGGG

SSSSKEKEKEKEKEKEKEKEKEKEKEKKEKKKKEKEKKEKEKEKEKKKKKEK YNYNYNYNYNYNYNYYNYNYNYYYNYNYNYYYNOTOTOTOTOTOTOTOTOTOTOTOOTOTOTOTOTOTOTOTOTOOTOTOTOTTESESESESESESESESEEESESESESESESESESSSSSESESEE

TTTTTTTTTTTTTTTTTTTTTTEXEEXEXEXEXXEXXEXEXEXXXXEEEEEEXEXEXEXEEEEXEXEEXEXASASASASASASASASASASASASASASAASASAS--------
STSTSTSTSTSTSTSTSTSTSTSTSTSSTTSTSTSSSSTSTTSTTYLYLYYLYLYLYLYLYLLYLYLYLYLYYLYLLLY EEEEEEEEEEEEEEEE

BABABBABABABABABABBABABABABABABABABABBBBAB SHSHSHSHSHSHSHSHSHSHSHSHSHSHSHHHHSHSS ESESESESESESESESESESESESESEESESESSEEEEES

Learn strategies and tactics to automate your operations,
free up resources, and conquer the opposition!

www.bootcamp.cpanel.net

Rapid application development
(RAD) is a trendy data-processing idea to
shorten application software develop-
ment time. In the truest sense, RAD
should include user-friendly develop-
ment tools and seamless access between
end users and actual development soft-
ware. Small-business users lust for
software applications that fit this descrip-
tion. Commercial tools, like Microsoft
Access and AlphaSoftware, share great
success in the business community.
Both of these applications give small-

business users and IT departments a
simple way to develop applications for
internal use quickly, with little effort.
Usually, a small Web-based application
can be created in only a day or two.
Rapid application development com-
bined with a treasure trove of profes-
sionally presented training videos and
other learning resources keep these
products in the forefront of technology
and embedded in the business world.
Thus, a product like AlphaSoftware

frequently is the cornerstone tool for
small-business users to deploy Web tools
for on-the-fly needs. Although some of
these homespun software applications
are downright ugly (from an aesthetic
and design standpoint), nonetheless,
they are critical business tools. In fact,
their importance is so profound that
some small businesses will not even
consider a Linux environment because
few tools exist that closely match the
feature set of AlphaSoftware or similar
commercial products.
Certainly, good arguments exist for

the robust programming tools Linux
offers. Ruby gains much attention as
a powerhouse tool, although Ruby is
a “foreign language” to most small-
business owners. So, traditional open-
source tools seem to lack the absolute
simplicity necessary for acceptance by
many business users. Further, Linux
coding tools are largely unfamiliar,
which reduces the pool of people who
are able to assist businesses develop

102 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

INDEPTH

WaveMaker: It’s
Like...RAD!
Database stuck in Windows? Take RADical action and try
WaveMaker Community edition. DONALD EMMACK

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 103

new applications. Alternatively, consider
how easy it is to find a local IT guy who
can create an Access database with full
form control in only a few days!
Now, WaveMaker provides a strong

Linux contender, properly positioned to
battle for the interest of the business
user. WaveMaker clearly targets a user
audience with quick Web application
development with a minimal learning
curve. The product is available in both a
community edition and an enhanced beta
version poised for more commercial situa-
tions (wavemaker.com/downloads).

Meet WaveMaker
From a marketing perspective, WaveMaker
is a robust tool for rapid application
development of Web-based applications.
You can peruse the WaveMaker site
(www.wavemaker.com) for complete
details of its promotional position.
From a small-business viewpoint,
WaveMaker meets the needs and
requirements for rapid application
development, ease of use and the
abil ity to work across multiple plat-
forms—including Linux.
The two editions of WaveMaker

appear separated by the need to
integrate with mainline applications.
WaveMaker’s community edition is limit-
ed to single-instance use, while the full
edition enables unlimited users and
interaction with commercial databases

like Oracle, IBM DB2 or Microsoft SQL
Server. Conversely, the community
version supports the use of MySQL,
PostgreSQL or HSQLDB. These two
alternatives give small business users
enough options for unique operating
environments.

The Challenge
WaveMaker seems well suited to com-
pete for Linux business-user interest.
A tough sell, most business owners
need a real-l ife example before they
consider open-source systems. Thus,
this article intends to demonstrate
how WaveMaker could migrate a
legacy database from the proprietary
software world into the community
edition of WaveMaker. This simple
test is only a baseline, but it depicts
WaveMaker’s potential. In short, I
show how WaveMaker can measure
up to the tall demands of the business
world and also re-affirm Linux as a
viable choice for daily operations.
The example test here includes a

sample business database originally
developed with AlphaSoftware. The
parameters of this test limit the environ-
ment to a small local Web application
with only one table. It also demonstrates
data export in a common format (comma-
separated or Excel) file and MySQL data
import. Plus, MySQL becomes the platform
for the new application development.

INDEPTH

http://www.wavemaker.com
http://www.linuxjournal.com
http://wavemaker.com/downloads

104 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

This process looks for potential issues
that may arise when users cull data
from a commercial application.
In summary, the test steps are as follows:

1. Prepare the data in a common format.

2. Install WaveMaker community edition.

3. Use WaveMaker to auto-create a Web
form for data entry and update.

Server and WaveMaker Preparation
For novice users, WaveMaker’s Web site
fully describes how to prepare your
operating environment to support the
tool. The one key decision point is
whether to use the default HSQLDB
database. As part of installation,
WaveMaker includes the components
necessary to use HSQLDB. In this test,
let’s use the popular MySQL as the
database engine for the application.
First, let’s use a Debian distribution

to install MySQL. Let’s also use
phpMyAdmin to assist with database
creation and data manipulation. If you
want to follow along, check your distri-
bution’s instructions to install MySQL
and phpMyAdmin, and make sure they
are running before you continue. Next,
download WaveMaker community
edition and follow the installation instruc-
tions here: dev.wavemaker.com/wiki/
bin/wmdoc_6.3/Install.

Preparation for the Test
After installation, let’s plan a simple
data export process to move into the
new environment. My research discov-
ered that AlphaSoftware includes a nifty
export routine to send the data from its
own database to other formats. I tested
the export process with both text and
Microsoft Excel formats successfully. To
assist WaveMaker with field generation,
I included field names during export.
With the sample data in Excel format,
use phpMyAdmin through the browser
at http://localhost/phpmyadmin (or similar)
to manage the MySQL experience.
To minimize errors with data import,

a database and table were created in
advance. In Figure 1, a new database
called “linuxjournal” with a table
named “sheet” already is in place.
Next, let’s use the import tool to pop-
ulate the new “linuxjournal” database.
Afterward, examine the database’s
structure to make sure the primary key
value and index are appropriate for
the test environment (Figure 2). In
this example, I avoided foreign keys
to minimize opportunities for errors.
WaveMaker includes functions for
database creation; however, the inter-
face is not as familiar as phpMyAdmin.
Further, using WaveMaker to build
your data structure is an advanced
topic. Therefore, the simpler approach
is to stay with phpMyAdmin.

INDEPTH

http://www.linuxjournal.com
http://dev.wavemaker.com/wiki/bin/wmdoc_6.3/Install

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 105

WaveMaker Live
I used Linux Mint (a Debian distribution)
for this test. After installing WaveMaker,
the icon for startup did not appear on
the desktop or in the application menu.
To work around this problem, navigate
to /opt/{wavemaker sub-directory}/bin/.
Then, execute ./wavemaker.sh, and
observe the new WaveMaker application
presented on your desktop as shown in

Figure 3. From here, press Start to begin
the process, and the default browser

INDEPTH

Figure 1. Once
logged in to
phpMyAdmin,
create a test
database called
“linuxjournal”,
and import
test data with
field names.

Figure 2. Verify
that the indexes
and keys are
correct for the
imported data.

Figure 3. To the point, WaveMaker
responds with a minimal window allowing
you to start or stop the application.

http://www.linuxjournal.com

106 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

opens to the application’s home screen
(Figure 4).
From this point, click Create a New

Project, give it a name, and then
WaveMaker drafts the workspace for the
application within the browser (Figure
5). This is the primary control center
for development. While the look and
feel may seem unfamiliar, WaveMaker
reduces training time through intuitive
command labels and software compo-
nent tree organization.

Establishing Database Connection
Once WaveMaker is up and running, it
must establish database connectivity to
continue. Next, select Services and then
Database Services to define the connec-
tion to “linuxjournal”. Now, WaveMaker
needs the right information to connect to
the database (Figure 6). With MySQL, the
first step is to change the initial drop-
down list from the default HSQLDB to
MySQL. Next, input the database userid,
password and exact database name in
the fields provided. Click Test Connection
at the bottom of the window to ensure
connection. Once successful, select
Import to continue the data import
process, and WaveMaker responds with
the elements of the MySQL database in
a new window (Figure 7). Stop here and
evaluate your structure. It’s important to

INDEPTH

Figure 4. At first, WaveMaker gives you the
opportunity to create projects, open existing
ones or just work through a tutorial.

Figure 5. A clean slate or “Palette” is the
home screen of WaveMaker.

Figure 6. WaveMaker’s Template to
Establish Database Connectivity

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 107

validate keys and indexes. Also note the
field names of your data to ensure they
are listed properly.

Application Design
With a predominantly GUI interface,
WaveMaker now is ready to create a
Web-based application. A pivotal benefit
for the small-business user, this interface
relies on simple drag and drop for many
operations. Automatic processes assist
with form creation, data placement
and manipulation. Plus, error correction
is quite simple and capitalizes on the
familiar Edit and Undo routine whenever
you change your mind!
First, cl ick on Canvas and Palette

as shown in Figure 8. The link to the
“linuxjournal” database previously cre-
ated now is available in WaveMaker’s
tree view. Now, let’s create a simple
entry and update application—in one
step. With the mouse, drag the
database onto the blank area of the

working screen. WaveMaker automagi-
cally populates the working area of
the Canvas with the sample data from
“linuxjournal”. It’s remarkable to watch
WaveMaker create editable (bold) fields
for the data on the bottom of the Canvas.

INDEPTH

Figure 7.
After
import, your
database
structure is
displayed.

Figure 8.
Navigating
to the
Location
of Your
Imported
Table
(Called
“Sheet”)

http://www.linuxjournal.com

108 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

Figure 9 shows the results.
In essence, data from the MySQL

table is displayed on top, and a detail
section (with editable fields) is created
below. At the same instant, WaveMaker
creates three buttons for data manipu-
lation: New, Update and Delete (Figure
10). The current view displays the
skeleton of the application, complete
and test-ready. Select Test from the
top window, and a new browser window
with the application displays in test
mode. Choose Run, and WaveMaker
saves and then runs the application
in a new browser window, as shown

in Figure 11.
Now, work with this mini-program

to verify the success of the transition,
exit the application and then re-visit
phpMyAdmin to see the elements prop-
erly added, changed and deleted.

Pinch Yourself
WaveMaker just completed this test
migration in approximately 15–20
minutes! Certainly more complex data
migrations will require a concerted
effort to ensure proper foreign keys and
precise index setup. Yet, the viabil ity
of this principle is proven for a small
application migration.
In this test, WaveMaker performs

quite well. Building the application
and running it on the same machine
is a bit sluggish, but this will change
substantially with respect to hardware
specifications and overall configuration.

INDEPTH

Figure 9. After
drag and drop,
WaveMaker
creates the list
of data on the
top of the
screen, and
the editable
fields are listed
below. Red text
was added by
the author.

Figure 10. In the bottom right, WaveMaker
automatically provides New, Update and
Delete buttons for the application.

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 109

No Parking!
This test purposely excluded necessary
elements to make many applications
really suitable for business.
Nevertheless, adding buttons, screens
and tabs is very straightforward. For
example, user login logos and multiple
tabbed displays often are staples of
even the most rudimentary business
applications. WaveMaker includes
many nicely packaged tools that
enable users to drag and drop addi-
tional features immediately into the
live Palette.
WaveMaker builds these other essen-

tial elements with a host of “widgets”
along the application’s left panel
(Figure 12). Users take advantage of
this noncode environment and simply
drag and drop new features into the
Palette. For example, a handy calendar
(Figure 13) or simple page navigation

(Figure 14) require no direct code. Plus,
login security and roles are handled

INDEPTH

Figure 12. A Sample of Widgets Included
with WaveMaker

Figure 11.
Live Operation
of the Sample
Data Migration
in Less Than
20 Minutes

http://www.linuxjournal.com

110 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

efficiently in the Services and Security
tabs of the application—once again, a
simple user interface.

The Takeaway
For business users, WaveMaker excites
the potential of open-source possibil i-
ties. In recent years, the strongholds
of proprietary operating systems usu-
ally included finance and point of
sale. Because few comparable business-
class applications exist, the impetus
to move into the open-source world
is sometimes difficult. It’s also clear
that mainstream business users may
consider Linux when the core applica-
tions of their business can be migrated
with ease.
Often overlooked, small database

development served as a type of

commercial software lynchpin.
Thus, business operators are often
locked in the proprietary realm.
As a former AlphaSoftware user,
I too see the impediments to
change. Plus, applications like
AlphaSoftware give developers a
standardized tool to develop and
deploy executable software in
addition to Web applications. This
is a market segment not directly
marketed by WaveMaker. As with
most software, familiarity of inter-
face and technical support are all
weighty factors in the decision.

WaveMaker seems l ike a bold step
and immediately gathers the atten-
tion of business users. It is a true
competitor to the commercial Web
application development world and
deserves attention by the business
community. VMware’s recently
announced acquisit ion of WaveMaker
(dev.wavemaker.com/blog/2011/03/
08/wavemaker-springs-to-vmware)
gives this application a boost in
recognition and in business users’
confidence in its future stability. Go
give WaveMaker a try!�

Don Emmack, a Change Management consultant, assists
government and business users with infrastructure and opera-
tional issues. A former Sr. Vice President for an international
consulting firm, his work includes domestic and international
clientele. Don is an early adopter of new technology, yet remains
hopelessly addicted to his 1980s-era fax machine!

INDEPTH

Figure 13. The Included Calendar Widget

Figure 14. Simple Creation of Data Navigation Buttons

http://www.linuxjournal.com
http://dev.wavemaker.com/blog/2011/03/08/wavemaker-springs-to-vmware

http://debconf11.debconf.org
http://debconf11.debconf.org

jEdit is a cross-platform text editor
written in Java. The current stable ver-
sion at time of this writing is 4.3.2,
and it’s available at jedit.org. Besides
the cross-platform capabilities, jEdit
offers other features, such as a
sophisticated plugin system, syntax
highlighting for 130 languages, a
built-in macro language and extensive
encoding support. I wrote this article
using jEdit, and I demonstrate some of
its features here, especially some of
the plugins I have found useful.
Before I start, jEdit is a GUI text editor

of some heft. It is not a replacement
for using vi on the command line to
edit a configuration fi le on a remote
server. It does serve well in handling
many fi les simultaneously with visual
feedback and with the benefits of a GUI
interface. To put it another way, I use
vi or jEdit depending on the need.
Installation is fairly easy; just go

to the download page and grab the
installer jar. Be sure to check out the

compatibility link if you have a non-Sun
(Oracle) or Apple version of Java. From
personal experience, I have not had
success running jEdit on gcj. Assuming
you have a compatible version of Java,
use the following to install:

java -jar jedit4.3.2install.jar

This launches an installer program
that guides you through the process.
For the sake of reference, jEdit keeps
its configuration files, on Linux anyway,
in ~/.jedit/. I mention this because I
keep that directory synced between my
laptop and my desktop machines. As
a result, I have a consistent working
environment between the two.
At its heart, jEdit is a just a text editor,

although it’s a text editor with a lot of
options. You can make these options
global or apply them on a per-buffer
basis. You can reach the options via the
Utilities menu item. The global options
stick between editing sessions, but the

112 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

INDEPTH

jEdit: a Text Editor
and More
Getting started with this extensible GUI text editor.
ADRIAN KLAVER

http://www.linuxjournal.com
http://jedit.org

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 113

buffer options do not, unless you use
the buffer-local method. This consists
of embedding colon-separated hints to
jEdit in the file. jEdit checks the first
or last ten lines for these hints. As an
example, to specify an indentation of
2, use spaces for tabs and “hard” wrap,
the embedded hints would be:

:identSize=2:noTabs=True:wrap=hard:

jEdit checks anywhere in those lines,
so you can place the hints behind
comment symbols.
Also note that jEdit supports mode-

specific settings, where a mode is a
file type, such as Python (*.py), C (*.c),
HTML (*.html) and so on. The various
modes come with default settings, but
they can be overridden. One of the key
benefits is that the mode system pulls
in file-type-specific syntax highlighting.
Other options are available for the
editor’s layout. As you can see in the
screenshots for this article, I tend to
run jEdit with two buffers open, split
vertically and with line-numbering
enabled. The ability to look at the begin-
ning and end of file at the same time,
especially source code, is invaluable.
You can use jEdit in a great number

of ways. Watching me enter text,
although it has its moments, is not
terribly inspiring. So to keep things
interesting, here I demonstrate some

of the plugins I have found useful.
Plugins are code that scratches an
itch. The base jEdit program does a
lot, but it does not cover the universe
that is text editing, or other chores
for that matter.
jEdit has a macro system (not cov-

ered in this article), so you can whip
up your own solutions to problems or
scope out the plugins available and not
re-invent the wheel. So, before getting
into the plugins themselves, here’s an
overlook at the plugin system itself.
They can be found at plugins.jedit.org
or via the Plugins item on the menu
bar. Click on the Plugin Manager item
and then the Install tab for a l ist of
available plugins. Clicking on an item
shows a description at the bottom of
the page. Check the box of any plug-
in(s) you want to install, and then click
Install. If the plugin has dependencies,
they also will be installed.
So, where to start with the plugins?

Let’s go from less-involved to more-
involved, beginning with one suggested
to me by a member of the Bell ingham
Linux User Group: WhiteSpace. It does
what it says—tracks whitespace. I have
it set up to show trailing whitespace
and, additionally, to eliminate any
such whitespace when I save. I also
have it show tabs and modify them
according to my jEdit soft tab setting.
This setting, when enabled, converts

INDEPTH

http://www.linuxjournal.com
http://plugins.jedit.org

114 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

tabs into a defined number of spaces.
WhiteSpace uses the setting to
convert preexisting tabs into spaces
or vice versa. All of the above helps
when I work in Python code, keeping
that pesky whitespace in order. This
also is valuable when writing for
Linux Journal, which requires that
writers use spaces not tabs. See
Figure 1 for WhiteSpace in action on
a Python fi le. From the screenshot,
you can see one way to set it up. The
other way is to go to Plugins→Plugin
Options→WhiteSpace. This is how
most of the plugins work, although
you will find there often are differ-
ences in options available between

the two locations.
Another plugin I use quite often is

JDiff. As the name implies, it shows the
diff between files. Of course, you could
use the command line to do the same
thing. The benefit of the plugin is the
graphical presentation it provides.
Figure 2 shows the dual-diff mode
using this article as the fi les. From
here, you can create a diff output. You
also can walk through the diffs and
apply them from one side to another.
The JDiff plugin has a dockable

component that allows you to dril l
down into the lines of the fi les for
differences (Figure 3). In the dual-diff
screenshot (Figure 2), you can see

INDEPTH

Figure 1.
WhiteSpace
Plugin Settings
and at Work

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 115

INDEPTH

Figure 2.
JDiff Plugin in
Dual-Diff Mode

Figure 3.
JDiff Dockable
Showing Line
Differences

http://www.linuxjournal.com

116 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

another plugin at work, VoxSpell. The
underlining is the spell-checker at
work. If you look at the file, you can
see that plugin/plugins go from being
underlined to not underlined. I right-
clicked on the words and added them
to the dictionary as acceptable, at
least for the purposes of this article.
Note that VoxSpell has a dependency
on the Spell Check plugin. It also uses
quite a bit of memory, so that may be
an issue.
Next is a chicken-and-egg problem.

I ran across a reference to the SQL plug-
in for jEdit. In the course of install ing

it, I found it had a dependency on the
Project Viewer plugin, which meant I
had to learn how to use Project
Viewer in order to use the SQL plugin.
It turns out that was a good thing. In
fact, this article was written using
Project Viewer. First, I wil l cover the
SQL plugin and later expand on the
Project Viewer plugin.
SQL allows you to work with SQL

databases from within the editor.
Setting things up to use the plugin
is a two-step process. First, you need
to do the general setup in the SQL
options dialog. Go to the menu, then

INDEPTH

Figure 4. Adding SQL Server to a Project

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 117

Plugins→Plugins Options→SQL. Go
to the JDBC page and use the Add
Element button to indicate the path(s)
to the JDBC drivers you want to make
known to the program. At the time
of this writing, SQL can work with
Oracle, MySQL, PostgreSQL, Firebird,
DB2, Progress, MS SQL Server 2000,
Sybase and Teradata, assuming you
have the requisite JDBC drivers. This
previous step “registers” the database
so it can be used in the next step.
The next step is to configure a spe-

cific database (or maybe more than
one) with a project. This is where

Project Viewer comes in. You use it to
create the project (more detail on that
later). For now, I will use the project
that is this article. From the project
pane, right-click on the project name
and select properties. This will lead to
a series of dialogs that allow you to
fil l in the needed information (Figure
4). In this case, I am using the Pagila
demo database for Postgres. From a
jEdit buffer, you now have access to
the database (Figure 5). There is quite
a bit going on there, so let’s take it a
step at a time.
Just above the buffers is the SQL

INDEPTH

Figure 5. SQL Plugin Returning a Result Set

http://www.linuxjournal.com

118 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

toolbar. First, above the left buffer is
a Database: drop-down list with the
previously configured database selected.
To the right of that are four buttons:
the first is Execute selection, the sec-
ond is Execute buffer, the third is
Load object, and the last is Repeat last
query. To the right of the last button
is the Preprocessors drop-down. For
this example, I am using the Variable
substitution preprocessor. This can be
seen in the “actor_id > ?” expression
in the SQL statement in the right
buffer. (As a side note, notice the SQL
syntax highlighting prompted by the

use of the *.sql extension.) To continue,
I have selected the statement I want
to run and then clicked the Execute
selection button. Because I have vari-
able substitution in force, an input
box was presented (not shown) for me
to enter the value for actor_id, in this
case 35. The result is presented in a
separate window. From the result set,
it is possible to save the data as CSV or
tab format or as INSERT statements.
You also can show/hide columns.
Additionally, it’s possible to run multi-
ple statements at once (Figure 6). This
is a somewhat contrived example, but

INDEPTH

Figure 6. SQL Plugin Running Multiple Statements

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 119

it does show what’s possible. The
previous feature allows me to create
database DDL fi les and run them from
within the editor.
The last feature is SqlVFS (Sql

Virtual File System). This allows you
to browse the selected database as
a fi lesystem. To get there, go to
File→Open→Commands→Plugins→
Show databases. Figure 7 shows what
you get. Note that although Data says
0 bytes, double-clicking on it gives a
result set from the table.
Project Viewer is a plugin to make

handling a group of related fi les (a

project) easier. For demonstration
purposes, I’m using the files that make
up this article. Project Viewer creates
a docked button below the menu bar.
Click it, and a drop-down appears with
All Projects listed. Click this, and a
window opens. Right-click on All
Projects, and select Add project, and
you get another window (Figure 8) to
enter the required information. Click
OK to create the project. Project Viewer
then takes you to that project and puts
up a prompt about importing files into
the project. By default, it imports
everything below the root directory.

INDEPTH

Figure 7. SqlVFS, Database as a Filesystem

http://www.linuxjournal.com

120 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

INDEPTH

Figure 8.
Setting Up
a Project
Using Project
Viewer

Figure 9.
Files in
Project
Viewer

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 121

At this point, the group of fi les is
bound together as a project. The
benefit is that Project Viewer keeps
track of their state and allows you to
return to that state at a later time.
Note that it’s possible to add other
directories/fi les to the project later.
Simply right-click on the project
name, select Add fi les and navigate
to the desired location(s). You can add
new files from the existing directory in
two ways: one is manual and the
other automatic. The manual option is
to right-click the project name and
select Re-import fi les. The automatic
option is to open the project name

context menu, select Properties→Auto
Reimport and enable it with a time
parameter. Figure 9 shows the visual
indicators as to the status of fi les,
where underlining represents open
files and color indicates type of fi les.
One really handy feature is the

Compact View of a project. This is
enabled in the General Options of the
Project Viewer plugin options. It pre-
sents a flattened view of a directory
structure. This article does not really
have the directory depth to illustrate
the benefit, so take a look at a screen-
shot from another project (Figure 10).
Each line takes you directly to a directory.

INDEPTH

Figure 10. Project Viewer Compact View

The benefit is that Project Viewer keeps
track of their state and allows you to
return to that state at a later time.

http://www.linuxjournal.com

Also of note is the Working Files tab
in the project window. This groups all
your current open files together, which
is handy in a large project.
Some other features include archiv-

ing the project fi les in a JAR fi le and
searching in the project or project
subdirectory fi les for a string. The
ability to consolidate all of the fi les
related to a project in a single inter-
face is something I’ve come to appre-
ciate even more as time passes.
Walking through a Project Viewer
directory tree renaming/moving/deleting

files while looking at the actual fi les
is priceless.
What I have presented above barely

scratches the surface of what is possible
with jEdit. It has a macro facility that I
have not even started to explore. The
most important part of jEdit, to me, is
that it lets me get work done without
getting in my way. Furthermore, it
makes that work easier, and I hope
you find it useful also.�

Adrian Klaver works with computers, and when that proves
frustrating, he pushes wheelbarrows of heavy stuff around to
remind himself that maybe computers are not so bad after all.

INDEPTH

http://www.LinuxJournalStore.com

25TH LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE
SPONSORED BY

IN COOPERATION
WITH LOPSA and SNIA

Save the Date!

December 4—9, 2011, Boston, MA

6 days of training on topics
including:

• Virtualization

• Security

• Configuration Management

• And more!

Come to LISA ’11 for training and face time with experts in the
sysadmin community.

The theme for LISA ’11 is ’’DevOps: New Challenges, Proven Values.”

• Invited Talks

• Paper Presentations

• Guru Is In Sessions
• Practice and
 Experience Reports

• Vendor Exhibition
• Workshops
• Posters and WiPs

Plus a 3-day Technical Program:

LISA ’11 will feature:

Find out more at www.usenix.org/lisa11/lj

http://www.usenix.org/lisa11/lj

Perl has been around for more than
20 years. During that time, it has
received its share of both praise and
criticism, and lots of misconceptions
surround it. Much of this stems from
long-outdated notions of what Perl
used to be, but have nothing to do
with what Perl actually is today.
Perl hasn’t been standing still. It’s

been growing continuously and evolv-
ing, and that growth has accelerated
dramatical ly in the past few years.
Moose is one of the technologies at
the heart of this “Perl Renaissance”,
which also includes other exciting
projects that have emerged, such as
Catalyst and DBIx::Class.
Moose is essentially a language exten-

sion for Perl 5 that provides a modern,
elegant, fully featured object system. I
say “language extension”, but Moose is
written in pure Perl, and as you’ll see,
its syntax is still normal Perl. You don’t
need to patch Perl itself to use Moose;
under the hood, it’s just Perl 5.
Because Moose is sti l l just Perl 5,

it’s fully compatible with all of those
wonderful modules on CPAN, regard-

less of whether they are written in
Moose (and most aren’t, as CPAN has
been around for so long, and Moose
is relatively new).
For me, this is still the single biggest

reason to choose Perl. Whatever you
are trying to accomplish, chances are,
there already is a refined module for it
on CPAN. This usually means dramatic
cuts in total development time, because
someone else already has written a lot
of your program for you.
And now, with all the modern

object-oriented features Moose brings
to Perl, you get to have your cake and
eat it too.
In this article, I provide an introduction

to object-oriented programming in
Moose and cover some of Moose’s
core features with useful examples. To
get the most out of this article, you
already should be familiar with object-
oriented programming concepts, such
as classes, objects, methods, attributes,
construction and inheritance.
You also need to know Perl—at least

the fundamentals. If you don’t know
Perl, learning it is not very hard to do.

124 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

INDEPTH

Moose
Write powerful object-oriented code in a modern and
consistent style—in Perl. HENRY VAN STYN

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 125

At the end of the day, it’s just syntax.
The good news is you don’t need to
master Perl by any stretch to start
using Moose.
Perl does have its quirks, and Moose

doesn’t make them all totally go away
(and you wouldn’t want them all to
go away, because a lot of them are
really useful). The most important
concepts to understand are how Perl
references work (the “perlreftut”
tutorial is a great place to start—see
Resources), and also the basics of
working with Scalars, Arrays and
Hashes. Also, learn what the fat
comma is (=>) if you aren’t already
familiar with it. Moose makes heavy
use of it as an idiom. It’s actually not
that scary; it’s interchangeable with
the normal comma (,).
Most of the rest of it you can learn

as you go. Normal language stuff like
loops, conditionals and operators aren’t
all that different in Perl than any other
language. So give it a shot. I think you’ll
find it’s well worth the investment.

Getting Moose
Chances are you already have a distri-
bution of Perl installed on your system.
You at least should have Perl 5.8, but
preferably 5.10 or 5.12. Installing Moose
from CPAN is an easy task; simply run
the following command:

cpan Moose

This should download and install
Moose for you, as well as all of Moose’s
dependencies.

Object-Oriented Perl (the Old Way)
Even though Perl has had object-oriented
features for a long time, it was not
originally designed—syntactically—as an
object-oriented language. This is more
about the API provided to the program-
mer than it is about the underlying
technical design of Perl itself.
Perl 5 provides a lean environment

with the fundamental features and hooks
needed for object-oriented programming,
but then leaves most of the details (such

INDEPTH

What about Perl 6?
A lot of the features in Moose were inspired by Perl 6. Perl 6 stil l is being
developed actively, and I believe that when it’s finally released for production
use, it won’t disappoint. The fact is Perl 5 is solid, proven and fast, so there
is no reason to rush Perl 6. It is better that the developers take the time to
do it really right, which is exactly what they’re doing.

http://www.linuxjournal.com

126 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

as setting up object constructors, imple-
menting attributes and handling validation)
to you. As a result, the “right way” to go
about implementing these concepts is
open to interpretation.
The fundamental feature utilized by

Perl to support objects is the “blessed”
reference. This is like the flux capacitor
of objects in Perl. Blessing simply associ-
ates a normal reference (usually a Hash
reference) with a class. The blessed
reference then becomes the “object
instance”, and its referent is used as the
container to store the object’s data.
The class name is the same thing as

the package name, which is nothing
more than the namespace in which
subroutines and variables are defined.
The subroutines defined in the given
package namespace become the methods
of the class and can be called on the
object reference.
All object-oriented languages have

to do something along these l ines to
implement objects under the hood.
Other languages just don’t impose so
many of the low-level details on the
programmer as in pure Perl.
Here is an example of a simple class

in old-school Perl 5 OO:

package MyApp::Rifle;

use strict;

sub new {

my ($class, %opts) = @_;

$opts{rounds} = 0 unless ($opts{rounds});

my $self = bless({}, $class);

$self->rounds($opts{rounds});

return $self;

}

sub rounds {

my ($self, $rounds) = @_;

$self->{_rounds} = $rounds if (defined $rounds);

return $self->{_rounds};

}

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

print "bang!\n";

$self->rounds($self->rounds - 1);

}

1;

Save the above class definition into a
file named MyApp/Rifle.pm within one
of your Perl’s include directories, and
then you can use it in a Perl program
like this:

use MyApp::Rifle;

use strict;

my $rifle = MyApp::Rifle->new(rounds => 5);

print "There are " . $rifle->rounds . " rounds in the rifle\n";

$rifle->fire;

print "Now there are " . $rifle->rounds . " rounds in the rifle\n";

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 127

Moose Sugar
Moose is really nothing more than syn-
tactic “sugar” that automatically takes
care of the boiler-plate tedium and
low-level details of implementing objects
automatically. This is possible because of
Perl’s powerful introspection capabili-
ties—Moose dynamically manipulates
the class definition at compile time just
as if it had been written that way.
The previous class could be implemented

like this with Moose:

package MyApp::Rifle;

use Moose;

has 'rounds' => (is => 'rw', isa => 'Int', default => 0);

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

print "bang!\n";

$self->rounds($self->rounds - 1);

}

1;

Not only is this code much shorter,
cleaner and easier to read, but it is
doing all the things the non-Moose
class was doing and more. First, Moose
is automatically creating the “new”
constructor method behind the scenes.
It is also automatically setting up
“rounds” as an attribute (aka object

variable), which Moose understands as
a distinct concept.
Pure Perl has no such understanding;

if you want “attributes”, you have to
implement them yourself by writing
accessor methods by hand and deciding
how they should work (the non-Moose
version above illustrates only one of
many possible approaches).
Moose, on the other hand, provides a

refined, fully integrated object attribute
paradigm. It sets up the accessor
methods, handles the data storage and
retrieval, and automatically configures
the constructor to initialize attributes
optionally with supplied parameters—
and that is just scratching the surface!
One of the problems with the non-

Moose version of our class is that there
is no validation for “rounds”. For example,
nothing stops us from doing this:

my $rifle = MyApp::Rifle->new(rounds => 'foo');

This is one of the areas where Moose
really shines; it provides a complete Type
system that is very straightforward to
use. In the Moose version, the option
isa => 'Int' sets up the rounds
attribute with a type constraint that
automatically will throw an exception
(with a meaningful message) if you try
to set the value to anything that is not
a valid integer. This would stop you
from setting rounds to 'foo' because it’s

INDEPTH

http://www.linuxjournal.com

128 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

not an integer, it’s a string.
This illustrates an important point

about Moose’s design and approach. Its
syntax is declarative rather than impera-
tive. This means you just need to specify
what you want it to do instead of how
it needs to do it. This is in sharp contrast
to the traditional Perl 5 OO style, where
that is exactly what you would have to
do—add additional lines of code in the
accessor method to test the value for
validity and handle the result.
The syntax isa => 'Int' doesn’t

provide any insight on how Moose will
go about checking and enforcing the
type constraint. And that’s the whole
point—you don’t care. But, you can
rest assured it will do it in a far more
thorough and robust manner than
anything you’d want to waste time
on doing yourself.

More about Attributes
You declare attributes in Moose with the
“has” function. This consists of a unique
attribute name, followed by a l ist of
named options (key/values). Although
it looks and behaves l ike a built-in
language keyword, it is really just a
function call. Its documented syntax is
just idiomatic for the purpose of code
readability (it’s a fancy way to pass an
argument l ist).
Moose provides all sorts of options

that define the behavior of a given

attribute, including setup of accessors,
data types, initialization and event
hooks. The simplest attribute is just an
object variable that is set up as either
read-write (rw) or read-only (ro) with
the “is” option:

has 'first_name' => (is => 'rw');

The is option tells Moose to set up
the accessor method, which is what you
use to get and set the attribute’s value.
You set the value of an attribute by
passing a single argument to the acces-
sor (such as $obj->first_name('Fred')),
and you get the current value by call-
ing the accessor with no arguments
($obj->first_name). Setting the value
is only allowed if the attribute “is” =>
“rw”. If it’s “ro”, and you try to set its
value through the accessor an exception
will be thrown.
This is the core of the attribute

paradigm, but lots of other options
provide useful features. Here are a
few of the noteworthy ones:

� is: ro or rw, creates either a read-only
or read-write accessor method.

� isa: string representing an optional
type constraint.

� default: the default value of the
attribute.

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 129

� builder: alternative to default—
name of a method that will generate
the default.

� lazy: if true, the attribute is not
initialized until it’s used.

� required: if true, attribute value must
be provided to constructor or have
default/builder.

The builder option lets you specify
a method to use to populate the
attribute’s default value. A builder is a
normal method defined within the class,
and its return value is used to set the
attribute’s initial value. If the builder
needs to access other attributes within
the object, the attribute must be lazy
(to prevent it from potentially being
populated before the other attributes
it depends on).
Because this is such a common sce-

nario, for convenience, Moose provides
the “lazy_build” attribute option that
automatically sets the lazy option and
sets the builder to _build_name (such as
_build_first_name for an attribute
named first_name). For example:

has 'first_name' => (is => 'ro', lazy_build => 1);

sub _build_first_name {

my $self = shift;

return $self->some_lookup('some data');

}

Attributes Containing Objects
So far, I’ve talked only about attributes
containing simple scalars. Attributes
can contain other types of values as
well, including references and other
objects. For example, you could add a
DateTime attribute to your MyApp::Rifle
class to keep track of the last time
“fire” was called:

package MyApp::Rifle;

use Moose;

use DateTime;

has 'rounds' => (is => 'rw', isa => 'Int', default => 0);

has 'fired_dt' => (is => 'rw', isa => 'DateTime');

sub fire {

my $self = shift;

die "out of ammo!" unless ($self->rounds > 0);

my $dt = DateTime->now(time_zone => 'local');

$self->fired_dt($dt);

print "bang!\n";

print "fired at " . $self->fired_dt->datetime . "\n";

$self->rounds($self->rounds - 1);

}

1;

This is fairly straightforward. I’m cre-
ating a new DateTime object and storing
it in my fired_dt attribute. Then, I can

INDEPTH

http://www.linuxjournal.com

130 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

call methods on this object, such as
the datetime method, which returns a
friendly string representing the date
and time.

Delegations
Alternatively, you could utilize Moose’s
delegation feature when you set up
the fired_dt attribute, l ike this:

has 'fired_dt' => (

is => 'rw',

isa => 'DateTime',

handles => {

last_fired => 'datetime'

}

);

This will set up another accessor
method named last_fired and map
it to the datetime method of the
attribute. This makes the invocations
of $self->last_fired and
$self->fired_dt->datetime equiva-
lent. This is worthwhile because it
allows you to keep your API simpler.

Types
Moose provides its own type system for
enforcing constraints on the value to
which an attribute can be set. As I
mentioned earlier, type constraints are
set with the isa attribute option.
Moose provides a built-in hierarchy of

named types for general-purpose use.

For example, Int is a subtype of Num,
and Num is a subtype of Str. The value
'foo' would pass Str but not Num or
Int; 3.4 would pass Str and Num but
not Int, and 7 would pass all of Str,
Num and Int.
There also are certain built-in types

that can be “parameterized”, such as
ArrayRef (a reference to an array). This
lets you not only require an attribute to
contain an ArrayRef, but also set type
constraints on the values that ArrayRef
can contain. For example, setting
isa => 'ArrayRef[Int]' requires
an ArrayRef of Ints. These can be
nested multiple levels deep, such as
'ArrayRef[HashRef[Str]]' and so on.
Another special parameterized type

is Maybe, which allows a value to be
undef. For example, 'Maybe[Num]'
means the value is either undef or
a Num.
You also can use type “unions”. For

example, 'Bool | Ref' means either
Bool or Ref.
If the built-in types aren’t sufficient

for your needs, you can define your
own subtypes to do any kind of
custom validation you want. The
Moose::Util::TypeConstraints docu-
mentation provides details on creating
subtypes, as well as a complete l isting
of the built-in types that are available
(see Resources).
Finally, instead of specifying the name

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 131

of a defined type, you can specify a class
name, which will require an object of
that class type (such as in our DateTime
attribute example). All of these concepts
can be intermixed for maximum flexibility.
So, for example, if you set isa =>
'ArrayRef[MyApp::Rifle]', it
would require an ArrayRef of
MyApp::Rifle objects.

Inheritance
Subclassing is relatively painless in
Moose. Use the extends function to
make a class a subclass of another. The
subclass inherits all the parent’s methods
and attributes, and then you can define
new ones or override existing ones
simply by defining them again.
Moose also provides helpful attribute

inheritance sugar that allows you to
inherit an attribute from the parent, but
override specific options in the subclass.
To tell Moose to do this, prepend the
attribute name with a plus sign (+) in a
“has” declaration in the subclass. (Note:
attribute options related to accessor
method names cannot be changed using
this technique.)
For example, you could create a new

class named MyApp::AutomaticRifle that
inherits from the MyApp::Rifle class
from the previous example:

package MyApp::AutomaticRifle;

use Moose;

extends 'MyApp::Rifle';

has '+rounds' => (default => 50);

has 'last_burst_num' => (is => 'rw', isa => 'Int');

sub burst_fire {

my ($self, $num) = @_;

$self->last_burst_num($num);

for (my $i=0; $i<$num; $i++) {

$self->fire;

}

}

1;

Here, MyApp::AutomaticRifle can do
everything MyApp::Rifle can do, but it
also can “burst_fire”. Also, the default
of the rounds attribute has been
changed to 50 in AutomaticRifle, but
the rest of the options for the rounds
attribute still are inherited from the
parent Rifle class.
You might use MyApp::AutomaticRifle

like this:

use strict;

use MyApp::AutomaticRifle;

my $rifle = MyApp::AutomaticRifle->new;

print "There are " . $rifle->rounds . " rounds in the rifle\n";

$rifle->burst_fire(35);

print "Now there are " . $rifle->rounds . " rounds in the rifle\n";

INDEPTH

http://www.linuxjournal.com

132 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

The BUILD Method
Although Moose automatically sets up
the “new” constructor for you, there
still are times when you need to exe-
cute custom code at construction. If
you need to do that, define a method
named BUILD, and it will be called
immediately after the object has been
constructed. Don’t create a “new”
method; that will interfere with
Moose’s operation.
BUILD is also special as it relates to

inheritance. Unlike normal methods that
override the parents’ methods when
redefined in subclasses, BUILD can be
defined in every class in the inheritance
tree and every one will be called, in
order from parent to child.

Roles
Roles define some set of behaviors
(attributes and methods) without being
full-blown classes themselves (capable of
instantiation as objects directly). Instead,
Roles are “composed” into other classes,
applying the defined behaviors to those
classes. Roles are conceptually similar to
“mixins” in Ruby.
Roles also can require that consuming

classes have certain methods by calling
the “requires” sugar function in the
Role definition (or throw an exception).
You call the “with” sugar function

to consume a Role by name, just l ike
you call “extends” to inherit from a

regular class.
Here is an example of a simple Role

that could be composed into either
MyApp::Rifle or MyApp::AutomaticRifle:

package MyApp::FireAll;

use strict;

use Moose::Role;

requires 'fire', 'rounds';

sub fire_all {

my $self = shift;

$self->fire while($self->rounds > 0);

}

1;

You would then add this single line to
MyApp::Rifle or MyApp::AutomaticRifle
to give either class the fire_all method:

with 'MyApp::FireAll';

In the case of MyApp::AutomaticRifle,
the with statement must be called after
the extends statement, because the
“fire” and “rounds” methods don’t exist
within MyApp::AutomaticRifle before
that, and the Role’s requires statements
would fail.
If you add the Role to MyApp::Rifle, it

will be inherited by MyApp::AutomaticRifle
automatically, so there would be no
need to add it there also (although it

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 133

won’t break anything if you do).

Method Modifiers
Method modifiers are one of the more
powerful and flexible features of
Moose. The most common types of
modifiers are before, after and
around. Before and after are really
just “hooks” to execute some code
whenever a given method is called,
either before or after, as the names
imply. For example, this would print a
string every time fire_all is called:

before 'fire_all' => sub {

my $self = shift;

print "Say hello to my little friend!\n";

};

The “around” modifier is quite a bit
more powerful than before and after
because it actually can change the
arguments passed to, and the data
returned from, the original method.
It also can programmatically decide
whether even to call the original
method at all.
Around modifiers actually replace the

original method, but get passed the
original method and arguments to be
able to call it within the new modifier
function, but unlike before and after,
this has to be done manually in around.
The basic blueprint of this is below, which
is an example of an around modifier

that exactly reproduces the original
method (having no observable effect):

around 'fire_all' => sub {

my ($orig, $self, @args) = @_;

return $self->$orig(@args);

};

In an around modifier, the first
argument is the method ($orig)
instead of the object reference
($self) l ike in normal methods. Then,
it’s up to you to call the original
method ($self->$orig) and capture its
return value (or not) and then return.

Method modifiers make a great fit
with Roles to define behaviors at a

INDEPTH

NOTE: The semicolons at the end of

the method modifier definitions in the

examples are required. Like all the key-

words provided by Moose, the modifier

sugar keywords actually are function

calls and are not subroutine definitions.
The modifier definitions are all just

function calls with exactly two argu-

ments: a string representing the name

of the method to modify and a code
reference to the actual modifier.

CodeRefs are just treated syntactically

as values like any other. It’s not impor-

tant to understand this fully to use

method modifiers, but it is important to

remember to use the semicolons.

http://www.linuxjournal.com

134 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

fine-grained level. Let’s take a look at
another example of a Role for our
MyApp::Rifle class that makes use of
method modifiers:

package MyApp::MightJam;

use Moose::Role;

use Moose::Util::TypeConstraints;

requires 'fire';

subtype 'Probability' => (

as 'Num',

where { $_ >= 0 && $_ <= 1 },

message { "$_ is not a number between 0 and 1" }

);

has 'jam_probability' => (

is => 'ro',

isa => 'Probability',

default => .01

);

sub roll_dice {

my $self = shift;

return 1 if (rand(1) < $self->jam_probability);

return 0;

}

before 'fire' => sub {

my $self = shift;

die "Jammed!!!\n" if ($self->roll_dice);

};

1;

This Role adds the random chance
of “Jamming” on any given call to
“fire” depending on the probability
specified in the jam_probability
attribute (with the default probability
set to 1%). I also i l lustrate here how
to create a custom subtype, by defining
a new type “Probability”, which must
be a number between 0 and 1.
You then could compose simple sub-

classes l ike the following:

package MyApp::CrappyRifle;

use strict;

use Moose;

extends 'MyApp::AutomaticRifle';

with 'MyApp::MightJam';

has '+jam_probability' => (default => .5);

1;

And:

package MyApp::NiceRifle;

use strict;

use Moose;

extends 'MyApp::AutomaticRifle';

with 'MyApp::MightJam';

has '+jam_probability' => (default => .001);

1;

The difference between these two is

INDEPTH

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 135

that CrappyRifle will jam on average 5
out 10 times, and NiceRifle will only
jam 1 per 1,000 times.

Learning More
This article is just meant as an introduc-
tion to Moose, and because of space
constraints, I have been able to cover
only a few of its core features.
One of the other great things about

Moose, and Perl in general, is the com-
munity and availability of documenta-
tion and resources. The Moose Manual,
available on CPAN (see Resources), is
well-written and comprehensive. There
are also plenty of other docs and infor-
mation available, and the number of
them is growing every day as Moose
continues to gain popularity.
If you get stuck on something and

can’t find the answer, try the #moose
IRC channel on irc.perl.org. Many of the
top experts are in this channel and are
more than willing to help and answer
questions. Although they will expect you
to RTFM and have done your homework
first, they will get you unstuck and
pointed in the right direction.
If nothing else, I hope that this arti-

cle has at least piqued your interest
in modern development with Perl and

Moose, and that you can see that Perl
code can, in fact, be clean, easy to
read and modern, while still being
“Perlish” and powerful.
As you learn Moose, and modern

Perl in general, be sure to check out
some of the other projects and modules
that are available, including Catalyst,
Template::Toolkit, DBIx::Class, Try::Tiny,
Test::More and Devel::NYTProf, just to
name a few. You might be surprised
what’s out there, and what is really
possible with Perl today.�

Henry Van Styn is the founder of IntelliTree Solutions, an
IT consulting and software development firm located in
Cincinnati, Ohio. Henry has been developing software
and solutions for more than ten years, ranging from
sophisticated Web applications to low-level network and
system utilities. He is the author of Strong Branch Linux,
an in-house server distribution based on Gentoo. Henry
can be contacted at www.intellitree.com.

INDEPTH

Resources

Moose CPAN Page: search.cpan.org/perldoc?Moose

Moose Manual: search.cpan.org/perldoc?Moose::Manual

Moose::Util::TypeConstraints Documentation:
search.cpan.org/perldoc?Moose::Util::TypeConstraints

Moose IRC Channel: #moose on irc.perl.org

perlreftut—Perl Reference Tutorial:
perldoc.perl.org/perlreftut.html

If you get stuck on something and can’t find the
answer, try the #moose IRC channel on irc.perl.org

http://www.intellitree.com
http://www.linuxjournal.com
http://search.cpan.org/perldoc?Moose
http://search.cpan.org/perldoc?Moose::Manual
http://search.cpan.org/perldoc?Moose::Util::TypeConstraints
http://perldoc.perl.org/perlreftut.html

KYLE RANKIN

BILL CHILDERS

136 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

As much as I love working with Linux
and configuring software, one major
part of being a sysadmin that always has
appealed to me is working with actual
hardware. There’s something about
working with tangible, physical servers
that gives my job an extra dimension
and grounds it from what might other-
wise be a completely abstract job even
further disconnected from reality. On
top of all that, when you get a large
shipment of servers, and you view the
servers at your company as your servers,
there is a similar anticipation and
excitement when you open a server
box as when you open Christmas
presents at home.
This story so happens to start during

the Christmas season. We had just
received our first shipment of a com-
pletely new blade infrastructure that we
were really excited to try out. As the
resident server monkey and general min-
ion working under Bill’s iron fist, I was
to meet up with an engineer from our

vendor at the data center and assist
with the installation in any way I could.
It was a big job—two completely popu-
lated blade chassis comprising 32 blade
servers, integrated SAN switches and all
the assorted power supplies and network
pass-throughs that went along with it.
We budgeted a full day of the engineer’s
time to rack the new chassis, slot the
blades and make sure all hardware was
functional and up to date.

[Bil l: Iron fist? I l ike the sound of
that. Reminds me of a mid-1970s Marvel
Superhero...but I digress. I remember
this occasion. We’d just finished piloting
a VMware/Blade infrastructure at our
corporate office, and we were about to
roll it out to our production data center,
on next-generation hardware. It was an
exciting time!]
I arrived at the data center a few

hours before the engineer so I could
get all the boxes from shipping and
receiving and move them into our cage.
If you ever have ordered a blade chassis,

Unboxing Day
It’s Christmas time, and Kyle is about to
open his new present: a large shipment
of blade servers. Find out about the
extra present his vendor left him.

TALES FROM
THE SERVER ROOM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 137

you know that everything arrives in
these gigantic cardboard boxes that
incidentally were about the size of our
shared cubicle space back at the office.
These boxes open up to smaller boxes
for the blade servers, chassis, power
supplies and the rest. At first things
moved smoothly. I broke down the
first set of boxes, and after a number
of trips, the empty blade chassis and
the blades themselves were stacked
neatly near our cage.

The Jack in the Box
It wasn’t until I opened the last box that
I realized I was in trouble. Instead of
containing a dozen large boxes and
mostly empty space, this box looked like
a failed game of Tetris. It was filled to
the brim with hundreds of tiny boxes of
all shapes and sizes. The engineer was
going to be there soon, so I tried to
organize the boxes into different piles
and then fil led my pushcart with
swaying stacks of tiny boxes and made
trip after trip to the colocation cage
until all of its walls looked like the
inside of a brown-brick house.

[Bill: I seem to remember you sent a
couple e-mails to me along the lines of
“Wow, this new stuff sure has a lot of

boxes compared to the old stuff.”]
This is probably a good point in the

story to tell you that up to this time,
we normally had taken advantage of
our vendor’s integration service. We
standardized on servers with a certain
amount of RAM, CPU revision, storage
and network configuration that deviat-
ed from the base model, so our vendor
would take the base order model and
do the work to add CPUs, RAM and the
extra parts we wanted so that when we
got a server, we could just rack it and
turn it on.
In this case, for some reason, we

failed to request this integration service,
so not only was I looking at the boxes
for blades, chassis and power supplies,
I had hard drives, CPUs, RAM, fiber-
channel HBAs, extra NICs and even
battery-backed write caches all individ-
ually wrapped in their own boxes.
Instead of unboxing a blade and sliding
it into its slot to install it, every single
blade would need to be opened, and
then each and every component would
have to be opened, removed from its
static wrap, and installed into the
blade one by one.

[Bil l: I have to say here that up
until this point, the vendor always had

TALES FROM THE SERVER ROOM

Instead of containing a dozen large boxes and mostly
empty space, this box looked like a failed game of Tetris.

http://www.linuxjournal.com

138 | SEPTEMBER 2011 WWW.LINUXJOURNAL.COM

“thrown in” the integration service for
us, and it’s something we (and by we, I
mean me) had taken for granted...until
the day my boss called the vendor and
deleted this “superfluous service” from
the quote, without telling me.]

Drowning in Cardboard
When the engineer arrived, I explained
the situation, and we both realized we
had a long day ahead of us. At the
beginning, we made great progress.
He opened up and racked the chassis
and power supplies until the point that
we were ready to install the first blade
server. At that point, we agreed on an
assembly-line system where he would
open up a blade, and I, like a surgical
assistant, would unwrap and hand him
each component in a certain order so he
could install it. Then, while he finished
up the blade, I would fil l up the cart
with empty wrappers and boxes and
roll it to the trash area, so we didn’t
drown in anti-static wrap and card-
board. After a full-day’s work, we
were able to integrate 20 out of our
32 blades successfully.
Unfortunately, we had booked the

engineer only for one day, but he was
able to shuffle appointments around and
return on Friday morning of that week
to finish up. Halfway through Friday
morning, we were able to finish with
the blade servers so that they all were

racked. We were ready to be done at
that point, but we were only halfway
there. We still had to install all the
hard drives, integrated network pass-
throughs, fiber-channel switches and
finally, upgrade the firmware.

[Bill: I had forgotten how long that
job took. Now that you mention it
though, there was an amazing amount
of cardboard generated from that. It
didn’t help that the data center didn’t
allow cardboard on the data center
floor, and you had to shuttle all that
stuff back and forth.]

Late for the Party
Once we powered on the blades, it
looked like we were close to the finish
line. I started packing up all my things
so I could head home early and get
dressed up for our company’s big
Christmas party later that evening.
Naturally, it was at this point that a few
of the blades wouldn’t power on. After
minimal troubleshooting, we were left
with just one misbehaving blade. The
engineer started the hardware trou-
bleshooting process as I watched the
minutes tick by. I realized I had to
somehow power through Bay Area traf-
fic, get home, put on my suit and drive
back through the traffic to the party,
and rush hour was rapidly approaching.
Ultimately, we had to open up the serv-
er, remove all of the hardware we had

TALES FROM THE SERVER ROOM

http://www.linuxjournal.com

added only hours before, and insert the
hardware one piece at a time until we
identified a faulty DIMM slot. Finally, we
were done and I was able to get to the
party fashionably late.
I think the moral to this story is pretty

clear. If we had only gotten all of our
servers integrated ahead of time, the
entire install would have taken a frac-
tion of the time, and any hardware
problems in the system would have
been identified before anything was
shipped to me. When you have the
option, especially when it comes to
large orders of servers, get all your
components integrated ahead of time.

[Bill: The moral for me as a manager,
is always to double-check the quote for
services, and make sure that all of those
are understood so they don’t get labeled
as non-essential and cut by people higher
up the food chain. I’m usually not a fan
of too many vendor services, but getting
the entire system integrated by a vendor
will accelerate deployment time by at
least a couple days.]�

Kyle Rankin is a Sr. Systems Administrator in the San Francisco
Bay Area and the author of a number of books, including The
Official Ubuntu Server Book, Knoppix Hacks and Ubuntu Hacks.
He is currently the president of the North Bay Linux Users’ Group.

Bill Childers is an IT Manager in Silicon Valley, where he lives
with his wife and two children. He enjoys Linux far too much,
and he probably should get more sun from time to time. In his
spare time, he does work with the Gilroy Garlic Festival, but he
does not smell like garlic.

Advertiser Index

ATTENTION ADVERTISERS

The Linux Journal brand's following has
grown to a monthly readership nearly one
million strong. Encompassing the magazine,

Web site, newsletters and much more,
Linux Journal offers the ideal content

environment to help you reach your marketing
objectives. For more information, please
visit www.linuxjournal.com/advertising.

Advertiser URL Page #

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

1&1 INTERNET, INC. www.oneandone.com 3

ABERDEEN, LLC www.aberdeeninc.com 142

ARCHIE MCPHEE www.mcphee.com 141

BZ MEDIA www.hackerhalted.com/2011 93

CPANEL www.bootcamp.cpanel.net 101

DEBIAN CONFERENCE debconf11.debconf.org 111

DIGI-KEY CORPORATION www.digi-key.com 141

EMAC, INC. www.emacinc.com 25

EMPERORLINUX www.emperorlinux.com 59

FUDUNTU www.fuduntu.org 141

GENSTOR SYSTEMS, INC. www.genstor.com 31

HIGH PERFORMANCE COMPUTING www.flaggmgmt.com/hpc 49

IXSYSTEMS, INC. www.ixsystems.com 2, 7

LINODE, LLC www.linode.com 41

LOGIC SUPPLY, INC. www.logicsupply.com 15, 75

LULLABOT doitwithdrupal.com 12, 13

MICROWAY, INC. www.microway.com 27, 143

MIKRO TIK www.routerboard.com 39

RACKMOUNTPRO www.rackmountpro.com 37

RENDEK ONLINE MEDIA linuxcareer.com 47

SAINT ARNOLD BREWING COMPANY www.saintarnold.com 141

SILICON MECHANICS www.siliconmechanics.com 28, 29, 43

SOFTWARE FREEDOM INTERNATIONAL www.softwarefreedomday.org 140

TECHNOLOGIC SYSTEMS www.embeddedx86.com 21

USENIX ASSOCIATION www.usenix.org/lisa11/lj 123

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 139

http://www.linuxjournal.com/buyersguide
http://www.oneandone.com
http://www.aberdeeninc.com
http://www.mcphee.com
http://www.hackerhalted.com/2011
http://www.bootcamp.cpanel.net
http://www.digi-key.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.fuduntu.org
http://www.genstor.com
http://www.flaggmgmt.com/hpc
http://www.ixsystems.com
http://www.linode.com
http://www.logicsupply.com
http://www.microway.com
http://www.routerboard.com
http://www.rackmountpro.com
http://www.saintarnold.com
http://www.siliconmechanics.com
http://www.softwarefreedomday.org
http://www.embeddedx86.com
http://www.usenix.org/lisa11/lj
http://www.linuxjournal.com/advertising
http://www.linuxjournal.com
http://debconf11.debconf.org
http://doitwithdrupal.com
http://linuxcareer.com

www.softwarefreedomday.org

LIN
U

X JO
U

R
N

A
L M

A
R

K
ETP

LA
CE

WWW.LINUXJOURNAL.COM SEPTEMBER 2011 | 141

http://www.linuxjournal.com
www.digikey.com
www.fuduntu.org
mcphee.com
www.saintarnold.com

ANYONE INTERESTED
IN SAVING MONEY?

888-297-7409
www.aberdeeninc.com/lj038

Looks like these guys are comfortable overpaying
for enterprise storage. Are You?

“Hewlett-Packard Co. agreed to buy 3Par Inc. for $2.35 billion” — Bloomberg.com

Above specific configurations obtained from the respective websites on Feb. 1, 2011. Intel, Intel Logo, Intel Inside, Intel Inside Logo, Pentium, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All trademarks are the property of their respective

owners. All rights reserved. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj038

“EMC to Buy Isilon Systems Inc. for $2.25 Billion” — Wall Street Journal

“Dell to Buy Compellent for $960 Million” — CNBC

So what “benefit” will you see by this spending spree, other than higher costs?
The AberSAN Z-Series scalable unified storage platform, featuring the Intel® Xeon® processor 5600
series, brings the simplicity of network attached storage (NAS) to the SAN environment by utilizing
the innovative ZFS file system. The AberSAN Z20 is easily found starting under $20,000.

Who gives you the best bang for the buck?
3Par Compellent Isilon Aberdeen

InServ F200 Storage Center Series 30 NL-Series AberSAN Z20

Storage Scale-Out ✓ ✓ ✓ ✓

Thin Provisioning ✓ ✓ ✓ ✓

HA Clustering ✓ ✓ ✓ ✓

VMware® Ready Certified ✓ ✓ ✓ ✓

Async / Synchronous Replication ✓ ✓ ✓ ✓

iSCSI / Fibre Channel Target ✓ ✓ iSCSI Only ✓

Unlimited Snapshots x ✓ ✓ ✓

Native Unified Storage: NFS, CiFS x x ✓ ✓

Virtualized SAN x x x ✓

Deduplication x x x ✓

Native File System none none OneFS ZFS 128-bit
RAID Level Support 5 and 6 5 and 6 Up to N+4 5, 6 and Z

Raw Array Capacity (max) 128TB 1280TB 2304TB Unlimited
Warranty 3 Years 5 Years 3 Years 5 Years

Online Configurator with Pricing Not Available Not Available Not Available Available

http://www.aberdeeninc.com/lj038
http://www.aberdeeninc.com/abpoly/abterms.htm

Cut Execution Time by >50%
with WhisperStation-GPU
Delivered ready to run new GPU-enabled applications:

WhisperStation with 4 Tesla Fermi GPUs

2U Twin2 Node with 4 Hot-Swap Motherboards
Each with 2 CPUs and 256 GB

1U Node with
2 Tesla Fermi GPUs

OctoPuter™ 4U Server with up to
8 GPUs and 144 GB memory

Microway’s Latest Servers for Dense Clustering

 4P, 1U nodes with 48 CPU cores, 512 GB and QDR InfiniBand
 2P, 1U nodes with 24 CPU cores, 2 Tesla GPUs and QDR InfiniBand
 2U Twin2 with 4 Hot-Swap MBs, each with 2 Processors + 256 GB
 1U S2050 servers with 4 Tesla Fermi GPUs

Microway Puts YOU on the Cutting Edge

Design your next custom configuration with techs who speak HPC.
Rely on our integration expertise for complete and thorough testing
of your workstations, turnkey clusters and servers. Whether you need
Linux or Windows, CUDA or OpenCL, we’ve been resolving the
complicated issues – so you don’t have to – since 1982.

Integrating the latest CPUs with NVIDIA Tesla Fermi GPUs, Microway’s
WhisperStation-GPU delivers 2x-100x the performance of standard
workstations. Providing explosive performance, yet quiet, it’s custom
designed for the power hungry applications you use. Take advantage of
existing GPU applications or enable high performance with CUDA C/C++,
PGI CUDA FORTRAN, or OpenCL compute kernels.

Nvidia Quadro for state of the art professional graphics and visualization

 Ultra-quiet fans, strategically placed baffles, and internal sound-proofing

 Up to 24 cores with the newest Intel and AMD Processors, 128 GB
memory, 80 PLUS® certified power supply, and eight hard drives

 Up to Four Tesla Fermi GPUs, each with: 448 cores, 6 GB GDDR5,
1 TFLOP single and 515 GFLOP double precision performance

 New: Microway CL-IDE™ for OpenCL programming on CPUs and GPUs

GSA Schedule
Contract Number:
GS-35F-0431N

ANSYS Mechanical
Autodesk Moldflow
 Mathematica

Simulation

MATLAB
ACUSIM AcuSolve
Tech-X GPULib

3ds Max
Bunkspeed
 Shot
Adobe CS5

Design

AMBER
GROMACS
NAMD, VMD
TeraChem

BioTech

Configure your next WhisperStation or Cluster today!
microway.com/quickquote or call 508-746-7341
Sign up for technical newsletters and special GPU promotions at microway.com/newsletter

pC4_Microway.indd 1pC4_Microway.indd 1 10/17/10 5:07:51 PM10/17/10 5:07:51 PM

http://microway.com/quickquote
http://microway.com/newsletter

